
1

Task-based Parallel Programming for Gate Sizing
Dimitrios Mangiras, David Chinnery and Giorgos Dimitrakopoulos, Member, IEEE

Abstract—Physical synthesis engines need to embrace all
available parallelism to cope with the increasing complexity
of modern designs and still offer high quality of results. To
achieve this goal, the involved algorithms need to be expressed
in a way that facilitates fast execution time across a range of
computing platforms. In this work, we introduce a task-based
parallel programming template that can be used for speeding
up timing and power optimization. This approach utilizes all
available parallelism and enables significant speedup relative
to custom multithreaded approaches. Task-based parallelism is
applied to all parts of the optimization engine covering also parts
that are traditionally executed serially for preserving maximum
timing accuracy. Using Taskflow as the parallel programming and
execution engine, we achieved a speedup of 1.7× to 2.8× for gate
sizing optimizations on the ISPD13 benchmarks with marginal
extra leakage power relative to state-of-the-art multithreaded
gate sizers. This result was supported by two dynamic heuristics
that restrict the number of examined gate sizes and simplify
local timing updates. Both heuristics trade off additional runtime
reduction with marginal leakage power increases.

Index Terms—task-based parallel programming, timing and
power optimization, physical design, electronic design automa-
tion.

I. INTRODUCTION

The implementation of physical synthesis algorithms should
satisfy multiple contradictory goals [1]. First comes Quality-
of-Results (QoR): to place and route a design that satisfies
the required timing, area and power constraints [2], [3]. Then
comes efficiency that should not compromise QoR: execute
physical synthesis algorithms in the least amount of time
even for very large designs. Last but not least is performance
portability [4]: the implementation should be agnostic to the
particularities of the hardware platform thus enabling physical
synthesis engines to take advantage of new diverse computing
hardware with the least effort for software adaptation.

Currently, the majority of the physical synthesis engines
are manually parallelized with custom thread pools and work
allocators developed using well-known multi-threaded pro-
gramming interfaces [5], [6], [7]. Even if such efforts have
shown good scalability, the performance starts to level off
after a few active threads. There are multiple reasons for this
limitation. In many cases, the algorithms are graph oriented
and although they exhibit high degrees of parallelism, the
patterns of parallelism involve irregular computations and
possibly poor data locality that are harder to exploit than
the structured parallelism patterns found in computational
science [8], [9]. Also, the combined engineering effort required

Dimitrios Mangiras and Giorgos Dimitrakopoulos are with the Department
of Electrical and Computer Engineering, Democritus University of Thrace,
Xanthi, Greece. Dimitrios Mangiras is supported by the Onassis Foundation
- Scholarship ID: G ZO 014-1/2018-2019.
(e-mail: dmangira@ee.duth.gr, dimitrak@ee.duth.gr).

David Chinnery is with Siemens Digital Industries Software, Fremont, USA
(e-mail: david.chinnery@siemens.com).

to describe algorithmic novelty together with multithreaded
efficiency is not trivial and may lead to sub-optimal results.
Additionally, custom thread management and scheduling may
be inefficient or hard to adapt to new computing platforms.

To overcome such limitations, our goal is to separate
algorithm development, that should focus solely at the relevant
problem, e.g., placement, routing, or timing optimization, from
its parallel execution. To achieve this goal, we argue that
physical synthesis algorithms should be described as task-
based parallel programs.

In task-based models, the programmers define elementary
blocks of source code as individual tasks and express depen-
dence relationships between those tasks [9]. In this way, the
programmers do not manage processes or threads anymore but
they focus only on how to decompose their program into tasks.
Contrary to other parallel programming approaches, task-based
programming is easier, safer and more efficient to human
programmers [4]. In this way, physical synthesis software
architecture is stable and can enjoy long-term availability, ease
of maintenance and high performance across current and future
computing platforms.

In this work, we derive a generic template for timing
optimization using task-based parallel programming and apply
it to gate sizing, i.e., select for each gate an appropriate
size and threshold voltage from a discrete set of library
cells [1]. The same template can be used for various forms
of timing optimization such as timing-driven placement [10]
or logic restructuring [11]. The presented approach can be
used both for global timing optimization at the first steps
of the physical synthesis flow or close to the end where
repairing timing violations requires incremental operations that
are nondisruptive and execute as fast as possible [12].

Timing optimization algorithms are often iterative and ex-
hibit irregular computational patterns and complex control
flow [10], [13]. For this reason, we selected Taskflow for
transforming the multi-step timing optimization to a task-based
parallel program. Other candidates, such as Intel oneTBB
FlowGraph [6], OpenMP tasks [7] were not chosen. These
models require programmers to implement control flow deci-
sions outside the task dependency graph thus creating compli-
cated implementations that compromise parallelism [9]. Task-
flow [9] offers a simpler programming interface and allows
building hierarchical task graphs. Also, it supports conditional
dependencies and cyclic execution patterns that have already
been used in accelerating static timing analysis [14] and
detailed placement [15].

In overall, this work’s contributions are summarized as
follows:

• We introduce a generic task-based parallel programming
template for timing optimization and test it on gate sizing
algorithms. The presented approach covers all phases of a
powerful Langrange-relaxation based gate sizer covering



2

initial sizing, main iterative sizing and final recovery
steps. All steps are parallelized for the first time –to
the best of our knowledge– without requiring any steps
executed serially and without compromising quality of
results.

• For better exploring the runtime vs quality tradeoff,
we propose two heuristics that (a) re-evaluate at each
iteration the search space of examined sizes per gate
and (b) dynamically assess the criticality of local timing
arcs. The gates with not-critical timing arcs are pruned
from the local timing graph thus speeding up local timing
updates.

• Using the task-based formulation and reducing dynami-
cally the examined sizes per gate gives a speedup of 1.7×
to 2.8× when compared to state-of-the-art multithreaded
gate sizers with only a marginal increase in leakage
power. When enabling fast local timing updates, runtime
is reduced further.

The rest of this paper is organized as follows: Section II dis-
cusses related work. Section III presents the overall template
for a task-parallel gater sizer while Sections IV–VI describe
its constituent parts. Experimental results are presented in
Section VII and conclusions are drawn in the last Section.

II. RELATED WORK

Gate sizing has been traditionally considered as a powerful
tool for timing closure and power reduction that could execute
in a reasonable runtime even for very large designs [16],
[17]. Approaches that used linear programming have been also
proposed. In these cases, positive slack was distributed to gates
using linear programming with the goal to maximize power
savings [18], [19]. Then, gate sizes were selected based on
the available slack. Similarly, Held et al. [20] assigned slew
targets, instead of delay targets.

Langrangian Relaxation (LR) has been widely used for de-
sign optimization in recent years. Ozdal et al. in [13] proposed
a graph model to effectively decide the sizes of the LR-based
gate sizing problem. LR-based gate sizing has been refined
in [21] and [22]. To resize both data and clock gates Shklover
et al. [23] extended the traditional LR method with clock-
related formulations, while the work of [10] introduced a way
to optimize all types of gates (e.g. flip-flops, combinational
gates and clock buffers) using the same LR formulation.

Even the most efficient algorithms required parallelism to
scale to increasing design sizes. A sensitivity-guided meta-
heuristic method that optimizes power and timing using par-
allel execution was proposed in [24] and enhanced in [25].
Sharma et al. in [22] implemented a multithreaded gate sizer
using OpenMP obtaining good QoR with fast runtimes. This
approach has been tested in an industrial setup in [26].
Intel’s threading building blocks [6] have been used in the
most computational intensive parts of the optimization flow
of [27] and [28]. The Galois parallelization framework [8] has
been used in [29], [30] to speedup global and maze routing.
More closely related to this work, OpenTimer [14] exploited
Taskflow to accelerate efficiently static timing analysis.

Other approaches have focused on speeding up execution
of EDA algorithms in GPUs. Liu et al. [31] use a GPU

Start

Initial sizing

M
a
in

 o
p

tim
iz

a
tio

n
 

Forward pass

iSTA

1

Check
convergence

Backward
pass

Stop?
0

R
e
c
o

v
e

ry
 s

te
p

End

1

0

iSTA

Stop?

Forward
recovery pass

Fig. 1. The overall task dependency graph that consists of initial sizing, the
main optimization loop and the final recovery loop.

to accelerate a dynamic-programming-based gate-sizer [32].
Also, a GPU has been employed in [33] to accelerate static
timing analysis. GPUs were used also for accelerating path-
based timing analysis [34], [35] and placement. In the latter
case, global [36] and detailed placers [15] executed on GPUs
show tremendous speedups in designs with million of gates
when compared to multi-threaded implementations for CPUs.

III. GENERIC GATE SIZING TEMPLATE

Timing and power optimization approaches consist mainly
of three core steps: initial preparatory optimization, the main
iterative optimization, and final timing and power recovery.
The organization of these three main steps are depicted in
the top-level task graph shown in Fig. 1. Rectangular tasks
represent hierarchical blocks that can be further unwrapped
to simpler tasks, round tasks are tasks executed at this level
of abstraction, while diamond-shaped tasks represent condi-
tional tasks. Conditional tasks check for a certain condition
and determine accordingly the flow of execution. Solid-line
edges between tasks represent dependence relations. On the
contrary, dashed-line edges are conditional dependencies used
in Taskflow [37] for describing cyclic processes.

Initial sizing that is executed first guarantees that gates
are properly initialized so that they do not violate maximum
load capacitance and maximum input slew design rules [27].
The forward pass (FP) of the main optimization loop selects
appropriate sizes for each gate with the goal to minimize
the selected cost function that reduces power and satisfies
timing constraints. The result of this pass is quantified by the
incremental static timing analysis (iSTA) step that follows. If
power has not changed by more than 0.1% for three consec-
utive iterations the optimization moves to the recovery step.
Otherwise, the program flow moves back to FP. This condition
is checked by the convergence check task. In parallel, the
backward pass (BP) updates the timing criticality of each gate
using the updated timing information of iSTA.

The iterative recovery process begins only after the main
optimization has converged. The goal of recovery is twofold:
to correct the small remaining timing violations and re-



3

D Q
D Q

Fig. 2. The example logic-level netlist used as a running example.

Start

1st phase

minsize(10)

minsize(4)

minsize(5)

minsize(6)

minsize(7)

minsize(8)

minsize(9)

minsize(11)

minsize(12)

1st phase

Start
Reverse

2nd phase

1

3

2

End
Reverse

sol(12) sol(10) sol(4)

sol(11) sol(8)

sol(9) sol(7)

sol(6)

sol(5)

14

13

sol: solve_violations task

End

Fig. 3. The task graph of initial sizing is organized in two phases: In the first
phase all cells are downsized in parallel. In the second phase the remaining
load and slew violations are removed by visiting gates in reverse topological
order.

cover power from gates with positive timing slack. To avoid
disturbing the already optimized netlist, recovery executes
carefully selected resizings with maximum timing accuracy
at each step. State-of-the-art optimizers [21], [22] guarantee
maximum timing accuracy by touching serially one gate at
a time and updating timing globally after every update. In
this work, we avoid serial execution and execute recovery
in a conservatively-parallel way that allows for equivalent
power savings but with significantly lower runtime. If timing
or power improves, the recovery is repeated until all timing
violations are solved and power stops changing. To assess
timing improvement at the end of this recovery step a full
incremental timing update takes place.

IV. INITIAL SIZING

The purpose of the initial sizing is to solve any load and
slew violation from the beginning. In this way, it is easier
for the main optimization loop that follows to preserve this
property without introducing new violations.

To implement initial sizing we map its operation to a
specific task graph that is organized in two parts. In the first
part all gates are downsized in parallel to their lowest size
(and lowest leakage). In the second part, the gates are visited
in reverse topological order to check and solve if the load and
the slew constraints are violated. The first part does not involve
any dependencies across tasks, while in the second part the
execution of tasks follows the connectivity of the logic-level
netlist in reverse order.

The task graph for initial sizing that corresponds to the de-
sign of Fig. 2 is depicted in Fig. 3 and built using Algorithm 1.
The first phase contains one task for each gate or flip-flop of

the design without dependencies between them. In the second
phase, there are tasks which represent primary inputs (PIs)
and outputs (POs), D-pins of the flip-flops, gates as well as
flip-flops (FFs). From these tasks, only the tasks that represent
gates and flip-flops are assigned with work. Pseudo-tasks are
created to help in dependency propagation. Such tasks are
represented with grey-colored circles. Dependencies guarantee
that each task is executed after the tasks of its fanouts in logic
level. Introducing separate tasks for the D and clock/Q pins of
the flip-flops breaks any possible sequential loop of the design
thus resulting in acyclic task graphs.

Algorithm 1: Create Task Graph for Initial Sizing

1 create task(“Start”);create task(“End”); //1st phase

2 foreach g in {Gates ∪ FFs} do
3 create task(g); task(g).assign work(minsize(g));
4 task(“Start”).precede(task(g));
5 task(g).precede(task(“End”));
6 end
7 create task(“Start-Reverse”); // 2nd phase
8 foreach po in {POs ∪ D-pins} do
9 create task(po); task(“Start-Reverse”).precede(task(po));

10 end
11 create task(“End-Reverse”);
12 foreach pi in {PIs} do
13 create task(pi); task(pi).precede(task(“End-Reverse”));
14 end
15 foreach g in {Gates ∪ FFs} do
16 create task(g); task(g).assign work(sol(g));
17 end
18 foreach i in {Gates ∪ PIs ∪ FFs} do
19 foreach f in { fanouts of i } do
20 task(f ).precede(task(i));
21 end
22 end
23 task(“End”).precede(task(“Start-Reverse”));

Algorithm 2: solve violations(gate g)

1 sizes← {equivalent sizes of g from cell library};
2 sizes sort← {sort sizes in ascending power order};
3 i← 0;
4 while violates load(g) or violates slew(g) do
5 i++; resize g to sizes sort[i];
6 end

The work executed at each task solve_violations is
described in Algorithm 2. For each gate that is already at
its minimum leakage size, we check whether the gate can
drive its output load without introducing slew violations. The
output slew is computed directly from the output slew lookup
tables of the library using the already known output load
and assuming the maximum-allowed slew for the inputs. If
a load or a slew violation still exists the size of the gate is
gradually increased until violations are removed. If none of
the available sizes can solve the slew or load violations, only



4

logic restructuring can fix them (e.g., by adding buffers); but
this problem does not occur on the ISPD 2013 benchmarks.

V. MAIN GATE SIZING OPTIMIZATION

Design optimization targets the minimization of the total
leakage power without violating any timing constraints:

minimize
∑

∀gate i

leakagei (1)

subject to ai + dij ≤ aj , for each timing arc i→ j

ak ≤ rk, for each endpoint k

Variable ai is the arrival time at pin i while rk is the required
arrival time at a primary output or a D-pin of a flip-flop k. dij
is the delay of the timing arc i → j that consists of the wire
delay from the output pin of gate i to the input pin of gate j
plus the cell delay of gate j.

Lagrangian Relaxation associates a non-negative weight λij ,
called Lagrange Multiplier (LM), to each constraint [38].
These weights act as penalty factors whenever the corre-
sponding timing constraints are not met. Incorporating the
constraints in the objective function transforms the problem
to the following unconstrained one:

min
∑

∀gate i

leakagei+
∑

∀arc i→j

(ai+dij−aj)λij+
∑

∀endpoint k

(ak−rk)λk (2)

Differentiating (2) with respect to arrival times, according
to the Karush-Kuhn-Tucker (KKT) optimality conditions [13],
[10], we end up with the following LM conservation rule.∑

∀fanin i of j

λij =
∑

∀fanout k of j

λjk (3)

Equation (3) implies that the sum of the LMs of the arcs
ending to a gate is equal to the sum of the LMs of the arcs
starting from this gate. For example, the LM flow for gate 7
of Fig. 2 implies that λ17+λ67 = λ78+λ79+λ710. Replacing
the equality condition of (3) to (2) simplifies the problem to:

min
∑

∀gate i

leakagei +
∑

∀arc i→j

λijdij (4)

A. Forward Pass

State-of-the-art LR-based optimizers try to minimize cost
function (4) using many iterations of gate resizing and VT

reassignment steps. At each iteration implemented by FP all
gates are visited in topological order and for each gate the best
size is selected assuming constant LMs.

1) FP Task graph: FP uses a task graph different from
the one used for initial sizing. The task graph of FP that
corresponds to the example of Fig. 2 is shown in Fig. 4
and built using Algorithm 3. Primary inputs, primary outputs,
and the D-pins of the flip flops are assigned to pseudo-tasks
(grey circles). A task implementing the resize function of
Algorithm 4 is assigned to each gate and flip-flop of the
design (line 9 in Alg. 3). The dependencies across tasks follow
the forward topological order of the logic-level netlist. After
“Start” the pseudo-tasks of the primary input pins are visited
first, while the rest dependencies follow the netlist connectivity

1

End

3

2

Start

rsz(6)

rsz(5)

rsz(11)
rsz(7)

rsz(8)

rsz(9)

rsz(10) rsz(12)rsz(4)

MEE

MEE

rsz: resize task

14

13

Fig. 4. In the forward task graph, the gates are visited in topological order
to find new size. Apart from the logic-level dependencies (black color), the
MEEs (colored green) of [22] are added to prevent the simultaneous sizing
of gates driven by the same driver, e.g. gates 8, 9 and 10.

Algorithm 3: Create Task Graph for Forward Pass

1 create task(“Start”); create task(“End”);
2 foreach pi in {PIs} do
3 create task(pi); task(“Start”).precede(task(pi));
4 end
5 foreach po in {POs ∪ D-pins} do
6 create task(po); task(po).precede(task(“End”));
7 end
8 foreach g in {Gates∪ FFs} do
9 create task(g); task(g).assign work(rsz(g));

10 end
11 foreach i of {Gates ∪ PIs ∪ FFs} do
12 fi ← {fanouts of i in topological order} ;
13 foreach f in fi do
14 task(i).precede(task(f ));
15 next f ← {the fanout next of f in fi};
16 if dependency f→next f doesn’t exist then
17 task(f ).precede(task(next f )); // MEE
18 end
19 end
20 end

which implies that the task of a gate precedes the tasks of its
fanouts (line 14 in Alg. 3).

According to [22] the tasks that correspond to gates that
have a common fanin gate cannot execute in parallel using
different threads. If their sizing is done in parallel each
gate would estimate the delay change of their common fanin
differently thus possibly leading to wrong sizing decisions.
Also, when one of them is sized without knowing the size of
the other, since it is changing in parallel, it may violate the
maximum allowed capacitance of their common fanin gate.
To solve this problem, the tasks that correspond to gates with
a common driver should be executed serially. To impose this
serial execution additional dependencies are added (lines 15–
18 in Alg. 3), called mutual exclusion edges (MEE). For
instance in Fig. 2, gate 7 drives gates 8, 9 and 10. Therefore,
besides the normal dependencies 7 → 8, 7 → 9 and 7 → 10
that arise from the forward topological order of the netlist in
Fig. 4, two extra MEE dependencies are added between the
tasks 8, 9, 10 to serialize their execution.

To decide to which pair of tasks we should add an MEE
edge we consider the following rule. An edge u→ v is added
between tasks u and v if: (a) Tasks u and v correspond to



5

Algorithm 4: resize(gate g)

1 min cost← inf ;
2 best size← size(g) ;
3 init slack ← local TNS(g) ;
4 trial sizes← get available sizes(g) ;
5 foreach size s of trial sizes do
6 resize g to s ;
7 if violates load(g) or violates slew(g) then
8 reject s ;
9 end

10 local timing update(g);
11 if local TNS(g) < γ · init slack then
12 reject s ;
13 end
14 cost← leakageg +

∑
i→j around g λijdij ;

15 if (cost < min cost) then
16 min cost← cost;
17 best size← s;
18 end
19 end
20 resize g to best size ;
21 local timing update(g);

gates that have the same driver in the logic level netlist; (b)
u is visited before v in the forward topological ordering of
the netlist. In this way, the corresponding tasks are executed
serially and cyclic dependencies are avoided since an MEE is
always a “forward” edge with respect to the topological order.

2) The task executed per gate: According to Algorithm
4, task resize stores first the current size of the gate and
computes its local total negative slack (TNS). Local TNS
corresponds to the negative slack at the output pin of the
examined gate and the negative slacks at the output pins of
its driving gates. Then, the cell resizing loop examines all
available trial sizes and selects the one that minimizes the
local cost function (4), without introducing load violations
and without degrading the local TNS over a threshold γ [21],
[39]. To compute the value of γ we use the same approach
proposed in [21]: γ = −min(0,WNS)/T +1, where WNS
is the worst negative slack of the design and T is the clock
period. In this way, γ changes as the optimization evolves.
The idea is to allow the local TNS to degrade a little bit for
better solution space exploration, but at the same time to keep
the local TNS under control. In the first few iterations, γ has a
large value to allow the local TNS to have large degradation;
and as timing improves, γ allows only fine-grained changes
that do not disturb the already optimized design.

The local cost is calculated as the summation of the leakage
power of the new size and the neighbor arc delays multiplied
by their corresponding LMs. The neighbors of a gate are the
ones connected at its fanin and fanout, including also the side
gates, i.e., those that share a driver with the resized gate. For
instance, for gate 9 in Fig. 2 the following arcs are involved
in the local cost: its input arc (7 → 9), the arcs of fanin (1 →
7, 6 → 7), the arcs of fanout (9 → 11, 8 → 11) and the input
arc of gates 8 and 10 (3 → 8, 7 → 8, 7 → 10, 4 → 10).

High VT

Higher leakage power

Width

proportional to

Typ. VT

Low VT
current size

Fig. 5. The search window is centered around the current gate size and its
width changes dynamically in proportion to the gate’s slack divided by WNS.
The width of the search window cannot reduce below three sizes per threshold.

In the baseline case, the available set of trial sizes examined
per gate includes all possible alternatives. Also, during local
timing update all neighbor arc delays are examined. In an
effort to tradeoff runtime with QoR, we present two new
approaches that can dynamically narrow down the set of trial
sizes and examined timing arcs. Those heuristics are only
selectively enabled and are not part of the baseline execution
flow of gate sizing.

3) Reduce Trial Sizes (RTS): Based on the timing slack
of each examined gate, we are not obliged to examine all
available sizes for each gate. For instance, Sharma et al. in
[22] observed that by trying all available sizes during the first
five iterations of the main optimization loop and using only a
subset of them for the rest iterations, is enough to accelerate
gate sizing with good final QoR.

In this work, the set of sizes that need to be examined
are dynamically decided at each iteration and separately per
gate. The smallest set of available sizes corresponds to three
sizes for each VT , i.e., the currently selected size and the
immediately smaller and larger gate size, times the number
of available thresholds (nine in total for the benchmarks used
in the experimental results). On the contrary, the largest set
corresponds to all available sizes per VT and all available
thresholds (thirty sizes for the examined benchmarks). In all
cases, the examined set of available sizes lies between those
two extremes. How large is the search space depends on
the negative slack of the output of the each gate: the more
timing critical a gate is, the more options are tried to solve its
violation fast.

If a gate has positive slack only the minimum of three
sizes per VT is tried. If the slack s is negative, the width
of the search window centered around the currently selected
size grows according to the ratio of s

WNS , as highlighted in
Fig. 5. Put formally the width W of the window shown in
Fig. 5 equals W = 1 +max(2, #sizes× min(0,s)

WNS )
4) Fast Local Timing Update (FLTU): The local timing

update calculates the new arc delays and the slews of the gates
which are immediately affected after modifying a gate’s size.
The computed delays are used for computing the local cost
function and the local TNS in Algorithm 4. To speedup this
process, we dynamically alter which timing arcs are actually
updated. We aim at skipping the update of timing arcs that
are associated with relatively small LMs and do not affect
the overall local cost. The proposed approach is detailed in
Algorithm 5.



6

Algorithm 5: local timing update(gate g)

1 sum← 0, neigh arcs← 0, upd gates← {} ;
2 foreach gate j in get neighbors(g) do
3 foreach input arc i→ j do
4 sum← sum+ λijdij ; neigh arcs++ ;
5 end
6 end
7 crit thres← α · (1/neigh arcs) ;
8 foreach gate j in get neighbors(g) do
9 foreach input arc i→ j do

10 crit← λijdij/sum ;
11 if crit > crit thres then
12 upd gates← upd gates ∪ j ;
13 end
14 end
15 end
16 if fast local STA disabled or local TNS(g) < 0 then
17 upd gates← get neighbors(g);
18 end
19 foreach gate j of upd gates in topological order do
20 update slews and arrival times(j) ;
21 end
22 foreach

gate j of upd gates in reverse topological order do
23 update required times and slacks(j) ;
24 end

Initially, the sum of the delays of the neighboring timing
arcs multiplied with their corresponding LMs is computed,
which is similar to the local version of Eq. (4) except of the
leakage power term. For each neighbor, the real contribution
of each timing arc is computed as the ratio of the arc’s delay
multiplied with the corresponding LM to the

∑
λijdij of all

neighboring arcs. When at least one of the neighbor’s arcs con-
tributes more than the threshold, the corresponding neighbor
gate is not skipped. The threshold is set to α · (1/#neigh arcs)
where α is a non-negative weight that takes any value in
between 0 and 1 and alters the number and which of the
neighbors are skipped. For α = 0, all the neighboring arcs
contribute more than the threshold and thus, all neighbors are
updated. On the contrary, for α = 1 the threshold allows each
arc to contribute equally to the threshold. In our experiments
α = 0.5 was used, as it minimally impacts the leakage power
and provides good runtime savings.

Although a neighbor is ignored, its stale arc delays are still
taking part in the local cost. If the local TNS of the examined
gate is negative, all neighbors are updated to avoid timing
oscillations.

The set of neighboring gates that need local timing update
are not statically determined but they are dynamically re-
defined for each gate in every iteration. The example in Fig.
6 illustrates which gates in the neighborhood of gate 9 are
skipped during local timing update as the optimization evolves.
In every iteration, the criticality of each arc of the neighboring
gates (gates 7, 8, 9, 10, 11) is compared to the threshold
in which a = 1 for simplicity. During the third iteration,

skip
gate

D Q

Iteration 4 Iteration 5 Iteration 6

D QD Q

Iteration 3

 D Q

examined
gate

skipped in

local timing

update

Fig. 6. Since the criticality of timing arcs 7 → 10 and 4 → 10 of gate 10
are less than the threshold, gate 10 can be removed from the neighbors of
gate 9 that participate in local timing update. This decision is dynamic and
the neighbors skipped in the next iterations is re-evaluated.

the criticality of both arcs of neighbor 10 are less than the
threshold and thus gate 10 is skipped. In the next iterations, the
same checks are performed for each arc thus possibly skipping
gates 8 and 10 in the fourth and the fifth iteration, respectively.

B. Backward pass

Backward pass is responsible for updating the timing crit-
icality of each timing arc of the design by properly updating
the values of the LMs. Fig. 7 depicts the task graph of the
backward pass for the same running example. The task graph
in this case includes one task for each gate, primary output and
D-pin of each flip-flop, connected in reverse topological order.
The task graph of the backward pass follows the same structure
as the second part of the task graph of initial sizing. Therefore,
to build the task graph of the backward pass, we can follow
the lines 7–22 of Alg. 1 and assign the backward function to
each task that corresponds to a gate, flip-flop, primary output,
or D-pin of a flip-flop.

During the backward pass there are no netlist changes. Thus,
we can omit the addition of the MEEs which chain the fanout
gates. If they were included, they would degrade the parallel
performance of the backward step because they would enforce
more serialization on the execution of the tasks.

1

3

2
bw(6)

bw(5)

bw(11) bw(7)

bw(8)

bw(9)

bw(10)bw(12) bw(4)

End
Reverse

bw(13)

bw(14)

bw: backward task

Start
Reverse

Fig. 7. In the backward graph the tasks are visited in reverse topological
order.



7

The operation of LM update executed in the backward pass
is described in Algorithm 6. The LMs of the input arcs are
updated to reflect the timing changes due to the re-sizings of
the forward pass. The LMs act as penalty factors and their
values should reflect if the timing constraints are met or not.
The LMs are updated using the approach proposed in [22]. Dij

is the worst path delay that passes through timing arc i → j
and T indicates the clock period target. Therefore, for a timing
arc with negative slack Dij > T and thus the LM increases
to reflect the violation of the timing constraint. On the other
hand, when Dij < T makes Dij

T < 1 and decreases λij . The
exponent K is used to speedup LM increments and reductions
and its value is also adopted from [22]. Initially, the design
has multiple timing violations and therefore the exponent for
the critical arcs is set to 1 and for the non-critical arcs to 0.25.
Once, the TNS becomes less than 20% of the clock target and
the majority of the timing violations have been resolved, K=4
is used for the positive arcs because the respective LMs need
reduction with higher rate in order to save power.

Algorithm 6: backward(gate j)

1 foreach input arc i→ j do // LM update

2 λupd
ij = λij

(
Dij

T

)K

3 end
4 foreach input arc i→ j do // LM scale

5 λij =
λupd
ij∑

∀m→j λupd
mj

(∑
∀j→k λjk

)
6 end

Once the LMs of the input arcs are updated, they have to
be scaled to respect the KKT condition of (3). The sum of the
LMs of the output arcs must be equal to the sum of its input
arcs LMs. To achieve this, each input LM gets a percentage of
the sum of the output LMs that is proportional to its updated
value. For example, for the timing arc 6 → 7 of gate 7 (Fig.
2) it is λ67 =

(
λupd
67 /(λupd

17 + λupd
67 )

)
· (λ78 + λ79 + λ710).

VI. TIMING AND POWER RECOVERY

The recovery step aims at identifying and optimizing the
gates that were kept in an un-optimized state after main
sizing optimization. For instance, it deals with gates that have
negative slack or have remained to a high-leakage size but
have positive slack to spend. This recovery step is common in
many optimization algorithms and especially in those that rely
on Langrangian relaxation [21], [22], [39]. In recovery, a small
number of new sizes are tried per gate, each one followed by a
complete incremental timing propagation to accurately reflect
the timing of the affected paths. To keep the timing picture of
the design as accurate as possible after each resizing, state-of-
the-art sizers execute this step serially using a single thread
that operates at one gate at a time.

In this work, to accelerate the execution of the recovery step,
we propose its parallel execution by allowing multiple gates
to be sized in parallel but in a more conservative way. The
task graph used for the recovery step is derived from the task
graph of FP after adding extra dependency edges called timing

Start

1

3

2
rec(6)

rec(5)

rec(11)
rec(7)

rec(8)

rec(9)

rec(10)

End

14

13

rec(12)rec(4)

MEE

MEE

TSE
TSE

rec: recover task

Fig. 8. The recovery task graph is built on top of the task graph of FP. TSE
dependencies are added to eliminate timing inaccuracies. The TSE are added
from a gate towards the fanouts of its side gates.

safety edges (TSEs) and replacing the function for each task
to recover implemented in Alg. 8. The addition of TSEs
increases timing safety by imposing the recovery task for a
gate to execute not only before its fanout but also before the
fanout of its side gates. A TSE is added between tasks u and
v on top of the task graph of FP when (a) Task u corresponds
to a gate that one of its side gates is a fanin of the gate that
corresponds to task v and (b) u is visited before v in the
forward topological ordering of the netlist thus avoiding any
cyclic dependencies. The addition of TSEs on top of the task
graph of the forward pass is implemented by Algorithm 7.

Algorithm 7: Add Timing Safety Edges

1 foreach g in {Gates} do
2 sides← {side gates of g};
3 sides f ← {fanouts of sides};
4 foreach f of sides f do
5 if g seen before f in topological order and

dependency g→f doesn’t exist then
6 task(g).precede(task(f ));
7 end
8 end
9 end

The forward graph for the recovery step of the example in
Fig. 2 is depicted in Fig. 8. Gates 8, 9 and 10 share the driver
7 and thus, they are side gates. The task of gate 8 needs to
add two TSE dependencies towards the tasks of the fanouts
of its side gates 9 and 10, i.e. 11 and 12. But gate 11 is also
fanout of gate 8 and therefore a logic-level dependency already
exists between them. Therefore, as shown in Fig. 8, only one
TSE dependency is added from the task of gate 8 towards
12. Similarly, the TSE dependencies from task 9 towards 12
and from task 10 towards 11 are added. Even though TSEs
enforce more serial execution, they are essential for the timing
accuracy needed by the resizings of this step. For instance,
assume the case of tasks 10 and 11 in Fig. 8. If they were not
connected by a TSE it means that they could have executed
recovery in parallel. If this was allowed, each task would have
affected differently the timing of gate 9 since the latter is a
side gate for 10 and a fanin gate for 11. Since the delay of
gate 9 affects the local TNS of both gates 10 and 11, resizing
them in parallel would have been highly inaccurate for the
sensitive recovery step.

Please notice that this inaccuracy in timing does not affect



8

the convergence of the main optimization loop. The main
optimization loop is an iterative process that relies on the
minimization of the sum of the arc delays multiplied with their
corresponding LMs (cost function (4)). The LMs are updated
gradually during every BP and thus keep historic information
with respect to the criticality of the corresponding timing arc.
For instance, an arc that was critical for multiple iterations it
keeps a high value even if its timing is improved. Therefore,
the LMs work as safeguard and any wrong decision due to
timing inaccuracy, is fixed in the next iteration.

In contrast, in the recovery step the optimization does not
depend on a joined product with LMs, but the local decisions
are strictly based on the actual slacks as returned from the
timer. Therefore, even the small timing inaccuracies which
can harm the convergence of the recovery, must be avoided.

Algorithm 8: recover(gate g)

1 if local TNS(g) > 0 then // Power recovery
2 resize g to {next increased VT size of g’s initial size};
3 if reject size(g) then
4 resize g to {next smaller size of g’s initial size};
5 if reject size(g) then
6 resize g to it’s initial size;
7 end
8 end
9 else // Timing recovery

10 resize g to {next bigger size of g’s initial size};
11 if reject size(g) then
12 resize g to it’s initial size;
13 end
14 end

The assigned work to the tasks in the recovery step is
described in Algorithm 8. For each visited gate, the local TNS
is computed and its sign defines whether the gate is sized to
save power or to solve timing violations.

For power reduction, only two sizes are tried one after the
other; the next VT and the smaller size. After each resize,
timing is updated locally considering all the neighboring gates.
The first option that does not violate the design rules and does
not degrade the local TNS, is kept. For timing reduction, the
gate is sized only to the next bigger size to improve timing.
If this size violates the design rule constraints or after a local
timing update it worsens the local TNS, the gate is resized
back to its initial size.

VII. EXPERIMENTAL RESULTS

The proposed approach was implemented in C++ using the
RSyn framework [40] that provides the essential functions for
netlist traversal and update as well as timing analysis. The
creation and the execution of task graphs was performed with
Taskflow [37]. All experiments ran on the same CentOS work-
station equiped with 128 GB RAM and two Intel Xeon Silver
4214 @ 2.20GHz CPUs with twelve 2-way multithreaded
processors each. In all cases, we used the benchmarks of
the ISPD 2013 contest [41] and the final timing results are
validated with OpenTimer [14]. The final results obtained from

TABLE I
THE SIZE OF THE DESIGNS AND THE PROPERTIES OF THE

CORRESPONDING TASK GRAPHS (IN THOUSANDS).

Designs #Gates
Task

Graph
Properties

Initial
Sizing

Forward
Pass

Backward
Pass Recovery

usb phy 0.6

Nodes 1.4 0.7 0.7 0.7
Edges 2.5 1.3 1.3 1.3
MEEs - 0.4 - 0.4
TSEs - - - 2.7

pci bridge32 30.8

Nodes 64.9 34.3 34.3 34.3
Edges 122.0 60.8 60.8 60.8
MEEs - 21.8 - 21.8
TSEs - - - 245.8

fft 33.8

Nodes 70.5 37.8 37.8 37.8
Edges 142.1 76.6 76.6 76.6
MEEs - 27.1 - 27.1
TSEs - - - 181.6

cordic 42.9

Nodes 87.1 44.2 44.2 44.2
Edges 167.3 81.5 81.5 81.5
MEEs - 28.9 - 28.9
TSEs - - - 235.9

des perf 113.3

Nodes 235.4 122.3 122.3 122.3
Edges 442.1 215.9 215.9 215.9
MEEs - 80.2 - 80.2
TSEs - - - 604.9

edit dist 129.2

Nodes 261.6 134.9 134.9 134.9
Edges 506.9 252.6 252.6 252.6
MEEs - 95.0 - 95.0
TSEs - - - 732.3

matrix mult 159.6

Nodes 320.6 164.1 164.1 164.1
Edges 620.9 301.2 301.2 301.2
MEEs - 110.9 - 110.9
TSEs - - - 775.6

netcard 984.1

Nodes 2064.2 1081.9 1081.9 1081.9
Edges 3952.5 1987.9 1987.9 1987.9
MEEs - 761.9 - 761.9
TSEs - - - 10785.5

the proposed approach meet all the timing, as well as, the
maximum load and slew constraints.

A. The characteristics of the tasks graphs

Before comparing the proposed approach to the state-of-
the-art, it would be useful to examine the characteristics of the
ISPD13 benchmarks used in the evaluation and how they affect
the size and structure of the corresponding task graphs. The
characteristics of the task graph depend solely on the structural
properties of each design and not on the timing constraints
(’slow’ or ’fast’) associated with each benchmark.

Table I presents the number of gates of each design together
with the properties of each task graph in each case. The
number of nodes for all types of tasks graphs are linearly
dependent on the number of gates and flip-flops of the design
as well as on the number of primary inputs and outputs. The
number of simple edges follows the connectivity of the netlist
of each design being linearly dependent on the number of
design’s nets. On the contrary, the MEEs and TSEs added in
the fordward pass and in recovery, respectively, depend on the
fanout of certain nets of the design. The higher the fanout per
net, the more the MEEs and TSEs added.

TSEs are used to maximize timing safety by imposing
a more restrictive execution order to certain tasks of the
recovery phase. In all cases, the number of TSEs exceed by
far the number of simple edges and MEEs. We expect this



9

TABLE II
THE LEAKAGE POWER AND RUNTIME OF [21] COMPARED TO THE

PROPOSED TASK-BASED GATE SIZING.

Design
Leakage Power (W) Runtime (min)

Speedup[21] Ours
1 thread [21] Ours

1 thread
usb phy slow 0.001 0.001 0.49 0.04 12.25
usb phy fast 0.002 0.002 0.42 0.09 4.67

pci bridge32 slow 0.057 0.058 10.53 3.39 3.11
pci bridge32 fast 0.085 0.096 22.62 7.06 3.20

fft slow 0.087 0.088 25.71 6.74 3.81
fft fast 0.194 0.214 40.43 12.50 3.23

cordic slow 0.271 0.292 69.04 19.70 3.50
cordic fast 1.001 1.013 117.08 30.14 3.88

des perf slow 0.330 0.342 132.27 23.20 5.70
des perf fast 0.649 0.654 347.87 35.94 9.68
edit dist slow 0.425 0.451 123.90 21.60 5.74
edit dist fast 0.540 0.571 352.96 36.34 9.71

matrix mult slow 0.444 0.469 226.13 38.04 5.94
matrix mult fast 1.611 1.673 395.96 60.54 6.54

netcard slow 5.155 5.156 483.55 106.22 4.55
netcard fast 5.200 5.202 400.89 148.56 2.70

Total 16.050 16.280 2749.85 550.10 -
Geomean 0.220 0.230 57.53 11.57 4.97

characteristic to translate to less structural parallelism in the
recovery task graph relative to the task graph of the forward
pass.

B. Comparison with state-of-the-art

Initially, we would like to compare the proposed task-
based approach with state-of-the-art gate sizers [21] and [22].
The leakage power of state-of-the-art methods are the final
results reported in [21], [22] after finishing both main sizing
optimization and their corresponding timing/power recovery
steps. The runtimes reported [21], [22] are taken verbatim from
the respective papers.

The runtime results of [21] correspond to single-thread
implementations run on an Intel i7-3770 @ 3.40GH, while
the runtime results of [22] refer to a mixed multi-threaded
and single-thread implementation executed on a system with
two quad-core Intel Xeon E3-1240 v5 @ 3.50GHz CPUs
and 16GBs of memory. In [22] the main optimization step
was executed using 8-threads described with OpenMP and the
initial sizing as well as the final recovery step ran serially
using only one thread. In both [21], [22], the final recovery
step is executed on purpose on a single thread to guarantee
the maximum timing accuracy.

Table II highlights the performance of [21] relative to the
baseline task-based formulation of the gate sizing problem,
without enabling RTS or FLTU that dynamically reduce sizing
alternatives and speedup local timing updates. All steps of the
proposed gate sizer were also executed on a single thread.
The proposed flow achieves similar leakage power results and
significant runtime savings when compared to [21]. For in-
stance, the single-threaded execution of the proposed approach
achieves 4.97× speedup at the cost of 5% higher leakage
power as reported by the geometric mean average of leakage
power and speedup per benchmark, respectively. Geometric
mean average is used to facilitate data averaging with a wide
range in values. The reduced execution time of the proposed

approach is a result of the smaller number of iterations of
the main optimization step and the replacement of the full-
incremental timing update in the recovery step of [21] with a
local timing update.

Similarly, Table III compares the proposed approach relative
to the results reported in [22] for an eight-thread execution.
For the proposed sizer we consider the baseline approach that
allows each task to examine all possible gate sizes and the one
that enables RTS. RTS alters dynamically the number of sizes
that are tried for each gate based on the gate’s timing slack.
Restricting the search space may slow down the convergence
of the main optimization since more iterations are needed to
find the most suitable size. However, each iteration is faster.

The leakage power achieved in each case is depicted in
columns 2–4 of Table III. The two variants of the proposed
approach have less than 4% higher leakage power on aver-
age than [22]. As expected, the solutions with RTS enabled
have higher leakage relative to the baseline approach. This
holds for all benchmarks except ’netcard’. In this case, RTS
performs marginally better. This result is an artifact caused
by multithreading. Every time we run the same experiment
with the same input, the final results can be slightly different.
Nevertheless, the difference observed in all cases is always at
the granularity of the third decimal digit.

The runtime of [22] is shown in columns 5–6 of Table III.
Column ‘Orig.’ refers to the total runtime reported in [22]
for each benchmark. This runtime involves also the time
needed for timing-model calibration that is done using an
external timer. To have a fair comparison the overhead of
communicating with the external timer should be removed
from the comparisons. According to [22] the useful runtime
for timing calibrations that does not involve TCL and file
processing is roughly 20% of the total runtime spent for timing
calibrations. To compute the time that should be removed for
each benchmark, we used the contribution in runtime of timing
calibrations reported in Table V of [22]. The trimmed runtime
derived for each benchmark is shown in column ‘Trimmed’.
In benchmarks that timing calibration was a large part of the
overall runtime, the runtime reductions are significant. For
instance, for netcard fast the total runtime reduced from 30.6
to 18.3 minutes.

The runtime of the two variants of the proposed method
for 8 and 24 threads and the speedup achieved relative to
the trimmed runtime of [22] are depicted in the last six
columns of Table III. The baseline version of the proposed
approach shows a marginal reduction in the total runtime
needed to execute all benchmarks using 8 threads but improves
significantly for 24 threads.

The work of [22], after the first five iterations of the LR
sizing loop, examines a subset of the available sizes for each
gate. This has a significant impact on the overall runtime.
Therefore, to have a fair comparison with the proposed work
we need to compare the trimmed runtimes of [22] with the
runtimes achieved by the proposed method with the RTS
heuristic enabled. Under this apple-to-apple comparison, i.e.,
both approaches employ multithreading under an equal num-
ber of threads and both use a heuristic that examines only
a subset of the available gate sizes, the proposed method



10

TABLE III
THE LEAKAGE POWER AND RUNTIME OF [22] COMPARED TO THE PROPOSED TASK-BASED GATE SIZING.

Designs

Leakage Power (W) Runtime (min)

[22]
Ours [22] Ours - Base Ours with RTS enabled

Base w. RTS Orig. Trimmed 8 thr. 24 thr. 8 thr.
Speedup

vs
Trimmed

24 thr.
Speedup

vs
Trimmed

usb phy slow 0.001 0.001 0.001 0.22 0.05 0.01 0.01 0.01 5.00 0.01 5.00
usb phy fast 0.002 0.002 0.002 0.23 0.06 0.02 0.05 0.01 6.00 0.01 6.00

pci bridge32 slow 0.058 0.058 0.058 0.97 0.40 0.55 0.27 0.37 1.08 0.22 1.82
pci bridge32 fast 0.090 0.095 0.100 1.54 0.97 1.21 0.53 0.79 1.23 0.40 2.43

fft slow 0.088 0.087 0.089 1.37 0.73 1.20 0.59 0.73 1.00 0.42 1.74
fft fast 0.213 0.219 0.230 1.64 1.01 1.51 0.92 1.06 0.95 0.70 1.44

cordic slow 0.293 0.299 0.338 2.29 1.56 2.62 1.48 1.62 0.96 1.02 1.53
cordic fast 1.080 1.025 1.100 5.60 4.88 4.77 2.21 2.92 1.67 1.46 3.34

des perf slow 0.332 0.339 0.348 7.27 5.82 3.59 1.73 2.56 2.27 1.37 4.25
des perf fast 0.639 0.653 0.657 26.16 24.70 5.83 2.33 4.31 5.73 1.71 14.44
edit dist slow 0.440 0.451 0.453 4.92 3.15 3.49 1.74 2.24 1.41 1.30 2.42
edit dist fast 0.549 0.573 0.587 6.66 4.90 5.99 2.73 4.07 1.20 2.23 2.20

matrix mult slow 0.448 0.468 0.475 8.80 6.76 7.76 3.26 4.51 1.50 2.64 2.56
matrix mult fast 1.633 1.672 1.680 13.94 11.82 10.97 5.10 6.12 1.93 2.83 4.18

netcard slow 5.170 5.156 5.155 24.67 12.43 18.91 9.78 11.29 1.10 7.74 1.61
netcard fast 5.205 5.202 5.200 30.60 18.36 24.81 12.10 13.79 1.33 8.93 2.06

Total 16.241 16.300 16.473 136.88 97.60 93.24 44.83 56.40 - 32.99 -
Geomean 0.230 0.233 0.239 3.70 2.18 1.97 1.10 1.27 1.72 0.76 2.86

0

20%

40%

60%

80%

100%

slow fast

usb_phy pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast slow fast slow fast slow fast slow fast slow fast slow fast

Backward pass

Forward pass Incr. STAInitial sizing

Recovery step

Fig. 9. The breakdown of the total runtime for all benchmarks. The parallel
initial sizing uses the 6% on average of the total runtime. The majority of the
time is consumed in the forward pass of the main optimization step and only
9% in the single-threaded incremental timing analysis. The backward pass
needs 2% on average while the recovery step utilizes the 4% on average.

achieves a mean speedup improvement of 1.72× for eight
threads that improves to 2.86× for 24 threads.

The runtime reduction reported is the combined result of
two factors. First, the proposed approach executes in parallel
all steps of the optimization including initial sizing, main
optimization and final recovery while the method of [22]
performs single-threaded initial sizing and recovery. Also, our
thread scheduling is not performed manually, as in [22], but
done automatically by Taskflow that allows scaling the gate
sizer smoothly to a higher number of threads.

Fig. 9 highlights the contribution in runtime of each step
of the proposed task-based parallel gate sizer assuming eight
available threads. The FP of the main optimization loop
utilizes on overage the 79% of the total runtime while BP takes
only 2% of the total runtime. Initial sizing consumes 6% of
the total runtime on average, while the parallel implementation
of the iterative recovery step reduced its runtime contribution
to only 4% on average. Incremental timing analysis accounts
for 9% of the total execution time, on average. In our imple-
mentation the incremental timing analysis is performed using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

S
p

e
e

d
u

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

S
p

e
e

d
u

p

Fig. 10. The normalized runtime and speedup of the proposed approach for
increasing number of threads for the two largest benchmarks. The runtime
decreases sufficiently until thread count reaches 24 that matches the amount
of physical CPUs used in this experiment.

only one thread. Therefore, a multi-threaded implementation
of the timing analysis can further reduce the amount of time
consumed by this step.

The scalability of the proposed approach with increasing the
number of threads for the two largest designs matrix mult fast
and netcard fast is shown in Fig. 10. The execution time
is normalized to the runtime of the single-thread run. Mov-
ing from one to two threads speeds the execution of ma-
trix mult fast by 1.9× and 1.7× for netcard fast. Enabling
four threads gives an additional speedup of 70% on average
for both designs. Beyond 24 threads, there is little reduction
in runtime. This is caused by the dependencies of the task
graphs that limit the parallelism that can be achieved and, at
the same time, with 24 threads we reach the maximum number
of physical CPUs.

C. Highlighting the contribution of RTS and FLTU

The results of Table III have shown the effectiveness of
RTS in reducing the overall runtime. In this section we want to
clarify the behavior of RTS and also highlight the contribution
of FLTU that reduces dynamically the number of timing arcs
included at each local timing update.



11

TABLE IV
THE LEAKAGE POWER AND THE RUNTIME OF THE PROPOSED FLOW WITH
ONLY RTS (RTS) AND WITH RTS AND FLTU (RTS & FLTU) ENABLED.

Design
Leakage Power (W) Total Runtime (min)

SpeedupRTS RTS & RTS RTS &
FLTU FLTU

usb phy slow 0.001 0.001 0.01 0.01 1.00
usb phy fast 0.002 0.002 0.01 0.01 1.00

pci bridge32 slow 0.058 0.058 0.22 0.19 1.16
pci bridge32 fast 0.100 0.107 0.40 0.36 1.11

fft slow 0.089 0.089 0.42 0.37 1.14
fft fast 0.230 0.235 0.70 0.62 1.13

cordic slow 0.338 0.339 1.02 0.83 1.23
cordic fast 1.100 1.121 1.46 1.29 1.13

des perf slow 0.348 0.349 1.37 1.24 1.10
des perf fast 0.657 0.662 1.71 1.39 1.23
edit dist slow 0.453 0.455 1.30 1.23 1.06
edit dist fast 0.587 0.593 2.23 1.94 1.15

matrix mult slow 0.475 0.480 2.64 2.17 1.22
matrix mult fast 1.680 1.684 2.83 2.41 1.17

netcard slow 5.155 5.156 7.74 7.25 1.07
netcard fast 5.200 5.202 8.93 8.27 1.08

Total 16.473 16.533 32.99 29.58 -
Geomean 0.239 0.241 0.76 0.68 1.12

N
u

m
b

e
r
 o

f
tr

ie
d

 s
iz

e
s

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iterations

Fig. 11. The number of sizes that are examined in gate sizing as the
optimization evolves for a specific gate of matrix mult fast design. At first,
the gate has large negative slack and thus all the available sizes are tried. As
slack improves the number of examined sizes is reduced to minimum.

To clarify the dynamic behavior of RTS, Fig. 11 depicts
the total number of sizes that are tried in each iteration for
a specific gate in matrix mult fast benchmark. In the first
iteration, the gate is part of the most critical path and therefore
all the available sizes are examined. In the next iteration,
even though the gates slack and WNS are improved, the
gate remains in the critical path and thus again all sizes
are examined. As the optimization evolves the number of
examined sizes decreases because the ratio of the gates slack
to WNS is getting smaller. Once the gate obtains positive slack
(iteration 9) the examined sizes are fixed to nine options: three
sizes per VT for three available VT .

The combined effect of RTS and FLTU relative to gate
sizing with only RTS enabled is shown in Table IV. In all
cases, the task graphs are executed using 24 threads. Enabling
FLTU in addition to RTS offers an additional 1.12× speedup
on average due to the simplification of the local timing updates
at the cost of less than 1% higher leakage power.

To understand better the application of FLTU, we show
in Fig. 12 the average percentage of the neighbors that are
updated during the local timing update at each iteration. The
design used in this example is edit dist slow. Initially, almost
all neighbors are updated because the design starts with many
timing violations distributed across all paths. During the next

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rc
e

n
ta

g
e

 o
f 

n
e

ig
h

b
o

rs
 

in
 l

o
c

a
l 

ti
m

in
g

 u
p

d
a

te

Iterations

Fig. 12. The average percentage of the neighbors which are updated when
fast local timing update is enabled in edit dist slow. Initially, all neighbors
are considered for update but during the next two iterations, the number of
neighbors considered is significantly reduced.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

L
o
s
s

Weight

Fig. 13. The loss for different values of weight α in the criticality threshold
in edit dist slow. The minimum loss observed in 0.5. Beyond α = 0.8
the neighbors which are skipped affect the timing accuracy significantly and
therefore more iterations are needed to converge.

two iterations, the timing improvement is sufficient and thus
there are many neighbors for which the timing update locally
is not essential. More specifically, in the third iteration only the
72% of the neighbors are considered for local timing update.
From this point forward more and more neighbor timing arcs
stop contributing to the local cost and therefore can be ignored.
Similar results are obtained for all benchmarks.

We should not forget that excluding timing arcs from the
local timing update of each gate inevitably keeps their delay
unchanged. When those timing arcs participate in the local cost
function with their not-updated (stale) delays may lead to sub-
optimal local gate sizing choices. The effect of such choices,
translates to designs with increased leakage power (2% more
leakage is observed relative to the baseline approach).

The criticality threshold is fundamental in the FLTU because
it defines how many and which of the neighbors are skipped
from the timing update and therefore can affect the overall
QoR. For example, a low value for the threshold implies
that the majority of the neighbors are updated, while a high
value reduces the neighboring gates to update. As the number
of skipped neighbors increases, the runtime reduces but the
leakage is degraded. For this reason, to better understand how
the criticality threshold affects the overall QoR, we modify its
value by increasing the weight α that is part of the threshold.
To better evaluate the obtained final results, a loss function
is defined which takes into account both the runtime and the
power changes. More specifically, the loss for a specific α,
Lossα, should be considered minimal if the leakage is not
appreciably increased and the runtime is significantly reduced
when compared to the corresponding results obtained with



12

TABLE V
LEAKAGE POWER BEFORE RECOVERY AND THE INCREMENTAL CHANGE

OF POWER (∆POWER) AFTER RECOVERY.

Design
Leakage Power (W)

before recovery
∆Power (%)
after recovery

[21] [22] Ours [21] [22] Ours
usb phy slow 0.001 0.001 0.001 0.0 0.0 0.0
usb phy fast 0.002 0.002 0.002 0.0 0.0 0.0

pci bridge32 slow 0.057 0.057 0.058 0.0 1.8 0.0
pci bridge32 fast 0.088 0.088 0.093 -3.4 2.3 2.2

fft slow 0.087 0.088 0.089 0.0 0.0 -2.2
fft fast 0.204 0.209 0.222 -4.9 1.9 -1.4

cordic slow 0.309 0.296 0.303 -12.3 -1.0 -1.3
cordic fast 1.665 1.273 1.289 -39.9 -15.2 -20.5

des perf slow 0.339 0.328 0.336 -2.7 1.2 0.9
des perf fast 0.750 0.648 0.668 -13.5 -1.4 -2.2
edit dist slow 0.429 0.439 0.454 -0.9 0.2 -0.7
edit dist fast 0.573 0.551 0.572 -5.8 -0.4 0.2

matrix mult slow 0.463 0.454 0.485 -4.1 -1.3 -3.5
matrix mult fast 2.032 1.859 1.894 -20.7 -12.2 -11.7

netcard slow 5.117 5.169 5.156 0.7 0.0 0.0
netcard fast 5.148 5.195 5.205 1.0 0.2 -0.1

a = 0 i.e. none of the neighbors is skipped.

Lossα =
leakageα
leakage0

· runtimeα
runtime0

The overall loss for increasing the value of weight α in
edit dist slow is illustrated in Fig. 13. As the weight α
increases, the threshold also increases and therefore less neigh-
bors are considered for the timing update. Until α = 0.7, the
overall loss is lower than with α = 0, because the runtime
is reduced and simultaneously the leakage is marginally in-
creased. For α ≥ 0.8 more neighbors are skipped from the
timing update and thus even less loss is expected. However,
beyond this point, the increased number of skipped neighbors
affects negatively the timing accuracy. This leads to sub-
optimal solutions with higher leakage power and that causes
the gate sizing to run for more iterations. The same behavior is
observed in all designs. Therefore, in our experiments α = 0.5
was used, as it minimally impacts the leakage power and
provides good runtime savings.

D. The contribution of final timing and power recovery

All three methods under comparison are using a Lan-
grangian Relaxation based formulation for the main optimiza-
tion step that is accompanied by a timing and power recovery
step at the end. This step is crucial in correcting the remaining
small timing violations and recovering part of the excessive
leakage power. To enable surgical-accuracy resizing decisions,
the methods of [21], [22] require examinining serially one gate
at a time (from a limited set of gates) and performing a full
incremental timing update after each change. This requirement
increases inevitably the runtime of the recovery step and limits
the applicability of LR-based gate sizers. This limitation is
effectively removed by the proposed approach.

Table V reports in columns 2–4 the leakage power at the
end of the main optimization step for all methods under
comparison irrespective of the runtime needed to finish the
main optimization. The results show that more or less all three
methods converge to similar leakage power. If we observe the

20%

40%

60%

80%

100%

cordic des_perf edit_dist matrix_mult netcard
0

[21] with 1 thread Ours with 8 threads[22] with 1 thread

(a): slow timing constraints

20%

40%

60%

80%

100%

cordic des_perf edit_dist matrix_mult netcard
0

[21] with 1 thread Ours with 8 threads[22] with 1 thread

(b): fast timing constraints

Fig. 14. The percentage of the total runtime utilized by recovery in the five
largest designs under (a) slow and (b) fast timing constraints. Both single-
threaded recovery steps utilize significant part of the total runtime when
compared to the proposed method.

results more carefully, we see that the method of [21] or the
method of [22] achieve the lowest leakage power after main
optimization. Therefore, the proposed approach has to recover
slightly more leakage power than the rest.

Also, columns 5–7 of Table V depict the reduction in
leakage power achieved after recovery (timing is closed in
all cases). Even if each method behaves differently during
recovery, the overall trend per design remains the same for all
methods. For instance, in netcard and edit dist the recovery
step fails to reduce the leakage power. On the contrary, the
reductions observed in cordic and matrix mult are significant.

Even in cases that didn’t benefit a lot from timing and power
recovery, the runtime spent is not negligible. Fig. 14 illustrates
the percentage of the total runtime consumed by the recovery
step in the five largest designs. For each design, we include the
percentage of the single-threaded recovery step of [21], [22]
and the percentage of the proposed conservatively-parallel
recovery step executed using 8 threads. The recovery step
in [21] and [22] accounts for the 18% and 27% of the total
runtime on average, respectively. There are cases, such as
des perf fast or matrix mult fast for [22], where “the last
mile” optimization represents more than the 50% of the total
runtime. On the contrary, the iterative recovery of the proposed
approach performs on average 5 iterations and takes 4% of the
total runtime. This result stems from the task-based execution
of the recovery step and the extra TSE edges added to the
task graph that allow for resizing multiple gates in parallel
and preserving the timing accuracy needed in this step.

The scalability of the task-based recovery step with respect
to number of active threads is depicted in Fig. 15 for ma-
trix mult fast and netcard fast designs. Initially, the speed up
of matrix mult fast scales sufficiently until 16 threads. Then,
the improvement stops. In the main optimization task graph
this behavior is observed at 24 threads. The reason is that
the recovery is executed on a more constrained task graph
with 3× more dependencies (due to the TSE edges) that limit
inevitably the available parallelism but ensure better timing



13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a
li
z
e
d

 r
u

n
ti

m
e

0

1

2

3

4

5

6

7

8

9

10

S
p

e
e
d

u
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a
li
z
e
d

 r
u

n
ti

m
e

0

1

2

3

4

5

6

7

8

9

10

S
p

e
e
d

u
p

Fig. 15. The normalized runtime and speedup of the proposed recovery step
for the largest benchmarks using different number of threads. TSEs limit the
improvement of speedup at 16 and 12 threads for (a) matrix mult fast and
(b) netcard fast, respectively.

accuracy after each local timing update. Similarly, at first the
runtime of netcard fast (Fig. 15(b)) starts improving until 12
threads where speedup levels off for the same reason. The
recovery graph of netcard fast contains 5× more dependencies
and therefore speedup saturates earlier than matrix mult fast.

E. Recovery with Composite Tasks

One extra choice that would possibly improve the runtime
behavior of the recovery step is to allow the resizing of
multiple gates in the same trial. To enable this feature, we
should group multiple gates in the same composite task and
adjust appropriately the dependency edges of the restructured
recovery task graph. Then, inside each composite task all
choices are examined allowing two or more gates to change
size in the same trial.

To test this feature, we replaced pairs of tasks of the original
task graph with composite tasks of two gates. Two tasks are
merged when they both represent timing-critical gates (with
negative slack at their outputs) or gates with enough positive
slack (above 50ps) that can be grouped for power recovery.
The pairs of tasks that are grouped should refer to directly
connected gates in the netlist and their replacement by a
composite task in the recovery task graph should not create any
cyclic dependency. This is achieved by performing a depth-first
search from the composite task after each merge. If there is a
cycle, the merge it is undone, otherwise it is kept.

Inside each composite task, the possible solutions of both
gates are enumerated and visited in ascending order of their
cumulative power. The first solution that improves local TNS
(for timing recovery) or does not degrade local TNS (for power
reduction) is selected. The available sizes per gate are the same
as the baseline recovery Algorithm 8. However, by allowing
the resizing of multiple gates at once, the number of choices
increases exponentially.

The obtained results using 24 threads are depicted in Fig. 16.
The runtime of the recovery improves in all examined cases by
10% on average without affecting negatively the final leakage
power of the design. The number of composite tasks depends
on the timing slack of each gate and ranges between 10k and
24k in the examined designs. In other words, composite tasks
are between 2.5% and 15% of the total number of tasks.

This feature, even if it seems a promising solution, in
its current form offers negligible improvements in the total
runtime of gate sizing. Future research work will highlight

0

20%

40%

60%

80%

100%
w/o composite tasks w. composite tasks

des_perf_fast edit_dist_slow matrix_mult_slow netcard_fast

Fig. 16. The normalized runtime of the proposed recovery without and with
composite tasks for the largest benchmarks at 24 threads.

what is the best approach to group gates in composite tasks,
how to examine fast the increased options per composite task,
and how to quantify how the formation of composite tasks
affects the structural parallelism of the baseline recovery task
graph.

VIII. CONCLUSIONS

Expressing all parts of timing and power optimization, even
those that are traditionally considered as serial operations, as
a task-based parallel program allows for scalable runtime im-
provements and maximum performance portability. The devel-
opment of the task-parallel gate sizer included the selection of
the appropriate optimization kernels for each part of the sizing
process and the definition of the dependencies between them.
No effort was spent on managing thread execution. Execution
order was constrained by the introduced dependencies and
handled automatically by Taskflow.

Choosing appropriate dependencies between gate resizing
tasks enables their execution with varying levels of timing
accuracy. Iterative optimization steps at the beginning of the
design flow can operate with relaxed timing accuracy and
enjoy many iterations with fast runtime. On the other hand,
final recovery steps of gate sizing or when gate sizing is
applied at the end of the physical design flow need higher
timing accuracy to still enjoy parallel execution but also not
compromise the already achieved QoR.

Additional runtime was saved by speeding up the execution
of each task. This was achieved by enabling the two aditional
heuristics proposed in this work that dynamically alter the
number of examined sizes per gate, or reduce the neighbor
gates that participate in local timing update.

REFERENCES

[1] L. Lavagno, G. Martin, I. L. Markov, and L. K. Scheffer, Electronic
Design Automation for IC Implementation, Circuit Design, and Process
Technology. Taylor and Francis group, 2016.

[2] L. C. Lu, “Physical design challenges and innovations to meet power,
speed, and area scaling trend,” Intern. Symp. Phys. Des. (ISPD) 2017.

[3] N. D. MacDonald, “Timing closure in deep submicron designs,” in
Design Automation Conference (DAC), 2010.

[4] O. Aumage, P. Carpenter, and S. Benkner, “Task-based performance
portability in HPC,” Oct. ETP4HPC whitepaper, 2021.

[5] A. D. Williams, C++ Concurrency in Action: Practical Multithreading.
Manning, 2012.

[6] J. Reinders, Intel threading building blocks. OReilly Media, 2007.
[7] L. Dagum and R. Menon, “OpenMP: an industry standard API for

shared-memory programming,” IEEE Comp. Science and Eng., vol. 5,
no. 1, pp. 46–55, 1998.

[8] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Symp. on Operating Systems Principles, 2013,
pp. 456–471.



14

[9] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A lightweight
parallel and heterogeneous task graph computing system,” IEEE Trans.
on Parallel and Distributed Systems, vol. 33, pp. 1303–1320, 2022.

[10] D. Mangiras, A. Stefanidis, I. Seitanidis, C. Nicopoulos, and G. Dim-
itrakopoulos, “Timing-Driven Placement Optimization Facilitated by
Timing-Compatibility Flip-Flop Clustering,” in IEEE Trans. on CAD,
vol. 39, no. 10, pp. 2835 – 2848, Oct. 2020.

[11] A. Stefanidis, D. Mangiras, C. Nicopoulos, D. Chinnery, and G. Dim-
itrakopoulos, “Design Optimization by Fine-Grained Interleaving of
Local Netlist Transformations in Lagrangian Relaxation,” in Intern.
Symp. on Physical Design (ISPD), 2020, pp. 87–94.

[12] D. Mangiras and G. Dimitrakopoulos, “Incremental lagrangian relax-
ation based discrete gate sizing and threshold voltage assignment,”
Technologies, vol. 9, no. 4, 2021.

[13] M. M. Ozdal, S. Burns, and J. Hu, “Algorithms for gate sizing and
device parameter selection for high-performance designs,” IEEE Trans.
on CAD, vol. 31, no. 10, pp. 1558–1571, October 2012.

[14] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. F. Wong, “OpenTimer v2: A
new parallel incremental timing analysis engine,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 40, no. 4, pp. 776–789, 2021.

[15] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCDPlace:
accelerated batch-based concurrent detailed placement on multithreaded
CPUs and GPUs,” IEEE Trans. on CAD, vol. 39, no. 12, pp. 5083–5096,
2020.

[16] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area Optimiza-
tion,” IEEE Trans. on VLSI Systems, vol. 5, no. 4, pp. 465–472, 1997.

[17] S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell library-based designs,”
in Design Automation Conference (DAC), June 2007, pp. 847–852.

[18] D. Nguyen and et al., “Minimization of dynamic and static power
through joint assignment of threshold voltages and sizing optimization,”
in Int. Symp. Low Power Electronics and Design, 2003, pp. 158–163.

[19] D. G. Chinnery and K. Keutzer, “Linear programming for sizing, Vth and
Vdd assignment,” in Proc. of the Intern. Symp. on Low Power Electronics
and Design (ISLPED), 2005, pp. 149–154.

[20] S. Held, “Gate sizing for large cell-based designs,” in Proceedings of the
Conf. on Design, Automation and Test in Europe, 2009, pp. 827–832.

[21] G. Flach and et al., “Effective method for simultaneous gate sizing
and vth assignment using lagrangian relaxation,” IEEE Trans. on CAD,
vol. 33, no. 4, pp. 546–557, April 2014.

[22] A. Sharma, D. Chinnery, T. Reimann, S. Bhardwaj, and C. Chu, “Fast
Lagrangian Relaxation Based Multi-Threaded Gate Sizing Using Simple
Timing Calibrations,” IEEE Trans. on CAD, vol. 39, no. 7, pp. 1456–
1469, 2019.

[23] G. Shklover and B. Emanuel, “Simultaneous Clock and Data Gate Sizing
Algorithm with Common Global Objective,” in Int. Symp. Physical
Design, 2012, pp. 145–152.

[24] J. Hu, A. B. Kahng, S. Kang, M.-C. Kim, and I. L. Markov, “Sensitivity-
guided metaheuristics for accurate discrete gate sizing,” in Int. Conf. on
CAD (ICCAD), 2012, pp. 233–239.

[25] A. B. Kahng, S. Kang, H. Lee, I. L. Markov, and P. Thapar, “High-
performance gate sizing with a signoff timer,” in Int. Conf. on CAD
(ICCAD), 2013, pp. 450–457.

[26] D. Chinnery and A. Sharma, “Integrating LR gate sizing in an industrial
place-and-route flow,” in Int. Symp. on Physical Design (ISPD), 2022,
p. 3948.

[27] L. Li, P. Kang, Y. Lu, and H. Zhou, “An efficient algorithm for library-
based cell-type selection in high-performance,” in 2012 IEEE/ACM
Intern. Conf. on Computer-Aided Design (ICCAD), pp. 226–232.

[28] S. Roy, D. Liu, J. Singh, J. Um, and D. Z. Pan, “OSFA: A new paradigm
of aging aware gate-sizing for power/performance optimizations under
multiple operating conditions,” IEEE Trans. on CAD, vol. 35, pp. 1618–
1629, Oct 2016.

[29] Y. O. M. Moctar and P. Brisk, “Parallel FPGA routing based on the
operator formulation,” in Design Automation Conf. (DAC), 2014.

[30] J. He, M. Burtscher, R. Manohar, and K. Pingali, “SPRoute: A scalable
parallel negotiation-based global router,” in Intern. Conf. on Computer-
Aided Design (ICCAD), 2019, pp. 1–8.

[31] Y. Liu and J. Hu, “GPU-based parallelization for fast circuit optimiza-
tion,” vol. 16, no. 3, June 2011.

[32] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and
threshold voltage assignment,” IEEE Trans. on CAD, vol. 29, no. 2, pp.
223–234, 2010.

[33] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing
analysis,” in Int. Conf. on CAD (ICCAD), 2020, pp. 1–9.

[34] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated critical
path generation with path constraints,” in Int. Conf. on CAD (ICCAD),
2021, pp. 1–9.

[35] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated path-
based timing analysis,” in Design Automation Conference (DAC), 2021,
pp. 721–726.

[36] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan,
“DREAMPIace: Deep learning toolkit-enabled GPU acceleration for
modern VLSI placement,” in Design Automation Conf. (DAC), 2019.

[37] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-
taskflow: A general-purpose parallel task programming system at scale,”
IEEE Trans. on CAD, vol. 40, no. 8, pp. 1687–1700, 2021.

[38] C.-P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous
gate and wire sizing by Lagrangian Relaxation,” IEEE Trans. on CAD,
vol. 18, no. 7, pp. 1014–1025, July 1999.

[39] A. Stefanidis, D. Mangiras, C. Nicopoulos, D. Chinnery, and G. Dim-
itrakopoulos, “Autonomous application of netlist transformations in-
side Lagrangian Relaxation-based optimization,” IEEE Trans. on CAD,
vol. 40, no. 8, pp. 1672–1686, August 2021.

[40] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, “Rsyn:
An extensible physical synthesis framework,” in Int. Symp. on Physical
Design, 2017, pp. 33–40.

[41] M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke, and C. Zhuo,
“An improved benchmark suite for the ISPD-2013 discrete cell sizing
contest,” in Int. Symp. on Physical Design, 2013, p. 168170.

Dimitrios Mangiras Dimitrios Mangiras received
the Diploma in electrical and computer engineering
from the Democritus University of Thrace, Xanthi,
Greece, in 2017, where he is currently pursuing the
Ph.D. degree. His research interests include elec-
tronic design automation for physical design, clock
tree synthesis and machine-learning based optimiza-
tion as well as, design of energy-efficient integrated
circuits and automated verification methodologies.

Mr. Mangiras received the Best Student Paper
Award at the International Conference on Modern

Circuits and Systems Technologies (MOCAST) in 2021.

David Chinnery David Chinnery received a Ph.D.
in Electrical Engineering from the University of
California at Berkeley in 2006. He is the author
of two books on Closing the Gap Between ASIC
and Custom with tools and techniques for high-
performance and low-power design. He is an author
of two chapters in the EDA for Integrated Circuits
Handbook, and various conference and journal pa-
pers.

David has worked for the past ten years at Mentor
Graphics, which is now part of Siemens Digital In-

dustries Software. From 2017, he was the R&D manager for the optimization
R&D group of the Nitro place-and-route tool. Since 2021, he has been a
member of the Aprisa place-and-route optimization R&D team. Previously,
David worked for five years in the CAD group at Advanced Micro Devices
supporting both custom and synthesized microprocessor designs.

Giorgos Dimitrakopoulos Giorgos Dimitrakopou-
los received the B.S., M.Sc., and Ph.D. degrees
in computer engineering from the University of
Patras, Patras, Greece, in 2001, 2003, and 2007,
respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece.
He is interested in the design of digital integrated
circuits, energy-efficient data-parallel accelerators,
functional safety architectures, and the use of high-

level synthesis for agile ASIC and FPGA design flows.
He received two Best Paper Awards at the Design Automation and Test in

Europe (DATE) Conference in 2015 and 2019, respectively. Also, he received
the HIPEAC Technology Transfer Award in 2015.


