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Online Alignment and Addition in Multi-Term
Floating-Point Adders

Kosmas Alexandridis and Giorgos Dimitrakopoulos

Abstract—Multi-term floating-point addition appears in vector
dot-product computations, matrix multiplications, and other
forms of floating-point data aggregation. A critical step in multi-
term floating point addition is the alignment of fractions of the
floating-point terms before adding them. Alignment is executed
serially by identifying first the maximum of all exponents
and then shifting the fraction of each term according to the
difference of its exponent from the maximum one. Contrary to
common practice, this work proposes a new online algorithm
that splits the identification of the maximum exponent, the
alignment shift for each fraction, and their addition to multiple
fused incremental steps that can be computed in parallel. Each
fused step is implemented by a new associative operator that
allows the incremental alignment and addition for arbitrary
number of operands. Experimental results show that employing
the proposed align-and-add operators for the implementation
of multi-term floating point adders can improve delay or save
significant area and power. The achieved area and power savings
range between 3%–23% and 4%–26%, respectively.

Index Terms—Floating point arithmetic, Multi-term adders,
Online algorithm, Energy Efficiency

I. INTRODUCTION

Machine learning (ML) algorithms have been widespread
in various application domains. Their efficient and accurate
computation relies mostly on matrix multiplication kernels and
floating-point (FP) arithmetic for data representation [1], [2].

The FP representations used in ML algorithms cover IEEE-
754 compliant formats as well as reduced-precision formats
that use 16 or fewer bits in total, in an effort to balance
numerical performance, and hardware and storage costs [3],
[4]. In most cases, a FP number consists of three fields: the
sign bit (s), the exponent (e), and the fraction (m) and its value
is given by (−1)s×1.m×2e−bias, where bias is a constant that
depends on the bit width of the exponent. Corner cases, such
as not-a-number, infinity, or de-normals can be also encoded
or skipped depending on the chosen format [4].

To reduce the overhead of FP arithmetic when implementing
vector-wide operations, designers have turned to fusing indi-
vidual FP operations to more complex ones that implement the
needed computation at once [5], [6], [7], [8]. This approach
allows alignment, normalization, and rounding steps to be
shared among independent operations, ultimately resulting in
more efficient hardware architectures.
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Multi-term addition, the core of fused operators, involves
adding multiple FP numbers with potentially different ex-
ponents. To align the addends for addition, the fraction of
each number is shifted according to the difference of its own
exponent to the maximum exponent of all terms. This serial
dependency across fraction alignment and addition impacts
negatively the overall hardware efficiency.

In this work, inspired by online softmax computation [9],
we propose a new online approach for alignment and addition
in multi-term FP adders. In this way, all serial dependencies
that traditionally characterize alignment and addition steps
are removed and maximum exponent calculation, as well as
alignment and addition of fractions, are computed incremen-
tally and in parallel. In practice, alignment and addition is
performed using trees built from the newly proposed align-
and-add operators.

The experimental evaluation shows that the proposed ap-
proach simplifies fundamentally the complexity of alignment
and addition in multi-term FP adders. The corresponding
hardware units that adopt the online alignment and addition
paradigm, require significantly less area and power than tradi-
tional approaches. The area and power savings range between
3%–23% and 4%–26%, respectively, for various examined
configurations. Also, when opting for high-speed implemen-
tations, they can also improve delay under the same number
of pipeline stages.

II. ALIGNMENT AND ADDITION IN MULTI-TERM FLOATING
POINT ADDERS

A high-level description of multi-term fused addition is
shown in Algorithm 1. The input is an array of FP numbers
fi and the output is their sum S. The algorithm begins by
finding the exponent with the maximum value in step 1. Then,
the fractions are aligned based on the difference of the local
exponent and the maximum one (step 2). With the fractions
aligned, the summation operation is performed in step 3. The
sum is normalized and rounded in step 4.

Algorithm 1 Multi-term fused floating point addition
Input: Floats f1, f2, . . . , fN
Output: S =

∑N
i=1 fi

1: Find maximum exponent emax = max(e1, e2, . . . , eN )
2: Align every fraction 1.mi by shifting right by emax − ei

positions
3: Sum the aligned fractions S =

∑N
i=1 aligned(1.mi)

4: Normalize and round S to produce the final FP sum
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Fig. 1. Baseline approach for multi-term fraction alignment and addition.

The baseline implementation of alignment and addition
(steps 1–3), which are the focus of this work, is detailed in
Algorithm 2. The first loop corresponds to the first step in
Algorithm 1 that computes the maximum exponent and stores
it in λN at the end of the loop. The second loop performs steps
2 and 3 of Algorithm 1; each fraction mi is aligned in line
5 and accumulated to a partial sum oi in line 6. To simplify
presentation in Algorithm 2, each fraction 1.mi is denoted as
mi, which is assumed to be in signed (2’s complement) form
according to the sign si of fi.

Algorithm 2 Serial fraction alignment and addition
1: for i← 1 : N do
2: λi ← max(λi−1, ei)
3: end for ▷ Maximum exponent in λN

4: for i← 1 : N do
5: ami ← mi ≫ (λN − ei) ▷ Alignment shift
6: oi ← oi−1 + ami ▷ Accumulate the aligned fraction
7: end for
8: S = oN

The two loops of Algorithm 2 cannot be merged. Thus,
in hardware, each part is unrolled separately and the second
loop can begin execution only after the first loop has computed
the maximum exponent λN . This approach for alignment and
addition is followed in the majority of hardware architectures
for multi-term adders [10], [11], [12] and is shown in Fig. 1.

To reduce delay, other architectures perform fraction align-
ment based on the relative difference of exponents, and avoid
the dependency to the maximum exponent that is computed in
parallel [5], [6], [7], [13]. However, in all cases, this concept is
applied only for 3- or 4-term adders and cannot be generalized
to arbitrary number of terms. This limitation is removed by
the formulation in this work. Other solutions, such as Kaul et
al. [14], split the alignment of fractions into global and local
alignment. In this way, computing exponent differences and
the alignment shift are partially overlapped in time at the
circuit level. However, still addition is performed separately
in a following step.

Other approaches avoid the need for fraction alignment
by mapping floating point accumulation to fixed-point arith-
metic [15], [16]. Effectively, alignment is performed implicitly

when transforming FP numbers to their equivalent fixed-point
integers. Such approaches are practical when accumulation
is done in time. In this work, we focus on wide parallel
architectures that perform addition in space.

III. ONLINE ALIGNMENT AND ADDITION

This work aims to fuse the serial alignment and addition
steps into one combined step that would perform maximum
exponent calculation, alignment shift and addition incremen-
tally and in parallel for various groups of inputs. Effectively,
this transformation would allow us to merge the two separate
loops of Algorithm 2 into one single loop.

To present the proposed algorithm for online alignment and
addition, we first merge the shift and add operations, shown
in lines 5 and 6 of Algorithm 2, into one equation as follows:

oi = oi−1 +mi ≫ (λN − ei), with λN = max
i
{ei} (1)

The right shift in (1) can be equivalently written as a multi-
plication with a negative power of two, i.e.,

oi = oi−1 +mi 2
−(λN−ei). (2)

Fully unrolling (2) we can write the final sum oN as follows:

oN = oN−1 + oN−2 + . . .+ o1 =

N∑
i=1

mi 2
−(λN−ei) (3)

A. Basic online algorithm for alignment and addition

To remove the dependency to λN for the computation of
the final sum oN we define a new sequence o′i

o′i =

i∑
j=1

mj2
−(λi−ej) with λi = max(λi−1, ei) (4)

Sequence (4) has the interesting property that its last term o′N
is equal to oN defined in (3). Beginning from (4), our goal
is to form a recursive relation that would connect o′i to o′i−1.
Initially, in (4), we separate the ith term mi 2

−(λi−ei) from
the rest:

o′i =

i−1∑
j=1

mj 2
−(λi−ej)

+mi 2
−(λi−ei)

Then, inside the parenthesis, we add and subtract the helper
term λi−1

o′i =

i−1∑
j=1

mj 2
−(λi−λi−1+λi−1−ej)

+mi 2
−(λi−ei)

Finally, we factor out the term 2−(λi−λi−1)

o′i =

i−1∑
j=1

mj 2
−(λi−1−ej)

 2−(λi−λi−1)+mi 2
−(λi−ei) (5)

According to (4), the term left in the parenthesis corresponds
to o′i−1. Thus, introducing o′i−1 into (5) we get the sought
recursive relation:

o′i = o′i−1 2
−(λi−λi−1) +mi 2

−(λi−ei) (6)
with λi = max(λi−1, ei)
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Algorithm 3 Online fused fraction alignment and addition
1: for i← 1 : N do
2: λi ← max(λi−1, ei)
3: o′i ← o′i−1 ≫ (λi − λi−1) +mi ≫ (λi − ei)
4: end for
5: S = o′N

Remapping multiplications with negative powers of two
back to equivalent right arithmetic shift operations, the recur-
sive relation in (6) can be equivalently expressed as follows:

o′i = o′i−1 ≫ (λi − λi−1) +mi ≫ (λi − ei) (7)

This mapping to shift operations is valid since λi is the
maximum of λi−1 and ei and thus the shift amounts λi−λi−1

and λi − ei in (7), are always greater or equal to zero.
Algorithm 3 uses recursive relation (7) to compute align-

ment and addition online. At each iteration, a local maximum
exponent is identified that drives local alignment shifts and
accumulation of the output sum. Even if this fused align and
add operation needs an extra subtraction and shift per iteration
relative to Algorithm 2, the experimental results show that
it leads to more efficient unrolled and pipelined hardware
implementations.

B. Parallel computation of fraction alignment and addition

The computation of the sum of aligned fractions S and the
identification of the maximum exponent can be performed in
parallel using a new operator ⊚ that is defined as:[

λi

oi

]
⊚

[
λj

oj

]
=[

max(λi, λj)
oi≫(max(λi, λj)− λi) + oj≫(max(λi, λj)− λj)

] (8)

It can be shown by induction using a derivation similar to (5)
that the final sum S and the maximum exponent of a set of FP
numbers can be computed using the newly defined operator ⊚
as follows:[

max{ei}
S

]
=

[
e1
m1

]
⊚

[
e2
m2

]
⊚ . . .⊚

[
eN
mN

]
(9)

Also, it can be proven that the operator ⊚ is associative
since([

e1
m1

]
⊚

[
e2
m2

])
⊚

[
e3
m3

]
=

[
e1
m1

]
⊚

([
e2
m2

]
⊚

[
e3
m3

])
(10)

C. Hardware Organization of Alignment and Addition

Using the new associative operator ⊚, fraction alignment
and addition can be performed using various hardware config-
urations. For instance, Fig. 2(a) depicts a binary-tree architec-
ture of ⊚ operators. Following the definition of the ⊚ operator
in (8), at each node of the tree, the local maximum exponent
is identified first and in turn drives local fraction alignment
and addition.

The ⊚ operator can be generalized to higher radices as
well. Fig. 2(b) shows an example of an 8-term alignment and
addition using a mixture of radix-4 and radix-2 operators.

(a)

(b)

Fig. 2. Tree-based organization of parallel alignment and addition for an 8-
term floating point addition using (a) the radix-2 ⊚ operator in all nodes of
the tree and (b) a mixture of radix-4 and radix-2 operators.

Radix-4 operators are used in the first level and a radix-
2 operator at the last level. For the rest of the paper this
configuration would be denoted as a 4-2 solution. Equivalently,
the 8-term adder of Fig. 2(a) would be denoted as a 2-2-2
solution highlighting the radix of the operators used in each
level of the tree.

A radix-4 operator effectively follows the baseline archi-
tecture shown in Fig. 1 for 4 inputs, i.e., it finds first the
maximum of the 4 exponents and subtracts it from all input
exponents. The exponent differences are used for aligning the
4 fractions before adding them. In fact, the proposed approach
is a generalization of the baseline alignment and addition. The
baseline approach for an N -term adder, shown in Fig. 1, is
effectively a sub-solution of the proposed approach and uses
a single radix-N operator.

IV. EVALUATION

Experimental evaluation aims at exploring the effectiveness
of the proposed alignment and addition architecture, for build-
ing multi-term fused FP adders relative to the widely-used
baseline approach. For this reason, we implemented 16, 32 and
64-term adders for the four FP-arithmetic formats shown in
Fig. 3 covering single and reduced-precision formats [1]. For
the proposed designs, for each multi-term adder we explored
all possible configurations using align-and-add operators of
various radices (i.e., number of inputs).

Fig. 3. Structure of commonly used FP data types.
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Fig. 4. The a) area and b) average power of 32-term BFloat16 adders designed
with the baseline approach and the proposed approach that uses the newly
introduced align-and-add operator ⊚ in various mixed-radix configurations.

All the multi-term FP adders under comparison, were im-
plemented in C++1 and synthesized to Verilog using Catapult
HLS, using a 28-nm standard-cell library. All designs (i.e.,
proposed and baseline) operate at a clock frequency of 1 GHz
and implement a complete multi-term fused FP addition that
includes fraction alignment and addition as well as normaliza-
tion and rounding of the final sum. To achieve the target clock
frequency, HLS synthesis was instructed to produce designs
with appropriate pipeline depth, depending on the number
of input terms and their data type. As the number of input
terms increases so does the design’s pipeline depth. For an
N -term FP32 adder we aimed for log2 N pipeline stages.
HLS can derive many other pipelined solutions. However, to
simplify comparisons across designs, we selected the same
configuration for all cases. For lower-precision data types,
such as BFloat16 and FP8, one pipeline stage less relative
to FP32 is enough to reach the targeted clock frequency due
to smaller mantissa and exponent bit widths. The final area
results were derived from Oasys logic synthesis tool. The
power consumption was estimated after synthesis using the
PowerPro power analysis and optimization tool. For power
estimation, we employed multi-term adders in matrix multi-
plication kernels for the BERT Transformer [17] using input
data from the GLUE dataset [18].

A. Design-space exploration for 32-term BFloat16 adders

In order to assess how mixed-radix configurations perform
relative to the baseline align-and-add approach in multi-term
floating-point adders, we initially focused on the case of
32-term BFloat16 adders. The designs presented represent
complete multi-term floating point adders and the baseline ap-
proach differs from the proposed designs only in the alignment
and addition logic. Normalization and rounding are the same
for all designs under comparison.

1available at github.org/ic-lab-duth/online-fp-add.git

Fig. 5. The most area efficient designs achieved by each configuration for
32-term BFloat16 for various clock period targets using 1–4 pipeline stages.

Fig. 4 depicts the area and power of the proposed adders,
that follow different mixed-radix configurations relative to the
baseline approach, which effectively uses a single N -input
operator. In all cases, utilizing a mixed-radix configuration
proves more efficient than the radix-32 baseline configuration.
From the results shown in Fig. 4(a) the proposed designs can
achieve area savings that range between 3% and 15%. The
4-4-2 configuration offers the best area efficiency, reducing
area by 15%. As shown in Fig. 4(b), the proposed mixed-
radix designs achieve power reductions of 6% to 26%. The
optimal configuration, in terms of power consumption, is the
8-2-2 design, achieves a notable 26% power reduction.

The proposed formulation splits alignment and addition to
smaller hardware blocks thus increasing hardware modularity.
In effect, this transformation, allows HLS to schedule inter-
mediate alignment and addition steps to pipeline stages with
better flexibility that results in more efficient designs.

This modular approach enhances also the delay charac-
teristics of multi-term adders across different pipelined con-
figurations. Fig. 5 illustrates the most area-efficient 32-term
BFloat16 adders produced for various clock period targets. For
high-frequency applications, 4-stage pipelines excel, while 2-
stage pipelines are more area-optimal at lower frequencies.
The proposed 2-2-8 configuration stands out for its speed,
offering a 16.6% faster clock cycle than the baseline design
with the same number of pipeline stages. In terms of area,
similar to Fig. 4(a), the 4-4-2 design is the most compact
at 1 ns. However, for less stringent clock requirements, the
baseline design provides the best area-performance trade-off.
For completeness, we also included the fastest single-cycle
(1-stage) implementations for each design. In all cases, their
equivalent pipelined solutions offer a superior combination of
speed and area efficiency for 32-term adders.

B. Multi-term adders for various FP formats

As previously demonstrated, the proposed approach per-
forms well for building 32-term BFloat16 adders. Never-
theless, it is essential to verify that this efficiency extends
to adders with fewer or more inputs and to other FP data
types. A more extensive analysis will offer a comprehensive
understanding of the effectiveness of FP adders built using the
proposed parallel align-and-add architecture.
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TABLE I
THE AREA AND POWER FOR (A) 16, (B) 32 AND (C) 64-INPUT

MULTI-TERM ADDERS AND FOR VARIOUS FP DATA TYPES.

N = 16 Area (×103µm2) Power (mW)
Base Proposed Save Base Proposed Save

FP32 8.87 6.8 23% 3.03 2.65 13%(8-2) (8-2)

BFloat16 2.92 2.69 8% 1.61 1.35 16%(8-2) (8-2)

FP8 e4m3 1.29 1.23 4% 0.83 0.69 17%(8-2) (8-2)

FP8 e5m2 1.17 1.23 -5% 0.62 0.70 -13%(2-4-2) (2-4-2)

FP8 e6m1 1.33 1.36 -2% 0.49 0.54 -10%(4-2-2) (4-2-2)

(a) 16-term FP adders

N = 32 Area (×103µm2) Power (mW)
Base Proposed Save Base Proposed Save

FP32 16.24 14.02 14% 6.69 5.78 14%
(2-2-2-2-2) (2-2-2-2-2)

BFloat16 6.44 5.5 15% 3.97 2.92 26%
(8-2-2) (8-2-2)

FP8 e4m3 3.02 2.51 17% 1.85 1.53 17%
(8-2-2) (8-2-2)

FP8 e5m2 2.73 2.44 11% 1.74 1.44 17%
(8-2-2) (8-2-2)

FP8 e6m1 2.80 2.48 11% 0.76 0.63 18%
(8-2-2) (8-2-2)

(b) 32-term FP adders

N = 64 Area (×103µm2) Power (mW)
Base Proposed Save Base Proposed Save

FP32 32.51 28.67 12% 13.26 10.82 19%
(2-2-2-2-4) (2-2-2-2-4)

BFloat16 12.84 11.73 9% 7.30 7.05 4%
(2-4-2-2-2) (2-4-2-2-2)

FP8 e4m3 5.79 5.09 12% 3.62 3.01 17%
(8-4-2) (8-4-2)

FP8 e5m2 5.34 4.78 11% 3.35 2.78 17%
(8-8) (8-8)

FP8 e6m1 5.39 4.86 10% 1.62 1.35 17%
(2-8-4) (2-8-4)

(c) 64-term FP adders

Table. IV-A presents the area and power performance of all
designs under comparison for 16, 32 and 64 inputs and for
the FP formats shown in Fig. 3. To examine also a corner
case, where the exponent differences are large relative to the
mantissa’s bit width, we included also an additional 8-bit FP
datatype FP8_e6m1.

For the proposed designs, we only report the configuration
with the best area/power performance. The selected configu-
ration is indicated inside the parenthesis below the results of
the proposed designs.

The performance gains achieved by the proposed designs
depend mainly on the number of input terms and are consistent
across all examined FP data types. As shown in Table IV-A,
adders with a large number of input terms, like 32 or 64,
demonstrate a more pronounced benefit compared to those
with a lower number of inputs. The size of the exponent field
also influences the effectiveness of mixed-radix designs. As
the size of the exponent increases, exponent calculation and
fraction alignment and addition become equally critical. This

convergence reduces the efficiency of interleaving maximum
exponent identification and fraction alignment and addition
that is leveraged by the proposed designs. Overall, the impact
of the number of input terms on performance improvements
is more significant than that of larger exponent fields.

V. CONCLUSIONS

This work reformulates the decades-old problem of serial
alignment and addition appearing in multi-term FP adders in
a new online form. The proposed computation paradigm al-
lows maximum exponent identification, exponent subtraction,
alignment shift and addition to be computed incrementally and
in parallel. Alignment and addition logic can be structured
in a tree-like structure using the newly introduced align-and-
add operator. Operators with varying numbers of inputs can
be employed at each level of the tree. Hardware evaluation
confirms that this approach substantially reduces the com-
plexity of alignment and addition, resulting in faster multi-
term FP adders or designs with smaller area and lower power
consumption compared to conventional approaches.
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