

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ

ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αυτοματοποιημένη Σχεδίαση Επιταχυντών Υλικού
για Εφαρμογές Μάθησης Μηχανής

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Διονύσιος Φίλιππας , 70394:

Επιβλέπων Καθηγητής: Γεώργιος, Δημητρακόπουλος, Καθηγητής,

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Δ.Π.Θ.

 Ξάνθη, 2025

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ

ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αυτοματοποιημένη Σχεδίαση Επιταχυντών Υλικού
για Εφαρμογές Μάθησης Μηχανής

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Διονύσιος Φίλιππας , 70394:

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Μέλη της Συμβουλευτικής Επιτροπής:

Επιβλέπων Καθηγητής: Γεώργιος, Δημητρακόπουλος, Καθηγητής, Τμήμα Ηλεκτρολόγων

Μηχανικών και Μηχανικών Υπολογιστών, Δημοκρίτειο Πανεπιστήμιο Θράκης

Μέλος 2: Γεώργιος, Συρακούλης, Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών, Δημοκρίτειο Πανεπιστήμιο Θράκης

Μέλος 3: Χρυσόστομος, Νικόπουλος, Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών, Πανεπιστημίου Κύπρου

 Μέλη της Εξεταστικής Επιτροπής:

Μέλος 4: Ιωάννης, Καραφυλλίδης, Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών, Δημοκρίτειο Πανεπιστήμιο Θράκης

Μέλος 5: Διονύσιος, Πνευματικάτος, Καθηγητής, Σχολή Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών, Εθνικό Μετσόβιο Πολυτεχνείο

Μέλος 6: Ιωάννης, Βούρκας, Αν. Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών, Δημοκρίτειο Πανεπιστήμιο Θράκης

Μέλος 7: Λάζαρος, Παπαδόπουλος, Επ. Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών, Δημοκρίτειο Πανεπιστήμιο Θράκης

Η παρούσα διδακτορική διατριβή υποβλήθηκε στο Τμήμα Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών του Δημοκρίτειου Πανεπιστημίου Θράκης για την

απόκτηση του διδακτορικού τίτλου σπουδών.

Ξάνθη, 2025

DEMOCRITUS UNIVERSITY OF THRACE

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

 Automated Design of Machine Learning Hardware
Accelerators

DOCTORAL THESIS

Dionysios Filippas, 70394:

COMMITTEE OF EXAMINERS

Members of the Advisory Committee:

Supervisor: Giorgos, Dimitrakopoulos, Professor, Department of Electrical and Computer

Engineering, Democritus University of Thrace

Member 2: Georgios, Sirakoulis, Professor, Department of Electrical and Computer

Engineering, Democritus University of Thrace

Member 3: Chrysostomos, Nicopoulos, Assoc. Professor, Department of Electrical and

Computer Engineering, University of Cyprus

Members of the Committee of Examiners:

Member 4: Ioannis, Karafyllidis, Professor, Department of Electrical and Computer

Engineering, Democritus University of Thrace

Member 5: Dionisios, Pnevmatikatos, Professor, School of Electrical and Computer

Engineering, National Technical University of Athens

Member 6: Ioannis, Vourkas, Assoc. Professor, Department of Electrical and Computer

Engineering, Democritus University of Thrace

Member 7: Lazaros, Papadopoulos, Assist. Professort, Department of Electrical and

Computer Engineering, Democritus University of Thrace

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of

Philosophy (Ph.D.), Department of Electrical and Computer Engineering, Democritus

University of Thrace.

Xanthi, 2025

ΑΝΑΦΟΡΑ ΣΤΗΝ ΤΗΡΗΣΗ ΤΩΝ ΑΚΑΔΗΜΑΪΚΩΝ ΑΡΧΩΝ

ΔΕΟΝΤΟΛΟΓΙΑΣ

Η παρούσα εργασία με τίτλο «Αυτοματοποιημένη Σχεδίαση Επιταχυντών Υλικού για

Εφαρμογές Μάθησης Μηχανής» είναι πρωτότυπη και πραγματοποιήθηκε από τον φοιτητή του

Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών με Αρ. Μητρώου ΑΕΜ

70394 στο Εργαστήριο Ολοκληρωμένων Κυκλωμάτων του τομέα Ηλεκτρονικής και

Τεχνολογίας Συστημάτων Πληροφορικής, υπό την επίβλεψη του καθηγητή Γεώργιου

Δημητρακόπουλου. Η συγγραφή της εργασίας/διατριβής πραγματοποιήθηκε εξολοκλήρου από

τον φοιτητή Διονύσιο Φίλιππα, υπό την καθοδήγηση και τις υποδείξεις του επιβλέποντά του.

Βεβαιώνεται ότι, κατά την εκπόνηση και τη συγγραφή της εργασίας/διατριβής του, ο φοιτητής

τήρησε τα προβλεπόμενα από τον νόμο και τον αντίστοιχο εσωτερικό κανονισμό του

Τμήματος, σεβάστηκε πλήρως τις Αρχές της Ακαδημαϊκής Ηθικής και του Κώδικα

Δεοντολογίας, οι οποίες απαγορεύουν την παραποίηση των ερευνητικών/πειραματικών

αποτελεσμάτων, την αναφορά ψευδών στοιχείων, την κατάχρηση της διανοητικής ιδιοκτησίας

τρίτων και τη λογοκλοπή και ότι έγινε με σεβασμό στις αρχές.

Περίληψη

Η παρούσα διατριβή παρουσιάζει ένα ολοκληρωμένο πλαίσιο για τον αυτοματοποιημένο
σχεδιασμό επιταχυντών υλικού για Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural
Networks - CNNs), αξιοποιώντας τη Σύνθεση Υψηλού Επιπέδου (High-Level Synthesis) και
περιγραφές μοντέλων υψηλού επιπέδου σε Python (μέσω TensorFlow ή PyTorch). Η προ-
τεινόμενη μεθοδολογία απλοποιεί την ανάπτυξη επιταχυντών για CNNs, επιτρέποντας την
άμεση παραγωγή υλικού από περιγραφές μοντέλων σε γλώσσα προγραμματισμού υψηλο-
ύ επιπέδου και μειώνοντας σημαντικά την πολυπλοκότητα του σχεδιασμού και το χρόνο
ανάπτυξης.

Το πλαίσιο εισάγει ένα πλούσιο σύνολο παραμέτρων βελτιστοποίησης, επιτρέποντας την
εξερεύνηση διαφορετικών αρχιτεκτονικών σε σχέση με την απόδοση, την ενεργειακή αποδο-
τικότητα και τη χρήση πόρων. Πέρα από τις συμβατικές παραμέτρους σχεδίασης, η παρούσα
εργασία ενσωματώνει, για πρώτη φορά, χαρακτηριστικά λειτουργικής ασφάλειας σε επίπεδο
υλικού, προηγμένες αρχιτεκτονικές ενδιάμεσης αποθήκευσης, καθώς επίσης υποστηρίζει δι-
άφορες αριθμητικές αναπαραστάσεις δεδομένων, πλήρους και μειωμένης ακρίβειας (reduced-
precision) κινητής και σταθερής υποδιαστολής.

Παρουσιάζονται δύο εξειδικευμένες μονάδες επιτάχυνσης συνελίξεων για αρχιτεκτονικές
συνεχούς ροής δεδομένων (streaming convolution engines): η μονάδα LazyDCstream, βελτι-
στοποιημένη για διασταλμένες συνελίξεις (dilated convolutions), και η μονάδα LeapConv, βελ-
τιστοποιημένη για συνελίξεις με μη μοναδιαίο βήμα (strided convolutions). Η LazyDCstream
ελαχιστοποιεί την κατανάλωση ισχύος μέσω της αποδοτικής επαναχρησιμοποίησης των εν-
διάμεσων δομών αποθήκευσης και της «τεμπέλικης» μετακίνησης δεδομένων που παραμένει
ανεξάρτητη του βαθμού διαστολής. Η LeapConv αντιμετωπίζει τις αναποτελεσματικότητες
των συνελίξεων με μη μοναδιαίο βήμα αποσυνθέτοντάς τις σε κανάλια με μοναδιαίο βήμα και
συγχωνεύοντάς τα σε μια ενιαία μονάδα υλικού, μειώνοντας έτσι την περιττή πρόσβαση στη
μνήμη με ελάχιστο επιπλέον κόστος χώρου.

Για την υποστήριξη της λειτουργικής ασφάλειας, η εργασία εισάγει έναν μηχανισμό ελέγχου
ανθεκτικό σε σφάλματα (Algorithm-Based Fault Tolerant) με χαμηλό κόστος, ειδικά σχεδια-
σμένο για CNNs. Ο ελεγκτής ορθότητας των συνελίξεων προβλέπει τα αθροίσματα ελέγχου
των εξόδων χρησιμοποιώντας μόνο τα συνοριακά εικονοστοιχεία της εισόδου, αξιοποιώντας
μια νέα συνθήκη αναλλοίωτης συνελίξεως. Αυτό μειώνει δραστικά τις απαιτήσεις σε ενδιάμε-
ση αποθήκευση και επιπλέον λογική, επιτρέποντας τον αποδοτικό εντοπισμό σφαλμάτων
σε πραγματικό χρόνο.

Το πλαίσιο επικυρώνεται μέσω της αυτόματης σύνθεσης πολλαπλών επιταχυντών για
CNNs σχεδιασμένα για πραγματικές εφαρμογές. Τα πειραματικά αποτελέσματα δείχνουν
σημαντικές βελτιώσεις στην ενεργειακή αποδοτικότητα, την δυνατότητα παραμετροποίησης
και τη χρήση του υλικού σε σύγκριση με τα πιο σύγχρονα εργαλεία. Συνολικά, η παρούσα
εργασία προσφέρει μια κλιμακούμενη και πρακτική λύση για την επιτάχυνση των CNNs σε
επίπεδο υλικού, καλύπτοντας τις κρίσιμες απαιτήσεις απόδοσης, ενεργειακής κατανάλωσης
και αξιοπιστίας των σύγχρονων συστημάτων μηχανικής μάθησης.

Λέξεις Κλειδιά: Επιταχυντές υλικού, Μηχανική μάθηση, Συνελικτικά νευρωνικά δίκτυα,
Σύνθεση υψηλού επιπέδου, Αρχιτεκτονικές χαμηλής ισχύος, Ασφαλή συστήματα, Αριθμητική
κινητής υποδιαστολής, Εργαλεία αυτοματοποιημένης σχεδίασης υλικού

I

Abstract

This thesis presents a comprehensive framework for the automated design of hardware accelera-
tors targeting Convolutional Neural Networks (CNNs), leveraging High-Level Synthesis (HLS) and
high-level model descriptions in Python (via TensorFlow or PyTorch). The proposed methodology
streamlines the development of CNN dataflow accelerators by enabling direct hardware generation
from software models, significantly reducing design complexity and development time.

The framework introduces a rich set of configurable optimization parameters, allowing explo-
ration of different architectural designs with respect to performance, energy efficiency, and resource
utilization. Beyond conventional design knobs, this work integrates, for the first time, hardware-level
functional safety features, advanced buffering architectures, and support for diverse data representa-
tions including reduced-precision floating-point and fixed-point formats.

Two specialized streaming convolution engines are introduced: LazyDCstream, optimized for di-
lated convolutions, and LeapConv, optimized for strided convolutions. LazyDCstream minimizes
power consumption through efficient buffer reuse and “lazy” data movement that remains indepen-
dent of dilation rate. LeapConv addresses inefficiencies in strided convolutions by decomposing
them into unity-stride channels and merging them into a single hardware unit, thereby reducing
redundant memory access with minimal area overhead.

To support functional safety, the thesis introduces a low-overhead Algorithm-Based Fault Tolerant
(ABFT) checker tailored for CNNs. The convolution checker predicts output checksums using only
border pixels of the input, leveraging a novel convolutional invariance condition. This drastically
reduces buffer and logic requirements, enabling efficient online fault detection.

The framework is validated through the automatic synthesis of multiple CNN accelerators from
real-world models. Experimental results demonstrate significant improvements in energy efficiency,
configurability, and hardware utilization compared to state-of-the-art tools. Overall, this thesis de-
livers a scalable and practical solution for CNN hardware acceleration, addressing critical demands
in performance, energy, and reliability for modern machine learning systems.

Keywords: Hardware accelerators, Machine learning, Convolutional neural networks, High-level
synthesis, Low-power architecture, Fault-tolerant systems, Floating-point arithmetic, Electronic de-
sign automation

III

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Giorgos Dimi-
trakopoulos, for his continuous guidance and unwavering support, not only throughout the years of
my Ph.D. studies, but also prior to that. His strong work ethic and depth of knowledge have been
instrumental in helping me grow both as a person and as an engineer. I am truly grateful for the
opportunity to work on meaningful research under his supervision, and for the privilege of learning
from his insightful advice and ideas.

I would also like to thank the members of my advisory and defensive committee, Georgios Sir-
akoulis, Chrysostomos Nicopoulos, Ioannis Karafyllidis, Dionisios Pnevmatikatos, Ioannis Vourkas
and Lazaros Papadopoulos for evaluating and reviewing my work, and for providing insightful com-
ments that helped to improve this thesis. Especially, I would like to thank Chrysostomos Nicopoulos
for our productive collaboration and his beneficial contribution to my published work.

Many thanks also go to my labmates, Christodoulos, Vasilis, and Kosmas, with whom I shared
many insightful discussions, both related to our work and beyond. I am especially grateful to
Christodoulos for our excellent collaborations and the publications we produced together. In ad-
dition, I would like to thank my fellow Ph.D. friends, Kostas, Aggelos, and Manolis, whose com-
pany during quick coffee breaks or long beer evenings helped me unwind and ease the pressures of
research.

Lastly, I would like to thank my parents, Epameinondas and Athanasia, as well as my sister, Popi,
for their continuous support and encouragement throughout all these years. Without them I would
not have been able to achieve this degree.

V

Contents

1 Introduction 1
1.1 Machine Learning Models . 1

1.1.1 Multi-Layer Perceptrons . 2
1.1.2 Convolution Neural Networks . 3

1.2 Evolution of Neural Network Architectures Beyond Convolution 5
1.2.1 Using Machine Learning Models . 6

1.3 Hardware Acceleration of Machine Learning Models 6
1.4 High-Level Synthesis of Machine Learning Accelerators 7
1.5 Thesis Contribution . 8
1.6 Thesis Organization . 10

2 Hardware Accelerators for Convolutional Neural Networks 11
2.1 Systolic-Array Accelerators . 11

2.1.1 Architecture of a Systolic Array . 12
2.1.2 Data Flow in Systolic Array Architectures 13

2.2 Spatial Pipeline-Dataflow Accelerators . 14
2.2.1 Organization of a Spatial Pipeline-Dataflow Accelerator 15
2.2.2 Streaming Convolution Engine . 15

2.3 Customizing the Architecture of a Spatial Pipeline-Dataflow Accelerator 17
2.3.1 Loop Unrolling . 18
2.3.2 Loop Tiling . 19
2.3.3 Loop Interchange . 20

3 Energy Efficient Buffering for Non-Traditional Spatial Convolutions 23
3.1 Optimized Buffering for Strided Convolutions . 23

3.1.1 LeapConv: Architectural Overview . 25
3.1.2 Evaluation . 29

3.2 Optimized Buffering for Dilated Convolutions . 31
3.2.1 LazyDCstream: Architectural Overview . 32
3.2.2 Evaluation . 36

3.3 Conclusions . 39

4 CNN specific Algorithm-based Fault Tolerance 41
4.1 Prediction of Convolution Checksum . 42

4.1.1 An Invariant Condition for Convolution Checksum 43
4.1.2 Explicit and Implicit Prediction of the Output Checksum 45

4.2 On-line Checker Architecture . 46
4.2.1 Checker Organization . 47
4.2.2 When does Implicit Prediction of the Output Checksum make Sense? 49

4.3 Checking Non-Unity Stride Convolutions . 50
4.3.1 Checking Independently per Channel . 50
4.3.2 Generalized Checker . 51

VII

CONTENTS

4.4 Evaluation . 53
4.4.1 Hardware Overhead added to check an Optimized Convolution Engine 53
4.4.2 Hardware Complexity Comparison with a State-Of-The-Art Checker 54
4.4.3 Fault Detection Comparison with a State-Of-The-Art Checker 56

4.5 Conclusions . 58

5 Customized Floating-Point Operators for ML Accelerators 61
5.1 Floating-Point Representations . 61
5.2 Basic Floating-Point Operations . 62

5.2.1 Addition . 62
5.2.2 Multiplication . 62

5.3 Fused Dot-Product operators for Dataflow Accelerators 64
5.3.1 Using the Dot Product in C++ . 65
5.3.2 Architecture of the Fused FP Dot Product 65

5.4 Evaluation . 69
5.4.1 Identifying State-of-the-Art Non-Fused FP Vector Dot Product Configurations 70
5.4.2 Comparisons with the Proposed Fused Vector FP Dot Product Architecture . 72
5.4.3 Performance Summary of Fused Dot Product Architectures 74

5.5 Conclusions . 74

6 Reduced Precision Fused Multiply Add Operators for Systolic Arrays 75
6.1 Systolic Arrays using Floating-Point Arithmetic . 75
6.2 The Proposed Skewed Pipeline Architecture . 77

6.2.1 The serialization problem . 77
6.2.2 Removing dependencies using speculative paths 78

6.3 Evaluation . 80
6.4 Conclusions . 81

7 Automatic Hardware Generation for CNN Accelerators 83
7.1 Enabling Fast Acceleration Directly from Python 84

7.1.1 Python to HLS-Ready C++ Conversion . 85
7.2 Configuration of the CNN Accelerator . 87

7.2.1 Optimized Buffering for Spatial Convolutions 87
7.2.2 Integrated Checksum Checker . 87
7.2.3 Arithmetic Representation and Quantization 89
7.2.4 Available Configuration Options per Layer 90

7.3 Evaluation . 91
7.3.1 Evaluation Setup . 92
7.3.2 Examined CNN Models . 92
7.3.3 Hardware Complexity Results . 94
7.3.4 Comparison with State-Of-The-Art . 95

7.4 Conclusions . 97

8 Conclusions 99
8.1 Summary . 99
8.2 Future Work . 100

Bibliography 101

VIII

1 Introduction

Until the early 21st century, computing systems primarily evolved to improve the performance and
efficiency of general-purpose processors. Their widespread adoption and ongoing refinement led to
a vast software ecosystem, making them accessible and versatile for a broad range of applications.
However, the slowing of Moore’s Law, combined with growing computational demands and the need
for greater energy efficiency, has driven a shift toward domain-specific hardware accelerators.

The transition to domain-specific computing has roots extending back to the late 20th century,
with early implementations in areas like signal processing and graphics rendering. In fact, the idea of
tailoring hardware for specific applications predates this period, with early computers often designed
for dedicated tasks.

A significant milestone in this evolution was the introduction of application-specific integrated
circuits (ASICs) in the 1980s. These chips are custom-designed to perform particular functions,
offering substantial performance and efficiency gains over general-purpose CPUs in targeted do-
mains. ASICs quickly found adoption in telecommunications, automotive systems, and consumer
electronics.

The 1990s saw the emergence of field-programmable gate arrays (FPGAs), which introduced a
new level of flexibility in custom hardware design. FPGAs enabled designers to implement and iter-
ate on custom logic and algorithms, making them ideal for domains such as digital signal processing,
networking, and embedded systems.

In the 21st century, the development and widespread use of graphics processing units (GPUs)
marked another major leap. Originally created for rendering images in graphics applications, GPUs
demonstrated high suitability for general-purpose parallel computing. Their architectural strengths,
i.e., massive parallelism and high throughput, opened the door to new applications in scientific com-
puting, machine learning, and cryptocurrency mining.

More recently, the rise of artificial intelligence, deep learning, and edge computing has intensified
interest in highly specialized hardware. Domain-specific accelerators tailored for neural network
inference and training—such as tensor processing units (TPUs) and custom ASICs, have become es-
sential for workloads like image recognition, natural language processing, and autonomous systems.
These accelerators deliver orders-of-magnitude improvements in performance and energy efficiency
compared to traditional CPU-based approaches.

Overall, the evolution from general-purpose computing to domain-specific architectures reflects
a broader trend: the pursuit of optimized hardware-software co-design to meet the performance,
efficiency, and scalability demands of modern applications. This shift is particularly evident in
machine learning, where specialized accelerators now play a pivotal role in enabling next-generation
intelligent systems.

1.1 Machine Learning Models

The term “Machine Learning” (ML) refers to a subcategory of Artificial Intelligence (AI) and Com-
puter Science that focuses on using data and algorithms to emulate the way humans learn. Currently,
“deep learning” is a popular term used to describe various ML applications. Essentially, a deep
learning model is an ML model characterized by its many layers, which increase its depth [43].

1

1 INTRODUCTION

Although we often view ML as a modern and thriving field, it has actually been evolving over
a long period. In the late 1950s, Frank Rosenblatt introduced the Perceptron [101], the first form
of neural network, used in pattern recognition and classification tasks. However, it was not until
the development of backpropagation [102], that ML began to attract the attention of researchers.
Backpropagation enabled the training of models with more layers, leading to the development of
MultiLayer Perceptrons (MLPs), which could tackle more complex problems.

Since the early 2000s, advancements in hardware that facilitated better training, combined with the
development of Convolutional Neural Networks (CNNs), have revolutionized computer vision tasks.
These improvements significantly enhanced model accuracy, leading to the widespread adoption
of CNNs in applications such as facial recognition, object detection, and autonomous driving. In
addition, the introduction of Recurrent Neural Networks (RNNs) and Long Short-Term Memory
networks (LSTMs) has shown remarkable performance in Natural Language Processing (NLP) tasks,
including language translation, sentiment analysis, and speech recognition.

However, the biggest breakthrough in ML came with the development of Large Language Models
(LLMs), which revolutionized the field of NLP. LLMs are transformer-based models, which leverage
massive amounts of data and computational power to achieve human-level performance across a
wide range of natural language understanding tasks. Their introduction has enabled machines to
generate coherent and contextually relevant text, perform complex language-understanding tasks,
and even engage in conversations with humans.

1.1.1 Multi-Layer Perceptrons

MLPs are considered as the first form of AI models and they still serve as fundamental blocks in
modern deep neural networks. Their architecture is based on neurons that actually follow the archi-
tecture of the perceptron. The structure of each perceptron neuron is summarized in Figure 1.1. Each
neuron accepts a number of inputs that are multiplied by some weights before being accumulated.
The weighted sum of the inputs passes through an activation function before the output is computed.

Figure 1.1: The basic structure of the perceptron model.

MLPs are composed of multiple layers built using neurons as fundamental units, as illustrated in
Figure 1.2. Their architecture includes three distinct types of layers: the input layer, one or more
hidden layers, and the output layer. This structure is referred to as fully connected because each
node in a layer is connected to every node in both the preceding and following layers.

The first layer, the input layer, passes the input features to the initial hidden layer. Its size corre-
sponds to the number of input features. In practice, the input layer simply links each input to every

2

1.1 MACHINE LEARNING MODELS

neuron in the next layer without performing any computation. The core computational work of the
MLP takes place in the hidden layers. In each neuron of a hidden layer, a weighted sum of inputs is
calculated and then passed to all neurons in the subsequent layer. The number of hidden layers and
the number of neurons per layer significantly influence the network’s performance.

The final layer, the output layer, produces the network’s result. The number of neurons in this
layer depends on the specific task. For instance, in [26], the output layer contains 10 neurons to
classify inputs into one of the 10 digits from 0 to 9.

Figure 1.2: The architecture of an MLP model consists of one input layer, multiple hidden layers,
and one output layer.

The classification capabilities of a Multi-Layer Perceptron (MLP) arise from both its network
structure and the values of its weights. Once the MLP’s architecture is defined, by choosing the
number of hidden layers and the number of neurons in each layer, the weights are optimized through
training.

1.1.2 Convolution Neural Networks

Convolution is the fundamental building block of CNNs, a class of deep learning architectures
widely used in image recognition [48], video analysis [17], and natural language processing [141]. In
essence, the convolution operation enables CNNs to automatically and efficiently extract hierarchical
spatial features from input data, usually called input feature maps (IFMs). Unlike fully-connected
layers that treat input features equally, convolutional layers exploit the local structure of the data by
applying small filters (kernels) that slide over the input, detecting patterns such as edges, textures,
or complex shapes.

A two-dimensional (2D) convolution operation between an input feature map and a filter (or ker-
nel) can be defined as in equation 1.1, where I is the IFM matrix, K is the kernel matrix and O is the
output matrix which is usually called output feature map (OFM).

Oi, j =
K−1

∑
m=0

L−1

∑
n=0

Ii+m, j+n ·Km,n (1.1)

This operation performs element-wise multiplication between the overlapping regions of the IFM
and kernel, followed by a summation. Each Oi, j element of the OFM is the result of a dot product

3

1 INTRODUCTION

operation. When the kernel slides over the input spatially (row-wise and column-wise), it generates
an entire 2D feature map, capturing specific features depending on the learned weights in the kernel.
These overlapping regions of the IFM and the kernel as well as the sliding of the kernel over the
input are depicted in Figure 1.3. In this example, the 3×3 kernel overlaps with a region of the input
and the dot product operation generates an output. Then the kernel slides towards the right in the
same row. When the kernel reaches the final column of the row (step 3 of Figure 1.3) it moves in the
row below (step 4).

Figure 1.3: A convolution example between a 5×5 IFM and a 3×3 kernel.

Convolutions can also take non-standard forms derived by the way the kernel is structured and
moves on the input.

In strided convolutions the kernel moves in steps larger than one, enabling spatial downsampling
of feature maps. This reduces output dimensionality while retaining key features, functioning sim-
ilarly to pooling but with learnable parameters. Strided convolutions also improve computational
efficiency, making them valuable in deep or resource-constrained CNN architectures.

Dilated convolutions expand the receptive field of a kernel by inserting gaps between its ele-
ments, allowing it to capture broader context without increasing parameters or reducing resolution.
This technique is especially useful in tasks like semantic segmentation, where modeling long-range
dependencies while preserving fine spatial detail is crucial. By offering a wider view with mini-
mal added computational cost, dilated convolutions are an efficient alternative to pooling or deeper
convolutional layers.

Transposed convolutions, also called deconvolutions, are used to upsample feature maps by re-
versing the effects of standard convolutions through learned, spatially adaptive operations. They
play a key role in generative models and decoder architectures by enabling the reconstruction of
high-resolution outputs from low-resolution inputs. Unlike fixed interpolation, transposed convolu-
tions can learn complex upsampling patterns, though they require careful design to avoid artifacts
like checkerboard effects.

Apart from convolutional layers, a CNN also comprises other types of layers such as pooling
layers, activation layers and fully-connected layers.

Pooling layers reduce the spatial dimensions of feature maps while retaining the most important
information. Max pooling selects the maximum value in a local region, helping with translation in-
variance and reducing computation. Another popular version of pooling layer is the average pooling
one.

Fully Connected These layers are used near the end of the network to aggregate features and

4

1.2 EVOLUTION OF NEURAL NETWORK ARCHITECTURES BEYOND CONVOLUTION

perform classification. Every neuron is connected to all outputs from the previous layer, enabling
high-level reasoning. These layers have the same architecture as the MLPs that were presented
earlier.

Batch Normalization This layer normalizes the inputs to a layer across a mini-batch, stabilizing
and accelerating training. It helps reduce internal covariate shift and often allows the use of higher
learning rates.

Dropout Dropout is a regularization technique where a fraction of neurons is randomly deactivated
during training. This prevents overfitting by ensuring that the network does not become overly reliant
on specific neurons.

Flatten This layer converts multidimensional feature maps into a 1D vector before passing it to
fully connected layers. It’s often used to transition from convolutional layers to dense layers.

Such layers are separated by appropriate activation function layers that introduce non-linearity
into the system, enabling the network to learn complex patterns and approximate arbitrary functions.
Without activation functions, a neural network composed of only linear operations would be equiv-
alent to a single-layer linear model, regardless of its depth, severely limiting its representational
power. Common activation functions include ReLU (Rectified Linear Unit), which is computa-
tionally efficient and helps mitigate the vanishing gradient problem; sigmoid and tanh, which are
historically significant but prone to saturation; and more recent variants like Leaky ReLU, ELU, and
GELU that aim to address specific training challenges. The choice of activation function signifi-
cantly affects convergence speed, model performance, and gradient flow, making it a critical design
decision in the architecture of deep learning systems.

1.2 Evolution of Neural Network Architectures Beyond
Convolution

Following the wide adoption of CNNs in image recognition and related computer vision tasks, the
machine learning landscape has undergone significant transformations, particularly with the emer-
gence of models that prioritize dynamic context modeling over local spatial hierarchies. While
CNNs excel at capturing spatial correlations using convolutional filters and pooling, they operate
with fixed receptive fields and locality assumptions, which can become limiting in scenarios requir-
ing long-range dependencies or adaptive feature interactions.

A major breakthrough came with the introduction of attention mechanisms, initially in the domain
of natural language processing. The attention paradigm allows models to weigh input features differ-
ently depending on their contextual relevance, dynamically recalibrating the focus during inference.
This culminated in the development of the Transformer architecture, first popularized by the ”At-
tention is All You Need” paper in 2017 [125]. Transformers abandoned recurrence and convolution
entirely, instead relying on multi-head self-attention to process inputs in parallel while capturing
global dependencies. This design proved remarkably effective in tasks like translation, text summa-
rization, and later, large-scale vision tasks.

Vision Transformers (ViTs) extended this success to the image domain by treating image patches
as tokens, akin to words in a sentence. Despite the apparent lack of inductive biases like locality and
translation invariance inherent in CNNs, ViTs demonstrated competitive performance, particularly
when trained on large datasets with sufficient regularization. Subsequent refinements, such as the
Swin Transformer [78] and ConvNeXt [134], incorporated hierarchical representations and hybrid
architectures to combine the strengths of attention and convolution, achieving state-of-the-art results
across multiple benchmarks.

Other evolutionary strands in post-CNN architectures include Graph Neural Networks (GNNs),
which generalize convolution to non-Euclidean domains, and MLP-Mixers, which simplify the mod-

5

1 INTRODUCTION

eling pipeline by replacing attention with multi-layer perceptrons operating over spatial and channel
dimensions. These architectures reflect a broader trend in machine learning: designing models that
are more flexible, data-adaptive, and conducive to massive pretraining regimes. However, these
gains often come at the cost of increased computational and memory demands, especially in dense
attention layers with quadratic complexity.

Despite the rise of attention-based models, CNNs remain highly relevant in practice, particularly
in edge computing, embedded systems, and scenarios with limited training data. Their structured
sparsity, weight sharing, and spatial inductive biases make them not only computationally efficient
but also well-suited for hardware optimization. Furthermore, many vision backbones in real-world
applications still employ CNNs either directly or as part of hybrid architectures. As such, CNN-
specific hardware accelerators continue to be vital for enabling low-latency, energy-efficient infer-
ence in a wide array of applications, from autonomous vehicles to mobile devices and IoT platforms.

1.2.1 Using Machine Learning Models

Today, ML models have achieved remarkable performance across a broad range of tasks, leading
to widespread adoption by developers, engineers, and researchers in various industries. This grow-
ing adoption has been significantly facilitated by the emergence of high-level ML libraries such as
TensorFlow [1], PyTorch [92], and Open Neural Network Exchange (ONNX) [90]. These frame-
works offer streamlined application programming interfaces (APIs), comprehensive documentation,
and robust toolchains that abstract the complexities of model construction, training, and deployment.
They empower users not only to build custom neural network architectures from scratch but also to
leverage an extensive ecosystem of pre-trained models.

Using libraries like PyTorch or TensorFlow, developers can effortlessly load state-of-the-art mod-
els such as YOLOv5 [122] for real-time object detection, BERT [66] for natural language under-
standing, or ResNet [48] for image classification tasks. These models can be fine-tuned on domain-
specific datasets, enabling rapid adaptation to new applications, such as industrial defect detection,
medical imaging, or financial forecasting. Furthermore, modular architectures allow components of
these models—like feature extractors or attention mechanisms—to be repurposed as building blocks
in novel architectures. The ONNX format further enhances this flexibility by allowing seamless
model interoperability across frameworks and platforms, facilitating cross-framework deployment
on diverse hardware backends. This democratization of ML development through user-friendly li-
braries and reusable models has accelerated innovation and lowered the barrier to entry for real-world
AI solutions.

1.3 Hardware Acceleration of Machine Learning Models

The rapid evolution of ML and AI has driven the need for specialized hardware capable of handling
the growing complexity and scale of AI workloads. AI chips—dedicated processors designed specif-
ically for accelerating AI computations—offer several key advantages over conventional, general-
purpose processors, particularly in terms of energy efficiency, computational accuracy, and adapt-
ability.

One of the most critical benefits of AI chips is their energy efficiency. Unlike traditional CPUs
or GPUs, AI chips often incorporate low-precision arithmetic (such as 8-bit or mixed-precision op-
erations), which allows them to execute computations using fewer transistors. This architectural
efficiency directly translates to lower energy consumption. Furthermore, AI chips are built with a
focus on parallelism, enabling them to process multiple operations simultaneously and thereby op-
timize workload distribution. These features are especially important in large-scale data centers,

6

1.4 HIGH-LEVEL SYNTHESIS OF MACHINE LEARNING ACCELERATORS

where energy consumption and heat dissipation are major operational concerns. As the AI industry
continues to grow, energy-efficient hardware could play a significant role in reducing its environmen-
tal impact, particularly its carbon footprint. On the edge computing front, AI chips enable mobile
and embedded devices—such as smartphones or IoT sensors—to perform on-device inference with-
out relying on constant communication with the cloud. This not only improves privacy and latency
but also extends battery life, making such devices more sustainable and responsive.

In addition to efficiency, AI chips are designed to deliver higher computational accuracy for AI-
specific tasks. These processors are optimized for operations central to deep learning, such as matrix
multiplications, tensor manipulations, and non-linear activation functions. As a result, AI chips often
outperform general-purpose chips in executing complex algorithms associated with image recog-
nition, natural language processing, and real-time decision-making. Their architectural precision
reduces numerical errors and enhances the reliability of results, making them well-suited for safety-
critical applications like medical diagnostics, industrial automation, and autonomous driving, where
high inference accuracy and low latency are essential.

Another advantage of AI hardware acceleration lies in the availability of specialized processing
units designed to meet the diverse computational demands of machine learning workloads. De-
vices such as GPUs, TPUs, FPGAs, and ASICs each offer distinct trade-offs in terms of flexibility,
performance, and energy efficiency. Among these, FPGAs and ASICs stand out for their customiz-
ability, allowing hardware to be tailored to specific AI models or applications. This customization
can involve tuning internal parameters, optimizing data paths, or reconfiguring logic blocks to better
support unique algorithmic requirements, thereby maximizing performance for tasks ranging from
real-time video analytics to large-scale language modeling. Further performance gains are achieved
through dataflow-oriented architectures like systolic arrays and spatial pipeline accelerators, which
exploit parallelism and data locality to boost throughput. At the edge, lightweight hardware and
model compression techniques enable efficient inference on resource-constrained devices. Together,
these hardware advancements and architectural strategies form a robust and adaptable ecosystem for
accelerating both training and inference across the full spectrum of modern AI applications.

The proliferation of AI chips has paralleled the explosive growth in machine learning applications
across industries. From edge devices to cloud-scale AI systems, these chips have become central
to enabling efficient, scalable, and reliable deployment of modern AI technologies. Their continued
evolution will be vital in addressing future challenges in compute performance, energy sustainability,
and application-specific optimization.

1.4 High-Level Synthesis of Machine Learning Accelerators

High-Level Synthesis (HLS) is a transformative design methodology that enables the creation of
hardware accelerators using high-level programming languages such as C, C++, or SystemC. This
shift from traditional hardware description languages (HDLs) like Verilog or VHDL allows develop-
ers to design and test hardware at a much higher level of abstraction, significantly reducing develop-
ment time and effort. HLS tools automatically translate behavioral code into register-transfer level
(RTL) representations, facilitating synthesis onto platforms like FPGAs and ASICs. This abstraction
is particularly valuable in AI and machine learning domains, where rapid prototyping, algorithmic
innovation, and hardware adaptability are critical.

The evolution of customized hardware accelerators for ML applications has substantially in-
creased the efficiency of computing large workloads tailored to specific tasks. However, the tradi-
tional design flow for developing a custom accelerator for each individual application is prohibitively
expensive in terms of time, engineering effort, and financial resources. Designing accelerators at the
RTL level leads to long time-to-market cycles and high verification overhead. Most critically, exist-

7

1 INTRODUCTION

ing RTL implementations are often difficult to repurpose for different architectures or applications,
due to their low flexibility and tight coupling to specific hardware configurations. To overcome these
limitations, the industry increasingly turns to High-Level Synthesis.

HLS provides a pathway to highly parameterizable and reusable accelerator designs. Unlike tra-
ditional RTL implementations, HLS accelerates design time and drastically reduces verification and
debugging overhead. Instead of writing low-level, clock-cycle-accurate behavior by hand, design-
ers describe functionality in a high-level behavioral language such as C++, while the synthesis
tool—such as Siemens’ Catapult HLS [111] or AMD/Xilinx’s Vitis HLS [4]—automatically gen-
erates the corresponding RTL. The resulting architecture depends on user-defined constraints, al-
lowing the designer to explore different implementations by adjusting parameters such as target
clock frequency, memory configuration, latency goals, and loop transformation strategies. This not
only enables faster development but also supports robust design-space exploration, essential in an
era where AI models evolve rapidly and hardware must adapt in real time.

One of the most powerful aspects of HLS is its support for scheduling, which plays a central
role in performance optimization. Scheduling refers to the allocation of operations to specific clock
cycles, affecting overall latency, resource usage, and throughput. HLS tools allow designers to guide
scheduling decisions using techniques like loop pipelining, loop unrolling, and operation chaining.
These techniques help exploit parallelism and data locality—critical factors in the performance of AI
accelerators. Through iterative exploration and constraint tuning, designers can efficiently evaluate
multiple architectural options without rewriting the design from scratch, which is a major advantage
over fixed RTL implementations.

Transitioning to an HLS design flow requires a new mindset. Although HLS increases abstraction
and productivity, it still demands a deep understanding of hardware architecture. Designers must
write synthesizable C++ code with awareness of how the HLS tool maps this behavior into hard-
ware structures. For instance, a seemingly simple operation like an adder module must be properly
structured with defined interfaces, control logic, and synchronization. While SystemVerilog allows
designers to clearly distinguish between input and output ports and define precise timing behavior,
HLS shifts focus toward functional correctness and architectural constraints. In summary, HLS intro-
duces a powerful methodology for designing AI accelerators—enabling faster development, broader
reuse, and efficient optimization—while requiring designers to bridge the abstraction gap between
software and hardware with care and expertise.

1.5 Thesis Contribution

This thesis contributes a novel and highly configurable design framework for the automated gener-
ation of hardware accelerators for CNNs, leveraging HLS [36]. Motivated by the ever-increasing
demand for high-throughput, low-latency, and energy-efficient machine learning inference, espe-
cially in embedded and edge systems, the proposed framework bridges the gap between high-level
model specification in Python (via TensorFlow or PyTorch) and low-level hardware realization. By
automating the transformation from software models to synthesizable hardware, it significantly re-
duces design complexity and time-to-market for CNN accelerators.

The core of the proposed framework is a CNN accelerator generator that supports the automatic
exploration of architectural design alternatives through a rich set of optimization knobs. These in-
clude parallelism levels, buffer sizing, tiling strategies, and dataflow scheduling choices. Beyond
traditional optimizations, the framework uniquely integrates support for functional safety and ad-
vanced buffering schemes. It also introduces customizable options for data representation and arith-
metic precision, enabling efficient hardware deployment across a wide range of applications.

More specifically for the case of non-traditional spatial convolution architectures, we introduce a

8

1.5 THESIS CONTRIBUTION

streaming convolution engine called LazyDCstream [34], optimized specifically for dilated convo-
lution. LazyDCstream is based on a sliding-window architecture that exploits the structured reuse
inherent in dilated convolution. It decomposes the dilated convolution operation to maximize shar-
ing of window buffers and minimize redundant data movement. A key innovation is its “lazy” data
movement strategy, which ensures that the number of input data transfers per clock cycle remains
minimal and independent of the dilation rate. This approach leads to significant reductions in dy-
namic power consumption without compromising throughput or incurring area penalties compared
to traditional efficient convolution engines.

Complementing LazyDCstream, the framework also introduces LeapConv [32], a specialized
engine for the efficient execution of strided convolutions. Strided convolutions typically exhibit
irregular computation patterns, which challenge conventional streaming architectures. LeapConv
addresses this by decomposing strided convolutions into multiple parallel unity-stride operations,
which are then merged into a single hardware structure. This strategy improves data reuse and
eliminates unnecessary memory access, resulting in lower energy consumption that scales favorably
with stride size. Despite the added multiplexing complexity required for reconfigurability, the area
overhead remains marginal, as confirmed by experimental synthesis results.

An essential innovation presented in this thesis is the integration of online functional safety mech-
anisms through ConvGuard [31], an Algorithm-Based Fault Tolerant (ABFT) error-checking unit
tailored for CNN convolution layers. ConvGuard enables runtime detection of hardware faults by
comparing output checksums against predicted values computed from the borders of the input image,
leveraging a newly discovered convolutional invariance condition. This novel technique eliminates
the need for extensive intermediate checksum storage, making ConvGuard significantly more area-
and power-efficient than existing solutions. The checker is fully parametrizable and supports a range
of convolution configurations, including various kernel sizes and strides, without compromising on
real-time fault detection capabilities.

To support deployment across diverse hardware platforms and performance requirements, the
framework includes comprehensive support for data representation flexibility. Users can select
from traditional single- and reduced-precision floating-point formats as well as integer and fixed-
point representations. Each format is paired with optimized arithmetic units [33, 35] to maintain
high computational throughput while minimizing area and energy costs. This adaptability ensures
compatibility with a wide spectrum of application-specific design targets, from low-cost embedded
systems to high-performance computing accelerators.

The proposed framework has been validated through the automatic generation and synthesis of
multiple CNN accelerators directly from high-level Python models. Experimental results demon-
strate that the generated designs offer competitive, and in many cases superior, performance and
energy efficiency compared to state-of-the-art CNN accelerator generators. In particular, the inte-
gration of advanced buffering schemes, functional safety mechanisms, and configurable data arith-
metic options provides a feature-rich and robust hardware design environment. Comparative studies
also confirm the superior resource utilization and configurability of the proposed framework across
different CNN topologies and FPGA platforms.

In summary, this research delivers a practical and innovative solution for automated CNN accel-
erator generation. By combining high-level design automation with low-level hardware optimiza-
tion, it provides an effective path forward for deploying machine learning models in power- and
latency-sensitive environments, while also addressing critical challenges related to hardware safety,
flexibility, and performance.

9

1 INTRODUCTION

1.6 Thesis Organization

The remainder of this thesis is organized as follows:
Chapter 2 provides an overview of two fundamental classes of machine learning accelerators:

Systolic Arrays and Spatial Pipeline Dataflow architectures. It explores the design principles and
trade-offs associated with these architectures, particularly in the context of CNNs. Special attention
is given to the spatial pipeline dataflow approach, including how data moves through the system and
interacts with computational resources. The chapter also compares different architectural configura-
tions, analyzing their impact on performance, scalability, and energy efficiency.

Chapter 3 introduces two specialized CNN accelerator architectures: LeapConv and lazyDC-
stream. Streaming architectures typically suffer from redundant data movement when handling non-
unity stride and dilated convolutions, leading to inefficiencies in power and resource utilization.
LeapConv addresses this challenge by reorganizing on-chip buffering to minimize unnecessary data
transfers, thereby improving overall hardware efficiency. Similarly, lazyDCstream presents a novel
buffering strategy that reduces redundancy in dilated convolution computations. Together, these ar-
chitectures demonstrate how careful memory organization can significantly enhance performance in
streaming CNN accelerators.

Chapter 4 focuses on fault tolerance in convolutional operations, emphasizing the use of ABFT
techniques. A novel method is introduced to compute convolution checksums implicitly, reducing
the overhead typically associated with explicit fault detection. The proposed mathematical formula-
tion simplifies the checksum computation, significantly lowering the number of operations required.
This technique is supported by a custom hardware architecture that can efficiently implement the
implicit checksum generation. The chapter highlights the potential of ABFT to enhance reliability
without sacrificing computational efficiency.

Chapter 5 presents FastFloat4HLS, a custom C++ floating-point library designed specifically for
HLS. The library includes a fused dot-product operator, which is crucial for optimizing the multiply-
and-accumulate patterns found in convolutional layers. By focusing on floating-point precision and
performance, FastFloat4HLS enables the generation of efficient hardware implementations for ma-
chine learning workloads. The library aims to balance numerical accuracy with hardware resource
constraints in HLS-based design environments.

Chapter 6 addresses the efficient hardware acceleration of deep learning kernels, particularly ma-
trix multiplications executed on systolic arrays. The chapter emphasizes the importance of reduced-
precision floating-point arithmetic for lowering energy and area costs while maintaining accept-
able model accuracy. A new skewed pipeline design is proposed, aimed at optimizing the chained
multiply-add operations inherent in systolic structures. This design introduces novel exponent for-
warding paths, enabling overlapping of pipeline stages across adjacent processing elements.

Chapter 7 outlines a high-level framework for the rapid generation of CNN accelerators directly
from Python-based models. At its core is a custom-developed C++ library tailored for HLS, allowing
seamless translation from high-level descriptions to efficient hardware implementations. The frame-
work emphasizes automation and modularity, significantly reducing the design time and complexity
for deploying custom accelerators. This chapter encapsulates the practical contributions of the thesis
by bridging algorithm design and hardware realization.

Chapter 8 concludes the thesis by summarizing its core contributions and outlining future re-
search directions. It also identifies open challenges and outlines potential directions for future work,
including the design of dataflow accelerators that can efficiently support irregular and dynamic work-
load, the co-optimization of data movement, memory hierarchy, and interconnects as well as the
optimization of accelerators for ultra-low-power systems and end-to-end system-level safety.

10

2 Hardware Accelerators for Convolutional
Neural Networks

CNN acceleration is typically achieved through GPUs, FPGAs, or ASIC chips. GPUs leverage effi-
cient parallelization of operations, seamlessly utilizing the computational resources available. Con-
versely, FPGA and ASIC implementations rely on innovative architectural designs and specialized
dataflow models to accelerate the computation-intensive operations inherent in CNNs.

These hardware architectures for CNN accelerators fall into two primary categories: systolic array
(SA) and spatial pipeline-dataflow (SPD) accelerators. While each architecture operates on different
principles, both must be efficiently designed to meet the requirements of the applications they serve.
SA architectures provide a uniform computational flow, requiring efficient mapping of each appli-
cation to the available hardware. SPD accelerators are typically tailored to specific applications,
utilizing architectures designed to meet the requirements of individual layers within a CNN. This
chapter delves into the architectures of these two types of accelerators, with a particular focus on
SPD accelerators, which have been predominantly utilized in the research conducted in this work.

2.1 Systolic-Array Accelerators

Systolic computation traces its roots back to the 1960s with the emergence of linear array proces-
sors tailored for signal processing tasks. However, it was not until the late 1970s that the work
of H.T. Kung and C.E. Leiserson [71] introduced the first SA architecture. This innovative design
showcased a regular structure of processing elements interconnected in a synchronized manner, op-
timizing computational efficiency by facilitating the seamless flow of data between the processing
elements. Subsequently, SA architectures found wide-ranging applications in digital signal process-
ing and matrix computations, where they proved instrumental in accelerating operations such as
matrix multiplication, convolution, and Fourier transforms.

The efficiency of SAs prompted researchers to explore their potential in a wider variety of ar-
eas, such as image processing, pattern recognition and artificial intelligence. Concurrently, efforts
were made to optimize the designs to suit specific application requirements, enhancing their perfor-
mance and versatility. Moreover, the advancements in semiconductors technology in addition to the
increased demand for high-performance computing resulted in novel SA architectures, capable of
handling complex computations with remarkable efficiency. Given the increasing demand for hard-
ware accelerators across various domains like edge computing, autonomous vehicles and healthcare,
SAs have found integration into specialized hardware platforms. These platforms are designed to
accelerate computational intensive operations like CNNs, thus aligning with the continuous growth
of deep learning.

In recent years, SA accelerators have been adopted by leading technology companies to meet the
growing computational demands of AI and deep learning workloads. These architectures, known for
their regular, data-parallel structure and high throughput, are particularly well-suited for accelerating
the matrix operations that dominate neural network computations.

One of the most prominent implementations of SAa is found in Google’s TPUs. Custom-designed
specifically for machine learning tasks, TPUs are optimized for executing large-scale matrix multi-

11

2 HARDWARE ACCELERATORS FOR CONVOLUTIONAL NEURAL NETWORKS

plications—an essential operation in both neural network inference and training. Deployed exten-
sively across Google’s data centers, TPUs play a central role in powering a wide range of AI-driven
services, including Google Search, Gmail, Google Photos, and Google Translate. Their architec-
ture exemplifies the practical advantages of SA-based designs in achieving low-latency and energy-
efficient computation at scale.

Another notable example is NVIDIA’s Tensor Cores, which are integrated into its high-performance
GPUs. Although not pure systolic arrays in the traditional sense, Tensor Cores adopt a systolic-like
execution pattern to accelerate tensor operations such as convolutions and matrix multiplications.
These cores are integral to enabling real-time performance in deep learning applications across di-
verse domains, including natural language processing, computer vision, and autonomous systems.
By combining massive parallelism with architectural enhancements for tensor operations, NVIDIA
has made Tensor Cores a foundational component of modern deep learning infrastructure.

Additionally, Intel’s Habana Gaudi AI Processor, developed by Habana Labs (a subsidiary of
Intel), employs a systolic array architecture to deliver high-throughput training and inference perfor-
mance. Habana Gaudi processors feature a large array of processing elements designed for efficient
parallel execution of deep learning workloads. They support advanced interconnects and memory
hierarchies to sustain the dataflow demands of modern neural networks. These processors are used
in enterprise-level data centers to accelerate AI tasks in sectors such as healthcare, finance, and
automotive, highlighting the versatility and scalability of systolic array-based designs in industrial
applications.

Collectively, these implementations underscore the critical role of SA accelerators in today’s AI
ecosystem. Their ability to provide high performance, energy efficiency, and scalability makes them
indispensable in both cloud-based and edge computing environments, reinforcing their importance
in the ongoing evolution of hardware for deep learning.

2.1.1 Architecture of a Systolic Array

Figure 2.1: The overall architecture of a systolic array.

Systolic arrays are designed to efficiently compute GEneral Matrix Multiplication operations
(GEMM). They are composed as a grid of Processing Elements (PEs) interconnected in a pipeline
fashion. Each PE consists of a multiplier, an adder, and necessary registers to appropriately pipeline
the streaming operation. The SA is fed by local memory banks placed on the West and North edges
of the array, while the output results are collected on the South edge. Figure 2.1 illustrates the com-
prehensive architecture of a SA accelerator, featuring corresponding local buffers utilized throughout

12

2.1 SYSTOLIC-ARRAY ACCELERATORS

its operation.
Each PE of the SA computes a Multiply-and-Accumulate (MAC) operation, between the data that

enter from its west and north edges. These data are also propagated to the following PEs, exiting
from the east and south edges. The exact structure of the PE as well as the data movement inside the
SA depend on the data flow scheme that is utilized by the architecture.

Employing SA accelerators for CNNs necessitates efficient mapping of the convolution operation,
a critical aspect of computation, to the available hardware while ensuring proper dataflow. Given
that SA accelerators are optimized for accelerating GEMM operations, the convolution operation
must be transformed accordingly. This transformation is typically performed using a method known
as im2col (image-to-column) [124], which flattens overlapping patches of the iIFM into column
vectors. Each patch corresponds to the receptive field of the convolution kernel, and by sliding
this field over the input spatially, a matrix is formed where each column represents one such patch.
Simultaneously, the convolutional kernels are reshaped into a 2D matrix where each row corresponds
to a flattened filter.

Ycol = Xcol ×Wrow (2.1)

Once the input and kernel matrices are constructed, the convolution operation is converted into
a standard matrix multiplication between the im2col matrix and the kernel matrix, as shown in
equation 2.1, where Ycol is the matrix of output features in column format, Xcol is the im2col matrix
of the input and Wrow is a reshaped version of the kernel. This results in an output matrix where each
row corresponds to the output of applying all filters to a specific spatial location in the input. Finally,
this matrix is reshaped back into the original output shape, matching the expected dimensions of the
CNN layer.

2.1.2 Data Flow in Systolic Array Architectures

The dataflow scheme employed by the SA determines the internal structure of the PEs and how the
matrix multiplication X ×W , is executed. For instance, in weight-stationary (WS) dataflow [106],
matrix W (the ‘weights’) is pre-loaded in the SA, while matrix X (the ‘input’) is transposed and fed
into the SA from the West side, as shown in Figure 2.2(c). The WS approach is generally preferred
over other dataflows, since it exploits the high spatio-temporal reuse of the weights [57]. After the
top row is filled, it takes multiple cycles to reduce the results of all the PEs in the same column. The
number of cycles required for the reduction depends on the FP multiply-add units within each PE;
i.e., the result of each PE moves downwards to the next PE in the same column. The SA becomes
empty when the reduction is finished in the right-most column, for all incoming columns of matrix
X .

Figure 2.2: The structure of the processing element in a systolic array for each dataflow.

Other popular data flow schemes are the Input Stationary (IS) and the Output Stationary (OS). The

13

2 HARDWARE ACCELERATORS FOR CONVOLUTIONAL NEURAL NETWORKS

IS data flow is a data movement pattern in which the input data remain fixed in the PEs, while weights
and partial sums are passed through the array. This approach minimizes the need to reload input
values multiple times, thereby reducing memory bandwidth usage and improving energy efficiency.
Each PE holds a portion of the input data and performs computations as new weights arrive from
adjacent PEs or enter from the north edge of the SA. The resulting partial sums are propagated
through the array toward the output. The structure of the PE to support this functionality is depicted
in Figure 2.2(a).

The OS data flow is a pattern in which each PE is responsible for computing and storing a specific
output value, keeping the partial and final results stationary within the PE throughout the computa-
tion. Input data and weights are streamed through the SA, allowing each PE to accumulate results
over time. This approach minimizes the movement of intermediate results, which can be costly in
terms of energy and bandwidth. Figure 2.2(b) shows how the PE is structure to operate under this
dataflow scheme.

2.2 Spatial Pipeline-Dataflow Accelerators

Unlike SAs, the SPD accelerators emerged very recently because of the need to directly acceler-
ate the computation of CNNs. Their progression has played a pivotal role in the development of
hardware architectures for deep learning. Since the early 2000s, these accelerators have evolved
from conceptual research models into highly optimized, commercially viable systems that form the
computational backbone of modern AI infrastructure.

In the early 2000s, the concept of spatial pipeline architectures began to gain attention as a po-
tential means to accelerate CNNs and other deep learning workloads. Initial research efforts were
exploratory, aiming to assess the feasibility of mapping convolutional computations onto spatially
distributed processing elements. These studies laid the groundwork for a new class of accelerators
characterized by regular, parallel data movement patterns and localized computation.

By the mid-2000s, interest in SPDs intensified as researchers began to focus on architectural op-
timization. Efforts during this period centered around enhancing computational throughput and en-
ergy efficiency, with innovations in the design of data paths, memory hierarchies, and interconnects.
Architectural configurations such as one-dimensional and two-dimensional pipelines were exten-
sively studied, and optimization techniques targeting layer-specific characteristics of CNNs—such
as weight reuse and input buffering—began to emerge.

In the late 2000s, SPD accelerators gained prominence as a major research direction in the field
of hardware acceleration for deep learning. The scope of research expanded beyond convolutional
layers to include operations like pooling and activation functions, which are integral components of
CNN architectures. Novel approaches to pipeline scheduling, data reuse, and resource allocation
were introduced to address the computational bottlenecks of increasingly complex neural networks.

The 2010s marked a transformative decade for SPD accelerators. With the explosion of big data
and the widespread adoption of deep learning across industries, there was a pressing demand for
high-performance, energy-efficient computing. Researchers continued to refine spatial pipeline ar-
chitectures, drawing insights from both academic advancements and industrial requirements. These
refinements led to better scalability, improved parallelism, and tighter integration with memory sub-
systems.

By the mid-2010s, SPD accelerators had begun transitioning from academic prototypes to practi-
cal, deployable systems. This period saw the integration of spatial dataflow architectures into com-
mercial hardware platforms such as FPGAs and ASICs. Companies recognized the advantages of
these architectures in supporting low-latency and high-throughput inference workloads, particularly
in resource-constrained environments like edge devices.

14

2.2 SPATIAL PIPELINE-DATAFLOW ACCELERATORS

From the late 2010s to the present, SPD accelerators have become a staple in the landscape of deep
learning hardware. A wide array of both commercial and open-source implementations has become
available, reflecting the maturity and flexibility of the spatial pipeline paradigm. These accelerators
are now widely employed in cloud services, embedded AI systems, and edge computing applications,
offering scalable performance, reduced energy consumption, and the ability to handle diverse neural
network models efficiently.

In summary, the evolution of SPD accelerators mirrors the trajectory of deep learning itself—from
experimental beginnings to industrial-scale deployment. Their ability to deliver high-performance
computation with predictable and efficient data movement has made them an essential architectural
solution for modern AI workloads.

2.2.1 Organization of a Spatial Pipeline-Dataflow Accelerator

Figure 2.3: The organization of a spatial pipeline-dataflow CNN accelerator.

A SPD accelerator for CNNs is designed as a collection of convolution engines connected in
series, creating a pipelined architecture as shown in Figure 2.3. On each stage of the pipeline, a
CNN layer is computed by an engine designed according to the characteristics of the layer [11, 25].
In addition, the parameters of each CNN layer, i.e. the weights and biases, are stored in local buffers,
dedicated to the convolution engine that computes the specific layer.

The input features are streamed inside the accelerator and their efficient handling depends on the
architecture of the convolution engine. A streaming convolution engine manages to re-organize the
stream of data so that the computation can be performed.

Apart from convolution engines, other smaller engines may exist, such as specialized architectures
for pooling layers or fully connected layers that are usually found in CNN architectures. Although
these other blocks are equally important for accelerator’s performance, the one that dominates in
terms of complexity is the convolution engine itself.

2.2.2 Streaming Convolution Engine

The streaming convolution engines utilize a sliding-window memory architecture [94, 131]. The
organization of a streaming convolution engine can be broken down into three main components,
which can be seen in Figure 2.4. First, a set of line buffers is used to store the input features that
arrive at the engine. The features remain inside the line buffers until they are no longer required. The
size of each line buffer equals the size of a row in the input feature map, while the amount of line
buffers depends on the size of the kernel K and equals to K−1. Second, to align the correct features
from the line buffers with the currently arriving input, a window buffer is utilized that stores the
features participating in the current output computation. Last, the actual computation is performed

15

2 HARDWARE ACCELERATORS FOR CONVOLUTIONAL NEURAL NETWORKS

Figure 2.4: The organization of a streaming convolution engine that implements a convolution layer.

by a dot product unit where the input features are multiplied with the corresponding weights and the
individual products are added to produce the output feature. Then the activation and/or normalization
is performed on the outputs before being transferred to the next layer.

In each clock cycle, a streaming convolution engine – such as the one shown in Figure 2.4 –
accepts one input feature and computes one output feature [55]. To do so, all features within the
corresponding input window must be available. For a K ×K filter, the features from the last K rows
of the input are required. This requires line buffers with the ability to store K −1 rows, plus a win-
dow buffer that holds the currently active input features. This sliding-window memory architecture
allows for data reuse and fine-grained parallelism. Window buffers are normally implemented with
registers, while larger line buffers are mapped either to standard-cell-based memories [84], or SRAM
blocks [130].

Algorithm 1 Algorithmic description of the data movement involved in the window and line buffers
of a streaming convolution engine.
1 foreach input feature (i,j)

2 // read line buffers and shift window buffer

3 for (m = 0; m < K; m++) {
4 tmp = (m < K-1) ? lb[m][j] : input;

5 for (n = 0; n < K; n++)
6 window[m][n] = (n < K-1)? window[m][n+1] : tmp;

7 }

8 // move data downwards in the line buffers

9 for (m=0; m < K-1; m++)
10 lb[m][j] = (m < K-1)? lb[m+1][j] : input;

A set of parallel multipliers and an addition tree perform the actual computation by applying the
weights of the kernel to the features stored in the window buffer. The engine manages to keep the
input features properly aligned to the filter’s coefficient by shifting the contents of the window buffer.
In each clock cycle, the input feature is pushed in the top left corner of the window buffer and in
the top row of the line buffers. In parallel, the window buffer is filled with features that come from
the line buffers and shifts its contents to the right to simulate the rightward sliding of the filter over
the input. The features that belong to the same column with the incoming feature are also moved
downwards in the line buffers, to simulate the downward sliding of the filter. An algorithmic view
of these operations, assuming a K×K window buffer (window) and K−1 line buffers (lb), is listed
in Algorithm 1.

16

2.3 CUSTOMIZING THE ARCHITECTURE OF A SPATIAL PIPELINE-DATAFLOW ACCELERATOR

Repeating the same operation for each IFM and adding the individual results, a complete output
feature is produced. Although this description refers to a 2D convolution, by repeating the same
operation for each IFM and OFM, the convolution engine can compute a complete CNN layer.

2.3 Customizing the Architecture of a Spatial Pipeline-Dataflow
Accelerator

The architecture of a SPD accelerator depends on two main factors, the characteristics of the CNN
and the available resources. In the case of ASIC implementations the resources constraint can be
either a power or an area constraint. On the other hand, when designing for FPGAs, the available
resources i.e. Look-Up Tables (LUTs), Block RAMs (BRAMs), Digital Signal Processing cells
(DSPs), constrain the architectural choices.

CNN applications are in most cases implemented by multiple convolutional layers in series, inter-
leaved by other layers like pooling, activation and normalization. As the convolutional layer is the
most complex component of the CNN, and the most demanding in terms of resources, its structure
has been studied thoroughly in order to explore the different architectural choices when designing
an accelerator for a CNN layer [23, 82, 88, 100, 142].

The code of Algorithm 2 describes the functionality of a convolutional layer, which performs a
convolution between N IFMs and M filters to produce M OFMs. The size of each IFM is R×C,
while the size of the kernel that convolves with each IFM is K ×L. The N IFMs, see “Inputs” array
in Algorithm 2, convolve with the N kernels, see “Weights” array in Algorithm 2, to produce one
OFM of size (R−K + 1)× (C−L+ 1), see “Out” array in Algorithm 2. Each feature of an OFM
is, in fact, the sum of the dot-products across all IFMs increased by the value of a bias. The same
operation is repeated for each of the M K ×L×N filters to produce all the OFMs.

Algorithm 2 Algorithmic implementation of a CNN layer.
1 INPUTS: Inputs[R][C][N], Weights[K][L][N][M], Biases[M]

2 OUTPUT: Out[R-K+1][C-L+1][M]

3 LA: for r = 0; r < R-K+1; r++
4 for c = 0; c < C-L+1; c++
5 Initialize Out[r][c][M] to Biases[M]

6 LB: for n = 0; n < N; n++
7 LC: for m = 0; m < M; m++
8 kernel = 0

9 LD: for k = 0; k < K; k++
10 for l = 0; l < L; l++
11 kernel += Weights[k][l][n][m] * Inputs[r+k][c+l][n]

12 Out[r][c][m] += kernel

Looking at Algorithm 2, the operation of a convolutional layer is described by four main loop
groups. The LB and LC loops iterate over the input and output feature maps respectively, while
LA refers to two nested loops, that iterate over the rows and columns of each IFM and LD iterates
over the two dimensions of the kernel. The structure of these loops defines the architecture of
the convolution engine that accelerates a CNN layer. The different architectures can be studied by
just applying different loop optimization techniques, like loop unrolling and loop tiling and loop
interchange.

17

2 HARDWARE ACCELERATORS FOR CONVOLUTIONAL NEURAL NETWORKS

2.3.1 Loop Unrolling

When designing a CNN accelerator, especially for FPGA implementations, the latency of the com-
putation, the amount of buffering and the data transfers between the convolution engine and the
external memory depend on the structure of the loops. Keeping the loops fully rolled, would result
in a very simple hardware with one addition and one multiplication unit, however, the architecture
would suffer from increased latency and data transfers from the memory, as it would support only
one input read per N×M×K×L cycles. On the other hand, supporting a fully parallel architecture,
by fully unrolling the loops, can be very demanding in terms of resources, especially in cases of
CNNs where both the number of layers and their sizes are very big. In reality, the structures of mod-
ern CNNs indicate that in most cases these loops has to be partially unrolled to design an efficient
hardware accelerator.

As it was studied in [82], unrolling each one of these loops affects the way that the unrolled
operators will be utilized. To understand the differences we will see the impact of unrolling each
of these four loops separately. Starting from the most inner loops of Algorithm 2, LD computes
the dot-product of the weights and the features currently in the window buffer. This operation can
be either performed in multiple cycles, using only one multiplier and one adder, or completely in
parallel, using K ×L multipliers and the appropriate number of adders to construct the addition tree
for the reduction of the products. Having the features of the IFM that participate in a single output
already available in the window buffer, a fully parallel implementation of the dot-product unit could
efficiently improve the latency of the computation.

Second, based on the equation of the convolution (2.2), the features in the window buffer need to
be multiplied with weights from different filters, as each IFM participates in the computation of all
M OFMs,

Or,c,m = Bm +
N

∑
n=0

K

∑
k=0

L

∑
l=0

Ir+k,c+l,nWk,l,n,m,m ∈ [0,M) (2.2)

where I is the array of IFMs, W the weights of the filter and O the OFMs. Unrolling the LC loop
by a factor of Tm results in the instantiation of Tm parallel and completely independent dot-product
operators, as illustrated in Figure 2.5. Each one of these operators reads the same window buffer and
the corresponding weights from the weight buffer and computes a partial output that is stored in an
output buffer. The size of the output buffer is equal to the size of an OFM, and the partial outputs
that are stored in each position of the buffer get accumulated with the corresponding partial outputs
from different IFMs. When all IFMs have been read, the final accumulated values are the output of
the layer.

Figure 2.5: The organization of a dedicated CNN layer accelerator that is unrolled in relation to the
OFMs.

Instead of unrolling LC to design a parallel hardware in respect to the OFMs, another solution
would be to unroll the LB loop. Unrolling this loop by a factor Tn means that features from Tn

18

2.3 CUSTOMIZING THE ARCHITECTURE OF A SPATIAL PIPELINE-DATAFLOW ACCELERATOR

different IFMs arrive in parallel. These Tn input features are treated as a single input, with a bigger
word length, by the convolution engine. This can be seen in Figure 2.6, where each register of the
window buffer as well as each word in the line buffers is Tn ×DW wide, where DW is the width of
the data. Having data from Tn feature maps available, requires the use of Tn dot product units where
each one computes the dot-product in the respective channel. If Tn is equal to N, the individual
result are accumulated and produce an output feature, else the partial sum is stored and waits to be
accumulated with the next set of Tn inputs.

Figure 2.6: The organization of a dedicated CNN layer accelerator that is unrolled in relation to the
IFMs.

Finally, the most outer loops, LA, of Algorithm 2 iterate across every feature in a feature map.
Unrolling these loops by Tr and Tc means that Tr ×Tc features from the same IFM arrive simultane-
ously at the convolution engine. If these features are far apart, for example if the IFM is tiled into
Tr ×Tc blocks, then as Figure 2.7 illustrates, Tr ×Tc window buffers and smaller line buffer sets are
utilized to re-organize the input features. In addition Tr ×Tc dot-product units, that share the same
weights, are used to compute the partial outputs. The solution of Figure 2.7 assumes that the input is
tiled, however, if the inputs refer to neighboring features, then different architectures can be applied
that allow the sharing of the resources [116].

Figure 2.7: The organization of a dedicated CNN layer accelerator that is unrolled in relation to the
features inside a feature map.

2.3.2 Loop Tiling

Loop unrolling is an optimization that results in the instantiation of parallel hardware, however, the
increase of the parallel computation units leads to an equal increase in the need for local buffering
to support the resources requirement. This demand for local buffering stresses the on-chip storage

19

2 HARDWARE ACCELERATORS FOR CONVOLUTIONAL NEURAL NETWORKS

resources that often are not enough, making the use of the external memory to store the data essential.
In these cases, instead of unrolling every loop of the algorithm, we can perform a tiling optimization,
that allows us to divide the data into multiple blocks. This blocks are small enough to be stored in
the on-chip memory, enabling the efficient reuse of the data in the local buffers [23, 82].

In general, the factors Tr, Tc, Tm and Tn can be used to either unroll the corresponding loops or
perform a tiling optimization. Algorithm 3 presents an implementation of a convolutional layer with
tiled loops. Looking at this example, by fully unrolling the LD loops in lines 14-15 and the tiles
of the LB and LC loops in lines 11 and 12 respectively, then Tn ×Tm dot-product units are utilized.
The rest of the tiled loops in lines 9-10 correspond to the LA loops and are used to break each input
feature map in blocks that can be stored in the local buffers.

Algorithm 3 A tiled version of the convolutional layer.
1 INPUTS: Input[R][C][N], Weight[K][L][N][M], Biases[M]

2 OUTPUT: Out[R-K+1][C-L+1][M]

3 LA: for r = 0; r < R-K+1; r+=Tr
4 for c = 0; c < C-L+1; c+=Tc
5 Initialize Out[r][c][M] to Biases[M]

6 LB: for n = 0; n < N; n+=Tn
7 LC: for m = 0; m < M; m+=Tm
8 for tr = 0; tr < Tr; tr++
9 for tc = 0; rc < Tc; tc++

10 for tn = 0; tn < Tn; tn++
11 for tm = 0; tm < Tm; tm++
12 kernel = 0

13 LD: for k = 0; k < K; k++
14 for l = 0; l < L; l++
15 kernel+=Weight[k][l][n+tn][m+tm]*Input[r+tr+k][c+tc+l][n+tn]

16 Out[r+tr][c+tc][m+tm] += kernel

Following this architectural example, at first Tr ×Tc ×Tn features will be read from the external
memory. These data will remain there and be reused for each of the M filters that are being read from
the buffer in groups of Tm ×Tn ×K ×L weights. When all the partial outputs have been computed,
these data will not be needed anymore and the next tile of Tr ×Tc ×Tn features will be stored in the
local buffers. The operation will continue until all the features have been used and the OFMs have
been completely calculated. From the example, it is clear that depending on the available on-chip
memory, the loops should be carefully tiled.

Finding the optimal unroll-tiling factors Tn, Tm, Tr and Tc is very crucial to achieve an efficient
hardware architecture with reduced latency. The selection of these factors, mainly for FPGA imple-
mentations, derive from a roofline model [133] that takes into account the available resources and
the bandwidth of the memory. Using this model, we can select the unrolling of the hardware and the
tiles of the data that will be stored in the local buffers in order to design a fully utilized and efficient
accelerator.

2.3.3 Loop Interchange

Finding the optimal tiling options is important, however, the sequence of the loops is equally impor-
tant as in High-Level Synthesis implementations, the hardware architecture depends in the structure
of the code. If we apply a loop interchange optimization, the access patterns of the data is changed
and the optimal unrolling of the hardware may need to be reconsidered [100].

20

2.3 CUSTOMIZING THE ARCHITECTURE OF A SPATIAL PIPELINE-DATAFLOW ACCELERATOR

Following the sequence of loops in Algorithm 3, at first, the features in the first Tr × Tc block
of all OFMs will be computed before moving to the next tiles of the OFMs. Having the featured
maps tiled in tiles of Tr ×Tc, when the features stored in the on-chip memory have already been used
and are no longer required, then they can be overwritten. In this example, the input features remain
stationary in the buffers while the weight kernels are being read in groups of Tm. This means that the
same group of Tn ×Tm ×K ×L weights in the local buffer will be fetched multiple times across the
iterations of loop LB.

A different sequence for the loops can result in a different access pattern in the memory. For
example, if the LB and LC loops switch positions, then the weights will remain stationary, while the
Tr ×Tc ×Tn input features will be loaded M/Tm times, until they are no longer needed. Depending
on the number of the IFMs and the filters, this change in the sequence would result in a different
number of data transfers between the external and the on-chip memory.

21

3 Energy Efficient Buffering for
Non-Traditional Spatial Convolutions

Spatial convolutions are fundamental operations in CNNs that enable the extraction of spatial hi-
erarchies from input data, such as images or feature maps. Beyond standard convolutions, several
variations have been introduced to control the resolution, receptive field, and computational behav-
ior of convolutional layers [28]. Strided convolutions downsample feature maps by skipping spatial
positions, effectively reducing their dimensions while preserving important patterns. Dilated con-
volutions expand the receptive field without increasing the number of parameters or computation
by inserting gaps between kernel elements, making them ideal for tasks requiring broader contex-
tual understanding, such as semantic segmentation. Transpose convolutions perform the inverse of
a standard convolution, enabling the upsampling of feature maps—crucial for image generation and
reconstruction tasks. Together, these spatial convolution variants provide flexible mechanisms for
spatial resolution control and feature extraction across a wide range of deep learning applications.

This chapter describes two architectures for strided and dilated convolutions that aim to improve
the efficiency of SPD accelerators when computing such spatial variations of convolutions.

3.1 Optimized Buffering for Strided Convolutions

Ideally, the scalability of streaming convolution engines should also be maintained when computing
strided convolutions, and, especially, in environments where the stride can be dynamically recon-
figured at runtime. The convolution stride controls the number of pixels by which the kernel’s
window moves after each operation. This feature facilitates the reduction of the output’s resolution.
Figure 3.1 graphically depicts the application of strided convolution with stride length 2 of a 3×3
kernel on a 7×7 input image, resulting in a 3×3 output image.

Figure 3.1: The application of convolution with stride length 2 on a 7×7 input image using a 3×3
kernel.

As discussed in previous sections, in standard convolutions the filter slides by 1 position each time
(Figure 3.2(a)). In strided convolutions, however, the filter slides over the image with a step S, in

23

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

both dimensions. Figure 3.2(b) illustrates this strided slide in the ‘x’ dimension. As the filter moves
S pixels away from its previous location in the same row, the engine needs to receive S new pixels
in a row-wise manner to align the input pixels with the newly shifted location of the filter. Only
then a new output can be computed. The same alignment should be performed when the filter moves
downwards with a step S. This means that after the engine has produced the last output of a row, it
must wait for S− 1 complete rows to be read before it can restart to produce a valid output of the
next active row.

(a) (b)

Figure 3.2: The slide of the filter over the input depending on the stride length. (a) Standard slide
with step 1. (b) Strided slide with step 2.

In fact, strided convolution inherently involves long periods of inactivity interrupted by periods of
actual computation. With that in mind, strided convolution can be easily computed using a standard
streaming convolution engine by producing valid outputs only when the output pixels align with the
strided slide of the kernel. Although conceptually simple, this approach requires data movements
that are equivalent to unity-stride convolutions, which are highly redundant when computing strided
convolutions.

Using a standard streaming convolution engine, like the one described in Section 2.2, means that
the engine would have an active and an inactive period. During the active period, where, for an
incoming pixel (i, j), it holds that i mod S = (K−1) mod S, the engine produces one pixel every S
clock cycles, where K×K is the size of the filter. On the contrary, the output remains idle during the
inactive period, i.e., when i mod S ̸= (K−1) mod S. During this time, the engine waits to read the
next S rows, before a new period of activity may resume. As the value of S increases, the inactive
period becomes significantly larger than the “active” one.

By enhancing the functionality of a standard streaming convolution engine, it can compute strided
convolutions by computing an output only when needed. However, to keep the pixels aligned with
the kernel, the data should always be shifted inside the window buffer, and the line buffers must
still follow the data movement of standard unity-stride convolutions, even during the large periods
of inactivity. This redundant data movement is effectively removed by LeapConv, thereby leading to
significant power consumption benefits.

Other approaches that do not rely on streaming convolution engines try to reduce the complexity
of strided convolutions by utilizing Winograd’s algorithm [138,140]. The architecture of LeapConv,
that is described in this section, is a streaming convolution engine architecture that efficiently sup-
ports arbitrary and reconfigurable strides and exhibits the following key attributes:

• It decomposes strided convolutions into multiple independent unity-stride convolution chan-
nels to avoid redundancy in computation and data movements. Even though the computations
of each channel are performed in parallel, the overall hardware implementation is merged in
one unified structure to maximize efficiency and resource utilization.

24

3.1 OPTIMIZED BUFFERING FOR STRIDED CONVOLUTIONS

• The parallel channels are mapped to the same window buffer, while the input is forwarded
only to the registers of the active channel. This approach improves the clock-gating efficiency
by limiting the data switching activity during the engine’s operation to the absolute minimum
required for the correct implementation of the algorithm.

• The aforementioned architectural features reduce the power consumption from 10% to 32%,
for different ASIC configurations implemented using a 45-nm standard cell library, without
introducing any throughput penalty. The area is slightly increased, due to the multiplexing
logic added to support the reconfigurability of the stride length.

3.1.1 LeapConv: Architectural Overview

The LeapConv architecture is based on the decomposition of strided convolutions into a set of paral-
lel non-strided convolution channels [64]. To avoid redundancy in computation and data movement,
instead of assigning the computation directly to the parallel channels, the hardware implementation
of the latter is merged in one unified structure. Furthermore, the parallel channels are mapped to the
same window buffer, while the input is forwarded only to the registers of the active channel, thus
effectively reducing the data switching activity.

Figure 3.3: The decomposition of a 2-stride convolution into 4 parallel unity-stride convolution chan-
nels.

Decomposition

Any strided convolution can be decomposed into the sum of multiple unity-stride convolutions [91].
Since the filter is applied with a stride S, each coefficient of the filter will be multiplied only with a
subset of the input elements. Therefore, by grouping together the input pixels that each coefficient
“touches,” we can derive independent channels of sub-images and sub-filters. Figure 3.3 depicts the
transformation of a strided convolution with S = 2 into four independent channels. In the general
case, the number of channels created is equal to S2. A pixel (i, j) belongs to the channel Chk,l with

25

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

k = i mod S and l = j mod S. Similarly, the coefficient hm,n belongs to channel Chk,l when k = m
mod S and l = n mod S.

The operation within each channel is, effectively, a unity-stride convolution, since every pixel of
each sub-image is multiplied with every coefficient of the corresponding sub-filter. After computing
the output of each channel, we can reconstruct the output of the original strided convolution by
simply performing a pixel-wise addition between the individual outputs of each channel.

LeapConv utilizes this decomposition but time-shares the operation of each channel, thereby sav-
ing considerable amount of redundant data switching activity and offering a highly efficient overall
hardware implementation.

Merged hardware architecture

In a direct implementation of the decomposition transformation, the strided convolution can be com-
puted using S2 independent unity-stride convolution engines. The outputs of all engines are added to
produce a valid result. Therefore, to produce the correct output, the operation of the engines should
be aligned.

(a) (b)

Figure 3.4: The (a) multi-channel architecture that allows the computation of a 2-stride convolution,
and (b) the optimized architecture with shared line buffers.

The hardware implementation of the decomposed strided convolution is shown in Figure 3.4(a)
for a 5×5 kernel applied with a stride of S = 2. The engine of each channel utilizes a smaller window
buffer and requires fewer and shorter line buffers, as the input image of each channel is a subset of
the original image.

The fragmentation of the line buffers can be avoided by taking advantage of the fact that each
channel uses a different part of the input. For instance, channels A and B refer to pixels that belong
to even-indexed rows, while channels C and D refer to odd-indexed rows. Therefore, the line buffers
of channels A and B can be merged, resulting in larger line buffers that are equal to the size of the
ones used in a unity-stride engine. Adding some de-multiplexing, as shown in Figure 3.4(b), the line
buffers can now push data either to channel A or B, depending on the column index of the current
input pixel. Pixels from even columns will get pushed to channel A and the rest to channel B. In the
same way, we can merge the line buffers for channels C and D. For uniform treatment, channels C
and D are also equipped with two line buffers.

26

3.1 OPTIMIZED BUFFERING FOR STRIDED CONVOLUTIONS

Figure 3.5: Mapping in place the window buffers of the 4 channels. Note that no more registers are
used here than in the unity-stride streaming architecture.

The window buffer of each channel can be viewed as a subset of the original window buffer. By
rearranging the window buffers of the four channels, we can reconstruct the window buffer of the
unity-stride engine, as illustrated in Figure 3.5. The only difference lies in the connectivity between
the registers; each register connects only to the registers of the same channel.

To keep the operation of all channels aligned, data movement inside the window buffer occurs only
during the active periods. During said periods, output computation occurs only when the window
buffer has every pixel of the window of the input image that overlaps with the filter. On the contrary,
during the inactive periods that arise naturally due to the strided movement of the window, the
window buffer in LeapConv is completely inactive.

To understand the connectivity between registers and the involved data transfers, Figure 3.6 high-
lights the movement of the data inside a 5× 5 window buffer for a strided convolution with S = 2,
during an active period. Assume that in cycle t0, when pixels {A3, C2, A4, C3, A5} are being pushed
in the first column (column 0) of the window buffer, channels A and C are activated. At that time,
the first 3 columns of the window buffer are filled with data, while the last 2 have not received any
input yet. This means that channel A and C have data in two of their columns, while channels B and
D have data only in their first column.

Figure 3.6: The movement of data in the window buffer. Data moves between the registers of each
channel, thus, effectively, mimicking the strided kernel movement.

In cycle t1, pixel B3 is pushed into the window buffer from the input. The rest of the second
column of the window buffer is filled with pixels D2, B4, D3 and B5 that come from the line buffers.

27

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

Pixels B3, B4 and B5 belong to channel B, while D2 and D3 belong to channel D. These two channels
are active and they should shift the corresponding columns 1 and 3 of the merged window buffer.
The remaining registers of the window buffer are unaffected. In total, only two columns out of the
five columns have experienced any data switching.

In the next cycle, t2, three columns are being updated. Column 4 receives the data of column 2,
and column 2 receives the data of column 0. The newly arrived pixels {A6, C4, A7, C5, A8} from the
input and the line buffers are pushed into column 0. In all cases, data move two columns forward (to
the right), following the stride length (S = 2) of the convolution. In this cycle, only three columns
experience data switching activity.

Similarly to the reduction in data movement inside the window buffer, LeapConv achieves an
equal reduction to the movement of the data between the line buffers. In the case of the unity-stride
convolution, that was presented in Section 2.2.2, as listed in Algorithm 1 in order to emulate the
downward shifting of the filter over the image, the data of a line buffer is pushed to the next one, i.e.,
lb[m][j] receives data from lb[m+1][j]. In LeapConv, the data of the line buffers must move to
the next active line buffer of the same channel. Since input pixels are streamed in a row-wise manner,
until a complete row is read, only the (K − 1)/S line buffers that belong to the active channels are
being used. As a result, instead of shifting all line buffers downwards in each clock cycle, only the
line buffers of the active channels are being updated.

Algorithm 4 Algorithmic description of the data movement involved in the window and line buffers
of the proposed LeapConv architecture.
1 foreach input pixel (i,j)

2 // read line buffers and shift window buffer

3 if (active_row) // when on an active period
4 for (m = 0; m < K; m++) {
5 tmp = (m < K-1)? lb[m][j] : input;

6 // shift only active columns

7 for (n = j%S; n < K; n += S)
8 window[m][n] = (n < K-S)? window[m][n+S] : tmp;

9 }

10 // move data downwards in line buffers of active rows

11 for (m = i%S; m < K-1; m += S)
12 lb[m][j] = (m < K-1-S)? lb[m+S][j] : input;

The update of the window buffer and the corresponding line buffers in LeapConv is detailed in
the code segment of Algorithm 4. For each input pixel, the windows buffers are shifted only in the
active rows. The shifting does not involve all columns, but only the ones placed S columns apart,
i.e., window[m][n] is connected to window[m][n+S]. The same connectivity pattern is involved
across line buffers, i.e., lb[m][j] receives a pixel from lb[m+S][j].

Support for reconfigurability

The purpose of LeapConv is to allow the computation of any strided convolution for a specified filter
size. By generalizing the architecture of Figure 3.5, we are able to design a streaming convolution
engine with reconfigurable stride.

To enable this feature, each register of the window buffer is accompanied by a multiplexer, as
shown in Figure 3.7(a). These multiplexers enable the shifting of data from window[m][n+S] to
window[m][n] for arbitrary values of S, assuming that the stride length S is smaller than or equal
to the window size K. By appropriately configuring the select signals of the multiplexers, a different

28

3.1 OPTIMIZED BUFFERING FOR STRIDED CONVOLUTIONS

(a) LeapConv with Reconfigurable Stride

(b) Configuration for S = 2 (c) Configuration for S = 3

Figure 3.7: The (a) overall architecture of LeapConv and the reconfigured design that computes
strided convolutions with (b) S = 2 and (c) S = 3.

stride length may be chosen. The connectivity for a specific stride length should be configured
before the start of the computation and, for correctness, it should not change until the output data is
computed.

To support an arbitrary stride, each column of the window buffer is connected to all previous
columns. Therefore, the cost of multiplexing increases progressively from left to right. Multiplexers
are also added to the write port of the line buffers to ensure that lb[m][j] receives an input from
lb[m+S][j] (as listed in Algorithm 4), for all possible values of S. The read port of each line buffer
is connected directly to the window buffer. The column of the window buffer that receives the output
of the line buffers – only during the active period – is also determined by S. Example configurations
for S = 2 and S = 3 are shown in Figures 3.7(b) and 3.7(c), respectively.

3.1.2 Evaluation

The goal of the evaluation process is to highlight the effectiveness of LeapConv, as compared to
current state-of-the-art approaches. To the best of our knowledge, LeapConv is the first streaming
convolution engine that is also optimized for strided convolutions. Thus far, strided convolutions
have been optimized only for large-scale systolic arrays using Winograd’s algorithm to reduce the
cost of multiplications in convolutions [91,138,140]. In these approaches, the strided convolution is

29

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

computed via smaller convolution kernels mapped to Winograd-specific units. Since each Winograd
unit supports a specified kernel size, the decomposed filters are zero-padded to be aligned with the
predefined kernel [138]. Moreover, the systolic way of computing the final output does not allow for
buffer sharing and regular data movements, as facilitated by streaming convolution engines. Thus,
a comparison between a streaming convolution engine, such as LeapConv, and any systolic-array-
based design would not provide meaningful insight, or be fair, since the two architectural approaches
are very different in both concept and implementation.

Instead, the enhanced version of the unity-stride streaming architecture presented in Section 2.2.2
for computing the strided convolution remains cost efficient (even if it requires larger data transfers
than LeapConv) and it does not suffer from irregularity in data accesses and lack of local buffer
sharing, which afflict the systolic-architecture-based approaches [138,140]. Hence, in the presented
evaluation, we will compare LeapConv to the above-mentioned enhanced 1-stride streaming convo-
lution engine, which serves as the benchmark for the simplest possible architectural alternative.

Both architectures were fully implemented in C++ and synthesized to Verilog RTL using Catapult
HLS. The two architectures were designed for 16-bit input images and filters and are reconfigurable
with respect to stride length. For each presented example, the size of the input images is assumed
to be equal to 256×256. The designs follow the behavioral models listed in Algorithms 1 and 4.
However, the C++ models used were optimized for HLS using coding templates that favor efficient
unrolling and reduced dependencies for efficient pipelining. The Verilog RTL for each case was
synthesized with the Oasys RTL logic synthesis using a 45 nm standard-cell library and targeting
a clock frequency of 500 MHz. The reported power is obtained from the PowerPro power analysis
and optimization tool.

(a) 3×3 (b) 5×5 (c) 7×7

Figure 3.8: The power consumption of the LeapConv and the enhanced unity-stride streaming engine
implementations for different filter sizes and stride lengths.

The power consumption of the two architectures is illustrated in Figure 3.8 for different kernel
sizes. For standard convolutions, where a unity stride is assumed, LeapConv incurs higher power
consumption than the enhanced version of the unity-stride streaming architecture. This power over-
head is a direct consequence of the reconfigurability provided by LeapConv and the extra multiplex-
ing logic added to support it. Since the amount of the multiplexing is proportional to the size of the
window buffer, the difference in power consumption between the two architectures increases as the
size of the window buffer increases. This power overhead ranges from 4% to 6%, depending on the
filter size.

However, LeapConv achieves a substantial reduction in power consumption when the engine com-
putes convolutions with stride lengths greater than one, as shown in Figure 3.8. The high inactivity
of the window buffer and the efficient on-time activation of the line buffers allow LeapConv to sig-
nificantly reduce the data switching activity. This translates to dynamic power savings that increase
with increasing stride length. This result stems from the fact that the periods of inactivity of the

30

3.2 OPTIMIZED BUFFERING FOR DILATED CONVOLUTIONS

window buffer and the number of active line buffers in each clock cycle are determined by the stride
length. For the 3×3 kernel implementation, the reduction for a convolution with stride length 2 is
around 10%, while it can reach up to 20% for longer strides. For the 5×5 and 7×7 kernel imple-
mentations, the power savings range from 13% to 32%. These savings are significant if we take into
account the overhead of the multiplexing logic to support the desired reconfigurability.

Figure 3.9: The area consumed by LeapConv and the enhanced unity-stride streaming architectures.

Figure 3.9 depicts the area of both designs under comparison for various kernel sizes. LeapConv
is only marginally larger than the standard architecture of Section 2.2.2, which – as previously men-
tioned – is the most efficient approach in implementing streaming convolutions, since it maximizes
buffer sharing and relies on simple data access patterns. The source of this area overhead is the added
multiplexing logic and wiring required to support the extra feature of stride reconfigurability. The
area overhead increases slightly with the window buffer size, and ranges between 2.3% and 2.8%,
for the different implementations.

Finally, it should be noted that the area cost of multiplexing does not translate to a delay overhead,
since the multiplexers drive the input pins of the window’s registers. The critical path in all cases
starts from the output pins of the same registers and moves to the multiplication and addition logic
that implements the arithmetic part of the convolution engine. In other words, LeapConv can achieve
the same maximum possible operating frequency as the baseline design.

3.2 Optimized Buffering for Dilated Convolutions

Standard 2D convolution assumes that each filter slides across the pixels of an input to produce
a filtered output. In an effort to increase the receptive field [16, 19], the filter’s coefficients are
spaced out R elements apart in dilated convolution. Two examples of an inflated kernel are shown in
Figure 3.10. For R = 1, dilated convolution is the same as standard convolution.

This section focuses on the design of a power-efficient dilated convolution engine that optimizes
the data movement to reduce power consumption without obstructing the uninterrupted pipelined
flow of data across consecutive engines in an SPD accelerator, and without relying on any data re-
organization, or any irregular data fetching from any DMA engine. The discussed design, called
LazyDCstream, does not alter the architecture of the streaming engines themselves. Instead, it
optimizes their buffer usage when performing dilated convolutions, without restricting any other
orthogonal optimizations that may be employed (e.g., datapath unrolling).

As discussed in Section 2.2, an SPD accelerator is composed of a series of streaming convolution
engines, where each engine utilizes the line buffers, a window buffer, and an arithmetic unit that

31

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

(a) R = 1 (b) R = 2 (c) R = 4

Figure 3.10: The kernel in a dilated convolution for varying dilation rates.

performs the MAC operations. This architecture can be customized to various performance require-
ments [82, 142]. Unrolled architectures using wide enough window and line buffers and multiple
MAC operators can store data from multiple input feature maps and compute multiple output fea-
tures per clock cycle. Other area-efficient architectures allow buffer sharing by producing only a part
of the output features.

Computing dilated convolution for a reference streaming convolution engine would require more
line buffers and a larger window buffer. In dilated convolution, the filter’s size is artificially increased
according to the dilation rate. For a K ×K kernel and a dilation rate of R, the streaming convolution
engine would need (K−1)R line buffers and larger window buffers for all input features. Input data
would be continuously shifted in and out of the window buffers following the same access pattern.
However, in some clock cycles, those pixels would be multiplied with zero coefficients without
affecting the output. The rows of the window buffers that contain just the holes of the inflated kernel
can be completely removed, thus simplifying the reference architecture.

LazyDCstream utilizes the decomposition of dilated convolution to multiple non-dilated convolu-
tions [129] to:

• Minimize the amount of buffering needed to support dilated convolutions by appropriate time-
sharing of buffers;

• Improve clock gating efficiency by limiting data switching activity during the engine’s opera-
tion to the absolute minimum needed for the algorithm’s correctness. In fact, data movements
per cycle are equal to the number of kernel coefficients and are independent of the dilation
rate.

To highlight the effectiveness of LazyDCstream in reducing power consumption, its structure was
embedded in an SPD accelerator that executes inference on a variant of VGG-16 [96, 114] that
includes dilation in all CNN layers. The experimental results demonstrate that LazyDCStream can
reduce the power consumption of various CNN layers by 15–39% for ASIC implementations and
2–15% for FPGA implementations, without incurring any throughput or area penalty.

3.2.1 LazyDCstream: Architectural Overview

Dilated convolution can be decomposed to multiple standard convolutions applied on different parts
of the input [129]. This decomposition is highlighted in Figure 3.11 for a 3×3 kernel applied using
a dilation rate of R = 2. Each one of the four smaller convolutions (channels) receives a subset of
the input and the same non-dilated 3×3 kernel. For the example shown in Figure 3.11 the input is
broken down into four channels: A, B, C and D. A and B consist of data that are found in the even

32

3.2 OPTIMIZED BUFFERING FOR DILATED CONVOLUTIONS

Figure 3.11: The decomposition of a dilated convolution with R = 2 to multiple independent non-
dilated convolutions as proposed in [129]. Each channel works on the non-dilated ver-
sion of the kernel applied on parts of the original input.

rows of the input, while C and D consist of data from the odd rows. Equivalently, A and C contain
data from the even columns of the input, while B and D contain data from the odd columns.

In the general case, a dilated convolution of rate R is split to R2 channels. Input (i, j) of the input
belongs to channel (k, l) where k = i mod R and l = j mod R. In the example of Figure 3.11,
channels A, B, C, and D represent channels (0,0), (0,1), (1,0), and (1,1), respectively.

Decomposed dilated computation on time-shared hardware

Adopting “as is” the decomposition of a dilated convolution [129] means that it can be computed
using multiple standard streaming convolution engines each one operating on the original “small”
kernel and a subset of the input.

Although such an approach leads to a functionally-correct design, it has a lot of redundancy. The
multipliers and adders that compute the convolution operation can be shared across channels. Each
arriving data item belongs to one of the four channels of Figure 3.11. Therefore, in only one of the
channels data will need to move (get shifted in the window buffer and move across line buffers). As
a result, in this cycle, only one channel needs to compute a new output. To share the multipliers and
adders, we insert multiplexing logic at the input of the multipliers to pick the correct data depending
on which channel is active. This organization is shown in Figure 3.12 for a 3×3 kernel and a dilation
rate of R = 2. Each channel consists of a 3× 3 window buffer and two smaller line buffers, since
each channel performs a convolution on a subset of the input.

In our example, the line buffers of channel A contain data that come from the even rows and even
columns of the input. In the case of channel B, line buffers store data from the even rows and odd
columns. Since data arrive in a row-wise manner, the line buffers of channel A and B will contain
data from the same rows but from different columns. This observation allows us to merge the line
buffers from the two channels into a bigger double-size line buffer (the size of the merged line buffer
is no more than the one used for reference non-dilated convolution). Data are stored in the line
buffers in an interleaved manner; data from even columns are stored in even addresses and those
from the odd columns are stored in the odd addresses. The same merging can be done for channels
C and D as shown in Figure 3.13. The demultiplexers are used to align the data transfer from the

33

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

Figure 3.12: The decomposition of dilated convolution allows its computation using multiple smaller
standard convolution engines that can share a common parallel multiply-add unit.

line buffers to the window buffers based on the channel that the incoming data item belongs.

Figure 3.13: Line buffers that correspond to channels of the same group of rows can be merged to
avoid memory fragmentation. The size of the merged line buffers is equal to the size of
a standard convolution engine.

The streaming mode of data arrival allows our architecture to be further optimized. In the running
example for R = 2, when reading a specific input row, only two of the four channels will be active.
For the even-numbered rows channels A and B will be active and C and D will be inactive. The
opposite holds for the odd-numbered rows. This means that when a data item arrives from a new
row, the channels that correspond to that row will start pushing data into their window and line
buffers, while the rest will stay inactive. This means that only two window buffers in case of R = 2

34

3.2 OPTIMIZED BUFFERING FOR DILATED CONVOLUTIONS

are necessary to compute dilated convolution. Those two window buffers will be used either by
channels A and B or channels C and D depending on the index of the active row.

Figure 3.14: The organization of LazyDCstream for a 3× 3 kernel and a dilation rate R = 2 that
consists of merged line buffers, time-shared window buffers and a single multiply-add
datapath.

To achieve the sharing of the window buffers among all channels we add extra multiplexing logic
at the output of line buffers that enables the sharing of the window buffers between the different
channels. This is shown in Figure 3.14 where the four line buffers are interleaved depending on
the row index of the current input. Line buffer to window buffer connectivity has not changed
when moving from Figure 3.13 to 3.14. In both cases, the upper line buffers of all channels feed the
middle row of the corresponding window buffers, while the lower line buffers feed the last row of the
window buffers. Multiplexing logic just selects which line buffers would feed the the corresponding
rows of the shared window buffers.

In the general case, we need (K −1)R line buffers that are active in groups depending on the row
index of the input. We need, as well, R time-shared window buffers, each one holding the original
small kernel of K ×K input data.

Lazy data movement

The channels of the decomposed dilated convolution operate in groups in a mutually exclusive way
based on the the row and column indexes of the incoming input. R window buffers are time shared
across the R active channels. In each cycle, however, only one window buffer will be active shifting
data and computing output data. The other window buffers can be clock gated. At most K ×K
data movements will occur in each cycle that correspond to the size of the original (non-inflated)
kernel. This amount of data transfers per clock cycle is constant and, most importantly, independent
of dilation rate.

Figure 3.15 illustrates an example on how data move inside the two time-shared window buffers
in the case of 2-dilated convolution for a 3×3 kernel. In cycle tn, channel A is activated as the new
inputs A7, A4 and A1 arrive from the input channel and the line buffers. The window buffer shifts
its content to the right. During this time, the third column of the upper window buffer as well as the
second and third columns of the lower window buffer have not yet received any input. In fact, the
lower window buffer does not receive any inputs in this cycle and thus remains clock gated. On the
contrary, in cycle tn+1, channel B is activated and receives input {B7,B4,B1} from the corresponding

35

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

Figure 3.15: A snapshot of four cycles (three consecutive cycles and one at a later time) of the
operation of LazyDCstream that highlights the reduced data movement and the clock
gating of the registers of the inactive windows.

line buffers and the input to its first column. The rest of its columns are shifted right, following the
operation of standard convolution. In this cycle, the upper window buffer is clock gated. In the next
cycle tn+2, channel A is activated again while channel B gets deactivated. The same operation is
repeated until the end: the two window buffers are activated in turns leading to nine data elements
moving per cycle.

When a new row is being read from the input, as in cycle tm, the two window buffers are used to
accommodate the input from channels C and D. During this time, the outputs have no dependency to
input data from channels A and B and therefore the data inside the window buffers are overwritten.

Apart from the window buffer, the amount of data transfers per clock cycle between the line
buffers is also constant. On each new input, only one channel is activated by writing also data
across line buffers (like shifting data downwards). As shown also Figure 3.14, each channel consists
of K − 1 line buffers. Thus, K − 1 writes will occur in each clock cycle again independent of the
dilation rate.

Although LazyDCstream is optimized for dilated convolutions, it can also compute standard con-
volutions in parallel. For instance, a design that supports a maximum dilation rate of R can utilize
the R window buffers available for computing R standard convolutions in parallel.

3.2.2 Evaluation

To highlight the benefits of LazyDCStream, we designed two spatial dataflow accelerators that both
execute inference on a variant of VGG-16 [96] that employs dilation in all CNN layers. The first
accelerator utilizes LazyDCStream as its streaming convolution engine, while the second one is a
state-of-the-art architecture, as employed in [131, 142]. As suggested in [142], even if each CNN
layer can employ a separate datapath unroll factor, it is safe to use a uniform unroll factor for all
layers. For both designs under comparison, we employed a (4,16) unroll factor for the input and

36

3.2 OPTIMIZED BUFFERING FOR DILATED CONVOLUTIONS

output features, respectively. Therefore, both designs exhibit the same amount of parallelism per
layer and, thus, have the same total execution time. They only differ in their buffering architecture
for dilated convolution layers.

All designs have been implemented in C++ and synthesized to Verilog RTL using Catapult HLS.
The buffers in the reference state-of-the-art design – as used in [55, 131] – operate directly on the
inflated kernel and utilize the same number of line buffers as LazyDCstream. Using a carefully-
designed C++ model for the reference state-of-the-art, hereafter referred to as “Reference,” allowed
Catapult HLS to keep the same multiply-add units needed for a non-inflated kernel. In this way, the
area complexity of both the Reference and LazyDCstream designs is almost the same.

ASIC implementation results

Figure 3.16 reports the average power consumption of LazyDCStream and the Reference design for
each CNN layer of the modified VGG-16 [96]. The modified VGG, similar to the original one, is
split in blocks of two or three CNN layers of the same dilation rate. The dilation rate increases
exponentially across blocks. Using dilation in all CNN layers (except the first two) enables us
to better quantify the expected savings when using LazyDCStream. The numbers for each CNN
layer also include the power consumed in padding and in the activation stages that accompany each
convolution layer. Pooling and fully-connected layers are not shown, since they consume only a
small part of the total power.

Figure 3.16: The average power consumption of the Reference and LazyDCstream architectures for
the CNN layers of a modified VGG-16 [96].

Power consumption – both dynamic and leakage – was estimated after logic synthesis using the
PowerPro power analysis and optimization tool for a 45 nm standard-cell library. Both designs
operate at 500 MHz with 16-bit fixed-point inputs and weights. Switching activity information was
gathered after feeding the modified VGG-16 with sample images from ImageNet. Verilog RTL code
was derived from C++ using Catapult HLS and synthesized using the Oasys logic synthesis tool. The
line buffers are mapped to SRAM macro blocks to minimize the area of the convolution engines.

As can be seen in Figure 3.16, LazyDCstream is more power efficient in all layers that involve di-
lation, mainly due to its reduced data movement and its time-shared window buffers. Power savings
range between 15%, for layers with R=2, up to 39%, for the last block with R=16. Since all CNN
layers utilize the same datapath unroll factor, they exhibit almost the same power for the same dila-
tion rate. The differences are only due to data switching activity. For the Reference design, the power
consumption increases with increasing dilation rate. On the contrary, as expected, LazyDCStream is
only marginally affected by the increase in dilation rate.

Even though LazyDCstream requires additional multiplexing logic to implement the time sharing
of the window buffers, the area overhead is negligible. The area is dominated by the line buffers
and the parallel multiply-and-add units that are the same for both the LazyDCstream and Reference
designs.

37

3 ENERGY EFFICIENT BUFFERING FOR NON-TRADITIONAL SPATIAL CONVOLUTIONS

FPGA implementation results

Similar conclusions are drawn when considering the FPGA implementations of the same Reference
and LazyDCstream architectures. We implemented each CNN layer separately on the Virtex Ultra-
scale VCU108 Evaluation Board, targeting a clock frequency of 150 MHz. The results were obtained
after mapping the Verilog RTL code produced by Catapult HLS to the FPGA using Xilinx Vivado
2021.1.

The average power consumption numbers – for each layer of the modified VGG-16 – in the two
compared designs are shown in Figure 3.17. The obtained results clearly indicate that LazyDCstream
computes dilated convolution with less power. Depending on the dilation rate of each layer, the
power savings range between 2% (for R=2) to 15% (for R=16), while, in both cases, static power
consumption contributes around 900 mW to the overall consumption. The key takeaway point is that,
unlike the Reference design, LazyDCstream’s power consumption is independent of the dilation rate.

Figure 3.17: The power consumption of the Reference and LazyDCstream architectures when im-
plementing the modified VGG-16 layers on the Virtex Ultrascale VCU108 Evaluation
board at 150 MHz.

Regarding the area consumption, Table 3.1 reports the utilization of FPGA resources for two
layers of the modified VGG-16 [96] for the two architectures. Both designs utilize the same number
of DSP and BRAM blocks, since they employ the same number of multipliers and adders and the
same number of line buffers. In each case, 576 DSP blocks are used to implement the parallel MAC
operations of 4×16 unrolled 3×3 filters, while the number of BRAM blocks differs per layer, as the
dilation affects the number of line buffers in the design. The time-shared operation in LazyDCstream
has two contradictory effects with respect to FPGA utilization: it increases the number of LUTs
required to implement the multiplexing logic, while it reduces the amount of registers needed to
implement the window buffers.

Table 3.1: The utilization of FPGA resources for Reference and LazyDCstream for two layers of the
modified VGG-16.

Layer R Architecture LUTs FFs DSP BRAM
C21 2 LazyDCstream 14688 5862 576 96

Reference 14085 6505 576 96
C41 8 LazyDCstream 15384 7033 576 144

Reference 14256 8160 576 144

38

3.3 CONCLUSIONS

3.3 Conclusions

This section was focused on the exploration of architectures that can improve the efficiency of the
SPD accelerators, when computing spatial convolution variants like strided and dilated ones.

On one hand, strided convolution can be inherently decomposed into a sum of multiple channels of
unity-stride convolutions. The presented LeapConv architecture takes advantage of this decomposed
form of computing convolutions of arbitrary stride length to improve the power consumption of the
streaming convolution engine. In LeapConv, the result of each channel is computed separately, albeit
by using the same merged hardware unit. Both the window and line buffers of a baseline convolution
engine built for unity-stride convolutions can hold the input of each channel. Using appropriately
selected data movements, the data of each channel is properly aligned in the window buffer, to allow
for direct computation of the desired result. The active and inactive periods of computation enable
reduced data switching activity and increased clock-gating efficiency for the registers of the window
buffer. Finally, with the addition of multiplexing logic, LeapConv can also support reconfigurable
stride lengths.

On the other hand, dilated convolution spreads the kernel’s coefficient to a larger window that
slides on the input, similar to traditional convolution. In this way, the receptive field of the applied
filter is enlarged in a computationally efficient manner. The presented architecture of LazyDC-
Stream, takes advantage of the “holes” inside the inflated filter of a dilated convolution to perform
computation in time-shared streams. These streams operate in groups in a mutually exclusive way,
thus requiring only one set of multiply-add units and R window buffers of size equal to the original
non-inflated kernel. Most importantly, the data switching activity remains constant per clock cycle
and independent of the dilation rate.

39

4 CNN specific Algorithm-based Fault
Tolerance

Besides performance and energy-efficiency requirements, the increasing prevalence of CNNs in
safety-critical systems also increases the need for building resilient CNNs as an essential piece
in guaranteeing the correctness of inference applications [76, 97]. This combined need for high-
performance computation and functional safety is prevalent in various application domains, such as
automotive systems. Guaranteeing correct computation in the presence of random hardware faults
is necessary for safety and possible standards compliance [104]. For instance, ISO 26262 func-
tional safety compliance requires that systems must function correctly, with potentially unsafe faults
detected and controlled to prevent a hazard [51]. Thus, compliant systems must have very high
fault-detection capabilities.

Managing random hardware faults, such as soft [9] and hard errors [12], requires special hardware
modules for fault detection [65] that allow faults to be detected on-line and rapidly, possibly within a
few cycles of their occurrence, thus simplifying recovery. The importance of on-line error detection
is further increased, if one considers the additional reliability constraints imposed by modern imple-
mentation technologies, including process variations, device wear-out, and aging [12]. The problem
is accentuated in ultra-low-power applications that execute CNN models at the edge in low-voltage
setups to enable always-on intelligence on mobile and Internet-of-Things (IoT) devices [75, 132].

convolution
engine

outputinput

error

predicted
checksum

output
checksum

on-line checker

Figure 4.1: The online checksum checker operates in parallel to the convolution engine and com-
pares the true and the predicted checksums of convolution.

Algorithm-Based Fault Tolerance techniques [53, 128] offer a low-cost mechanism to detect ab-
normal behavior in matrix-based computations [136] by comparing the true output checksum with a
predicted one. Checksum computation and checking can be done either in software [18, 145], or in
hardware [83]. In this work, we focus on convolution-specific ABFT hardware checkers.

In the case of a hardware online checker, as shown in Figure 4.1, the checker is attached to the
input and the output of the convolution engine and computes the true and the predicted checksums
that characterize the result of convolution. When the two checksums differ, an error flag is asserted.

41

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

The checker does not interfere with, or interrupts, the operation of the convolution engine, but
simply provides online fault detection at the checksum level. Checksum checking cannot distinguish
the correctness of every output pixel produced by the convolution engine. Instead, it checks if the
sum of a group of output pixels matches the expected sum. In a similar vein, checking the result
of convolution can be done using residue checking architectures [65, 95] that fall behind checksum-
based hardware checkers, as shown in [83].

The prediction of the convolution checksum should be done in a cost efficient manner. In state-
of-the-art approaches, such as [47, 83, 145], the predicted output checksum is computed explicitly
using the same input pixels used for the actual convolution. Significant amount of computation is
saved [83] by reusing efficiently the already computed checksums at the cost of additional buffering
to store those reusable results.

On the contrary, ConvGuard, that is presented in this section, follows a different approach, enabled
by a new fundamental property of convolution checksums. Instead of accumulating the input pixels
used for the actual convolution, ConvGuard predicts the output checksum of convolution implicitly
by accumulating only the peripheral pixels at the border of the input image that are dropped, or
not computed, at the output. In this way, ConvGuard significantly reduces the power required for
accumulating the input pixels, without requiring large buffers to store intermediate checksum results.
Overall, the key contributions of ConvGuard can be summarized as follows:

• ConvGuard introduced a novel invariant condition for 2D convolutions and utilized it to predict
implicitly the checksum of the convolution output. This alternative checksum computation can
be computed rapidly with a low-cost hardware module that can easily track the performance
(clock frequency and throughput) of the monitored convolution engine.

• The proposed checksum convolution checker can be configured to various convolution struc-
tures, including output size and stride. Especially in the case of non-unity stride convolutions,
only useful input pixels are accumulated and no redundant computation is involved.

• The experimental results, using detailed hardware analysis of synthesized designs, highlight
that ConvGuard utilizes only a small percentage of the area/power of an efficient convolution
engine, while being significantly smaller than a state-of-the-art checksum checker [83]. The
results scale well for increased image and filter sizes. Also, the minimum buffering require-
ments of ConvGuard reduce its susceptibility to bit-flip errors.

4.1 Prediction of Convolution Checksum

The convolution of an R×C image x with a filter h of size K ×K is calculated as follows [42]:

ymn =
K−1

∑
i=0

K−1

∑
j=0

hi jxm−i,n− j, (4.1)

m ∈ [0,P−1], n ∈ [0,Q−1]

Formally, the size of the output y is P×Q, with P = K +R− 1 and Q = K +C− 1, and is larger
than the input image. However, in practice, the output pixels on the border of the image may not be
computed. In such cases, the output image is either of equal size to the input image, or, most often,
smaller. Figure 4.2 depicts two possible convolution outputs (the pixels in blue) for a 3× 3 input
image and a 2×2 filter.

x=

x00 x01 x02
x10 x11 x12
x20 x21 x22

 h=
[

h00 h01
h10 h11

]

42

4.1 PREDICTION OF CONVOLUTION CHECKSUM

yB=

y00 y01 y02 y03
y10 y11 y12 y13
y20 y21 y22 y23
y30 y31 y32 y33

 yD=

y00 y01 y02 y03
y10 y11 y12 y13
y20 y21 y22 y23
y30 y31 y32 y33

Figure 4.2: Examples of output images as a result of the convolution of a 3× 3 input image and a
2×2 filter. The useful output pixels are highlighted in blue. The rest are the extra outputs
that should have been dropped, or not calculated.

In the case of yD, convolution is performed only on the pixels of the input image without requiring
any border padding [55]. Hence, the output image is smaller than the input.

Convolution can be equivalently expressed as a matrix-vector multiplication [117]:

y = Ahvec (4.2)

Vector hvec contains all the K̂ = K ×K coefficients of the filter arranged one after the other in a
row-wise fashion in one column. Output vector y contains all elements of convolution (P×Q in
total) again in a row-wise fashion. For the multiplication to be valid, matrix A contains one row for
each application of the filter to the input image, i.e., for each possible position of the sliding window,
including the outer border. Therefore, since the K̂ filter coefficients will be multiplied with an equal
number of input pixels, matrix A consists of K̂ columns.

For the convolution of a 3×3 input with a 2×2 filter, A consists of all elements of the input from
where the filter h would slide over, assuming a zero-padded border:

A=

0 0 0 x00
0 0 x00 x01
0 0 x01 x02
0 0 x02 0
0 x00 0 x10

x00 x01 x10 x11
x01 x02 x11 x12
x02 0 x12 0
0 x10 0 x20

x10 x11 x20 x21
x11 x12 x21 x22
x12 0 x22 0
0 x20 0 0

x20 x21 0 0
x21 x22 0 0
x22 0 0 0

(4.3)

4.1.1 An Invariant Condition for Convolution Checksum

Since y = Ahvec, and A = [ai j], every element yi of y is computed as

yi =
K̂−1

∑
j=0

ai jhvec
j (4.4)

43

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

Summing all yi’s yields:
PQ−1

∑
i=0

yi =
PQ−1

∑
i=0

K̂−1

∑
j=0

ai jhvec
j (4.5)

By rearranging the order of the two sums in (4.5), we get:

PQ−1

∑
i=0

yi =
K̂−1

∑
j=0

PQ−1

∑
i=0

ai jhvec
j =

K̂−1

∑
j=0

(
PQ−1

∑
i=0

ai j

)
hvec

j (4.6)

The sum inside the parentheses of (4.6) corresponds to the sum of the elements of the jth column
of A. It can easily be observed in (4.3), and proven in the general case, that the sum of the input
pixels of each column of A is the same for all columns and equal to the sum of all pixels of the input.
Therefore, we can replace ∑

PQ−1
i=0 ai j with ∑

R−1
k=0 ∑

C−1
l=0 xkl . Based on this observation, we can write:

PQ−1

∑
i=0

yi =
K̂−1

∑
j=0

(
R−1

∑
k=0

C−1

∑
l=0

xkl

)
hvec

j

=

(
R−1

∑
k=0

C−1

∑
l=0

xkl

)(
K̂−1

∑
j=0

hvec
j

)
(4.7)

In other words, in (4.7) we have shown that, the sum of all output pixels of the convolution is equal
to the product of the sum of all input data elements xkl with the sum of all the filter’s coefficients.

Let Sy denote the set of indices that support image y and Sh, Sx the indices that support h and x,
respectively. The invariance condition (4.7) becomes

∑
i∈Sy

yi =

(
∑

k∈Sx

xk

)(
∑
j∈Sh

h j

)
(4.8)

The set Sy can be divided into two sets Sxtr
y and Scrp

y that denote the pixel indices that are cropped
from the original image, and the pixel indices that remain in the cropped image, respectively. The
set of Sxtr

y is not fixed and it represents all pixels that are left off, depending on the choice of the
useful output and the structure of the convolution. It is straightforward to see that Sy = Scrp

y + Sxtr
y .

Thus, (4.8) becomes:

∑
i∈Scrp

y

yi+ ∑
i∈Sxtr

y

yi =

(
∑

k∈Sx

xk

)(
∑
j∈Sh

h j

)
(4.9)

Let us see an arithmetic example of this newly introduced invariance condition for the convolution
of a 3×3 input image x with a 2×2 filter h:

x=

1 1 2
1 1 2
1 1 2

 h=
[

1 2
3 4

]

According to (4.1) the complete output consists of 4×4 pixels, as follows:

y =

1 3 4 4
4 10 14 12
4 10 14 12
3 7 10 8

44

4.1 PREDICTION OF CONVOLUTION CHECKSUM

Depending on which output pixels are considered useful, invariant condition (4.9) would take a
different form. For the case of unity-stride convolutions, and assuming that convolution is performed
only on the pixels of the input image without padding (like case yD in Figure 4.2), the useful pixels
that will actually be computed by the convolution engine are the ones highlighted in blue. Inevitably,
the remaining pixels at the periphery of the output image are the extra pixels that will not be com-
puted by the convolution engine. The sum of the highlighted outputs is equal to ∑ycrp = 48, while
the sum of the unused outputs ∑yxtr = 72. In all cases, according to (4.9), the sum of the two disjoint
sets of pixels (48+72 = 120) is equal to the product of sums (∑xk)(∑h j) = 12×10.

4.1.2 Explicit and Implicit Prediction of the Output Checksum

An online checksum checker, similar to the one shown in Figure 4.1, would accumulate all useful
output pixels coming out of the convolution engine and compare the derived checksum with the
predicted one. Predicting the output checksum either explicitly, or implicitly, means to re-compute
∑i∈Scrp

y
yi directly from the input without interfering at any point with the convolution engine.

The useful output pixels ycrp and the extra ones yxtr can both be computed according to (4.2), as
follows:

ycrp = Acrphvec yxtr = Axtrhvec (4.10)

Matrices Acrp and Axtr contain only the rows of A that correspond to each disjoint set of outputs. For
our running example (case yD in Figure 4.2),

Acrp=

x00 x01 x10 x11
x01 x02 x11 x12
x10 x11 x20 x21
x11 x12 x21 x22

Axtr=

0 0 0 x00
0 0 x00 x01
0 0 x01 x02
0 0 x02 0
0 x00 0 x10

x02 0 x12 0
0 x10 0 x20

x12 0 x22 0
0 x20 0 0

x20 x21 0 0
x21 x22 0 0
x22 0 0 0

From (4.10), we can compute the elements of ycrp and yxtr, as follows:

yi
crp =

K̂−1

∑
j=0

acrp
i j h j yi

xtr =
K̂−1

∑
j=0

axtr
i j h j (4.11)

To compute the checksum of the useful output pixels, we need to sum all elements yi
crp. Let us

assume that the number of useful output pixels is equal to M:

M−1

∑
i=0

yi
crp =

M−1

∑
i=0

K̂−1

∑
j=1

acrp
i j h j =

K̂−1

∑
j=0

M−1

∑
i=0

acrp
i j h j

=
K̂−1

∑
j=0

(
M−1

∑
i=0

acrp
i j

)
h j (4.12)

The derived equation (4.12) tells us how to explicitly predict the output checksum using only the
pixels that participate in the convolution (i.e., the ones in the center of the input image that are

45

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

grouped in Acrp). To do so, we need to compute the sum of each column of Acrp, i.e., ∑
M−1
i=0 acrop

i j for
column j, and multiply the result with the corresponding filter coefficient. Then, we should reduce
the derived partial products to one final predicted checksum.

Alternatively, with ConvGuard, we can compute implicitly the same sum of output pixels using
the new invariance condition (4.9), which can be re-written as:

K−1

∑
i=0

yi
crp =

(
∑

k∈Sx

xk

)(
∑
j∈Sh

h j

)
−

M̂−1

∑
i=0

yi
xtr (4.13)

Since the number of useful pixels is assumed to be equal to M, the number of extra pixels (zero
and non-zero) is equal to M̂ = PQ−M. The sum of extra output pixels can be expressed similarly
to (4.12), as follows:

M̂−1

∑
i=1

yi
xtr =

K̂−1

∑
j=0

(
M̂−1

∑
i=0

axtr
i j

)
h j (4.14)

Also, the product of sums (∑xk)(∑h j) can be restructured as:(
∑

k∈Sx

xk

)(
∑
j∈Sh

h j

)
=

K̂−1

∑
j=0

(
∑

k∈Sx

xk

)
h j (4.15)

By replacing (4.14) and (4.15) in (4.13), we get

M−1

∑
i=0

yi
crp =

K̂−1

∑
j=0

(
∑

k∈Sx

xk

)
h j −

K̂−1

∑
j=0

(
M̂−1

∑
i=0

axtr
i j

)
h j

=
K̂−1

∑
j=0

(
∑

k∈Sx

xk −
M̂−1

∑
i=1

axtr
i j

)
h j (4.16)

Eq. (4.16) corresponds to the implicit prediction of the output checksum. Instead of directly using
the central pixels of the input image, we accumulate the columns of Axtr that consist only of periph-
eral pixels, i.e., ∑

M̂−1
i=1 axtr

i j for each column j. Each one of those accumulated sums (one for each
filter coefficient) is subtracted from a common sum that corresponds to the sum of all input pixels,
irrespective of their position. Then, the derived differences are multiplied with their corresponding
filter’s coefficients and reduced to a final sum.

In the case of multiple filters, the same approach holds for each separate filter. In addition, the
approach can be applied on the case of 3D convolution. Since 3D convolutions are commonly de-
composed to depth-wise convolutions or pseudo-3D convolutions [139], it is straightforward to apply
the above approach to each separable filter and check the result of the corresponding convolution.

For realistic image sizes and unity-stride convolutions, the number of extra pixels is much smaller
than the useful ones. Therefore, choosing to accumulate the peripheral input pixels is expected to
lead to overall fewer additions. This choice is unique to ConvGuard and a direct consequence of the
invariance condition (4.9) introduced in this work.

4.2 On-line Checker Architecture

The architecture of ConvGuard is depicted in Figure 4.3. The checker module operates in parallel
to the convolution engine, without interfering with its operation. ConvGuard monitors the input x
and the output y of the engine and predicts implicitly the output checksum by computing online
Eq. (4.16).

46

4.2 ON-LINE CHECKER ARCHITECTURE

decoderx(i,j)

common
sum

predicted
output

checksum

h0,0 h0,1 hK-1,K-1

input
pixel

output
checksum

output
pixel

error

convolution
engine

Figure 4.3: The organization of ConvGuard. It runs in parallel to the convolution engine and it
receives the same input and the engine’s output pixels. Convguard accumulates the sum
of the output pixels and compares it to its predicted checksum value. The predicted
output checksum utilizes a set of accumulators – one for each filter coefficient – and a
common sum accumulator that computes the sum of all input pixels.

4.2.1 Checker Organization

In each cycle, ConvGuard performs two tasks. On the output side, it accumulates the valid output
samples produced by the convolution engine. Recall that, without loss of generality, we assume
that the convolution engine computes only the useful output pixels and does not produce any invalid
output. If it does, it just needs to mark the pixels as invalid, so that ConvGuard can skip them.
On the input side, to check the correctness of convolution, ConvGuard computes one sum for each
column of Axtr and a common sum of all input pixels. To do this, it employs one accumulator for
each column of Axtr (K̂ in total) and one accumulator for the common sum.

Initially, all accumulators are reset to zero. Then, as each input pixel arrives, (one per cycle; more
pixels can arrive per cycle after marginal design changes), it is added to the appropriate accumulator,
while all of the incoming pixels are added to the common-sum accumulator. Depending on the
arriving input pixels, multiple accumulators may be enabled in the same cycle. For instance, in our
running example, when input pixel x00 arrives, it contributes to the running sum of accumulators that
correspond to the filter’s coefficients h01, h10, and h11. On the contrary, when input pixel x20 arrives,
only the accumulator of h11 is activated. It should be noted that central pixels – like x11 – that do not
appear in Axtr are skipped and not added to any accumulator besides the common one.

The decision to which accumulator each input pixel contributes is done in the decoder, which
is also shown in Figure 4.3. The decoder decides two things: (a) which peripheral input pixels
contribute to the computation of the extra output pixels, and (b) to which accumulator they should
be added.

As shown in Figure 4.4, the extra output pixels consist of the (K − 1)/2 rows and columns on
the border of the output. To derive those outputs, a larger border of K − 1 rows and columns is

47

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

actually used from the input image. The decoder would allow only those input pixels to be added
to the appropriate accumulators. On the contrary, all input pixels are added to the common sum
accumulator. Stated formally, an input pixel xi j is added to the accumulator that corresponds to the
filter’s coefficient hmn when at least one of the following inequalities is satisfied:

m > i > R−K+m n > j >C−K+n (4.17)

output

useful output

extra output

input needed
for extra output

R

C

K

K-1
2
 K-1

2
computed from

C

R

K-1

K-1

input

Figure 4.4: The peripheral pixels that should be added for the computation of the sum of extra output
pixels. Each highlighted pixel may contribute to many accumulators in the same cycle,
as dictated by the decoder function.

When all input pixels have passed through the convolution engine, the checker’s accumulators
have accumulated all needed sums: one common sum, and one sum for each column of Axtr. At this
point, the sum that corresponds to each coefficient is subtracted from the common sum, in order to
correctly compute the term in the parentheses of (4.16). Then, each resulting term is multiplied with
the corresponding filter’s coefficient and the products are added to produce the final value, which
corresponds to the predicted output checksum of the convolution.

For fixed-point implementations, which is the focus of this work, all registers and arithmetic units
are sized appropriately so as to avoid any overflow conditions that would ruin the output checksum
prediction. For checking a floating-point-based convolution engine, we cannot guarantee that the
predicted output checksum would match the true output checksum, even under error-free operation.
In these cases, the equality comparison should be transformed to a bounds check. If the predicted
and the true output checksums differ by a certain small error bound, the convolution would still be
considered fault free [10, 65].

Finally, it should be stressed that the prediction of the output checksum is computed gradually
without requiring any buffering of intermediate results. This lack of buffering is critical in reducing

48

4.2 ON-LINE CHECKER ARCHITECTURE

the cost of the checksum checker. It is expected that an on-line checker should consume only a small
percentage of the area of the convolution engine and leave only an incremental energy footprint, as
compared to the energy consumed in computing the actual convolution.

4.2.2 When does Implicit Prediction of the Output Checksum make Sense?

Predicting the output checksum implicitly using Eq. (4.16) is useful only when it can be computed
with fewer additions, as compared to an explicit prediction of the checksum. To understand when the
two approaches break even, we need to count the number of additions needed in each case. Equiva-
lently, we need to count the number of non-zero elements of matrices Acrp and Axtr, respectively.

In the case of explicit checksum prediction, Acrp consists of only non-zero elements. It has as many
rows as the number of useful output pixels. According to Figure 4.4, the number of useful output
pixels is M = (R−K +1)(C−K +1) for odd values of K. The number of columns of matrix Acrp is
always equal to the number of the filter’s coefficients K̂ (equal to K2). Therefore, by multiplying the
two, the number of additions required for the explicit computation of the checksum is:

#explicit adds= K̂ M=K2(R−K +1)(C−K +1) (4.18)

On the contrary, the implicit checksum prediction has to do with all the remaining output pixels.
Recall from Eq. (4.3) that each column of A contains all input pixels and some zero elements. There-
fore, the non-zero elements of every column of Axtr that should be added are equal to the number of
all input pixels RC minus the elements of the same column of Acrp, i.e., RC−(R−K+1)(C−K+1).
Since there are K̂ columns in Axtr, the number of additions required is equal to

K̂ (RC− (R−K +1)(C−K +1))

By replacing Eq. (4.18) in the derived formula, we conclude that, to compute the sum of the extra
output pixels, we need

K̂ RC−#explicit adds

additions. The checker computes also a common sum that involves the sum of all input pixels.
Therefore, ConvGuard requires RC more additions. Overall,

#implicit adds = (1+ K̂)RC−#explicit adds (4.19)

Using Eqs. (4.19) and (4.18), we can compare the efficiency of these two approaches for arbitrary
image and filter sizes. The implicit approach proposed by ConvGuard requires fewer additions than
the explicit approach when

#explicit adds >
(

K̂ +1
2

)
RC (4.20)

Figure 4.5 depicts the number of additions required in each case (“Explicit” and “Implicit”) for a
3×3 and a 5×5 filter for various square input dimensions. For really small input images, it is more
efficient – in terms of number of additions – to predict the output checksum explicitly. When the
input image is larger, implicit prediction is more efficient that explicit prediction. For instance, for
a 3×3 input filter, implicit prediction is more efficient for any input image larger than 8×8 pixels.
The minimum input image size required to make implicit prediction more cost-efficient for various
filter sizes and for stride S = 1 is presented in the first column of Table 4.1. The presented sizes are
encountered in many existing applications. For instance, VGG-16 [114] has an input image of size
224×224, which is convolved with a filter of size 3×3. Furthermore, the 2nd to 5th convolutional

49

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

0

1200

2400

3600

4800

6000

7200

8400

9600

4 8 12 16 20 24 28 32

#
A

d
d
it
io

n
s

Side of square image (pixels)

3x3 FilterExplicit

Implicit

Reuse

0

3200

6400

9600

12800

16000

19200

22400

8 12 16 20 24 28 32

#
 A

d
d
it
io

n
s

Side of square image (pixels)

5x5 FilterExplicit

Implicit

Reuse

Figure 4.5: The number of additions needed for predicting the output checksum explicitly, implic-
itly and with maximum reuse of already computed results [83], for two filter cases and
various square input image sizes.

layers of AlexNet [69] perform convolutions on images with sizes of 27× 27 and 13× 13, using
5×5 or 3×3 filters.

Fig 4.5 also shows the number of additions required by the state-of-the-art “Reuse” checksum
checker, as presented in [83]. This approach relies on explicit prediction of the output checksum and
reduces the total number of additions by reusing many of the already computed sums. However, the
reduced number of additions comes at the cost of extra buffering to store the required intermediate
results. As clearly shown in the evaluation in Section 4.4.2, this extra buffering significantly in-
creases the total area and power of this checker, relative to ConvGuard. Moreover, the extra buffers
make the checker more susceptible to random bit-flips that would lead to false detection alarms, as
analyzed in Section 4.4.3.

4.3 Checking Non-Unity Stride Convolutions

In the non-unity stride convolutions found in many practical applications, the useful output pixels
are even fewer. Furthermore, in these cases, extra pixels are present not only at the periphery of
the image, but in the center as well. In such cases, predicting the output checksum implicitly would
always require more additions than the explicit prediction. To enable the applicability of ConvGuard
to non-unity-strided convolutions, we utilize a recently-proposed transformation [64,91] that allows
the computation of any convolution with stride S > 1 using multiple channels of unity-stride convo-
lutions. By applying the implicit checksum prediction on each independent unity-stride channel, we
can still design a low-cost checksum checker.

4.3.1 Checking Independently per Channel

In a unity-stride convolution, the filter is applied to every pixel of the input. On the contrary, in the
case of a non-unity stride convolution, the filter moves on the input with a step of S. In this case, each
input pixel will not be multiplied with every filter coefficient, but with a subset of them. Figure 4.6
groups the input pixels based on which filter’s coefficient “touches” them. The blue input pixels
will be multiplied only with the blue filter coefficients, while the green ones will be multiplied only
with the green filter coefficient. Based on this observation, the work in [64,91] proposed to compute
any non-unity stride convolution by summing the result of S2 smaller and independent unity-stride
convolutions. The unity-stride convolutions are applied on selected sub-image and sub-filter pairs,
as also shown in Figure 4.6.

50

4.3 CHECKING NON-UNITY STRIDE CONVOLUTIONS

Figure 4.6: Transformation of a strided convolution with S = 2 to a 4-channel unity-stride convolu-
tions, depicted with symbol ∗.

Being able to transform a non-unity stride convolution into multiple unity-stride ones allows us
to apply ConvGuard efficiently to arbitrary strides. More precisely, ConvGuard predicts the output
checksum implicitly using Eq. (4.16) separately, per channel. Since – according to [91] – the result
of the each sub-convolution is added to form the final convolution result, then the final prediction of
the output checksum is the sum of all intermediate implicit predictions.

4.3.2 Generalized Checker

The organization of generalized ConvGuard is illustrated in Figure 4.7. To compute Eq. (4.16) for
each channel we need more accumulators. Since the number of the filter’s coefficients does not
change, the number of accumulators that sum the input pixels per coefficient remains the same as in
the baseline case (S = 1). However, we need more than one common-sum accumulators. Since we
compute a common sum for the sub-image of each channel, we need S2 common-sum accumulators
in total (one per channel). Thus, overall, for supporting convolutions with stride S, we need S2 +K2

accumulators.
For convolutions of arbitrary stride, decoding is a two-step procedure. The first step decides to

which channel each pixel belongs, and the second step decides if it is a peripheral pixel of the chan-
nel’s sub-image, or not. The first check determines to which channel’s common sum accumulator
the pixel should be added, and the second check (also using the result of the first check) decides to
which filter coefficients the incoming pixel refers.

For the first check, the common sum accumulator of channel (k, l) is increased when, for the input
pixel (i, j), the following hold: k = i mod S and l = j mod S.

For the second check, we actually need to check if at least one of the inequalities in (4.17) holds
after mapping the indices of the input pixels (i, j) and the filter’s coefficients (m,n) to the “smaller”
co-ordinates of each channel. The considered sizes for the sub-images and sub-filter should be
scaled too. To achieve this, we merely need to integer-divide each variable of the inequalities with

51

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

the selected stride S.
Once the common sums per channels have been accumulated and the coefficient accumulators get

their final values, the appropriate common sums are subtracted from the appropriate accumulators,
as shown in Figure 4.7. The mask logic of Figure 4.7 decides the assignment by identifying the
common sums and the filter coefficients that belong to the same channel.

decoderx(i,j)

one common sum
per channel

predicted
output

checksum

h0,0 h0,1
hK-1,K-1

input
pixel

output
checksum

output
pixel

error

strided
convolution

engine
mask
logic

Figure 4.7: The generalized ConvGuard architecture that support arbitrary strided convolutions.

The number of additions required for the implicit prediction of the output checksum depends on
the size of the input image, as well as the size of the filter. Additionally, in the case of a non-unity
stride convolutions, the efficiency of ConvGuard also depends on the sizes of all sub-images and
sub-filters that emerge after the transformation to multi-channel unity stride convolutions. Thus, the
number of additions depends on the selected stride as well.

Table 4.1: The minimum size of the side of a square image that favors implicit over explicit predic-
tion of the output checksum.

Filter Stride - S
1 2 4 6

3×3 8 14 - -
5×5 15 17 43 -
7×7 23 26 34 64

11×11 35 38 46 54

Table 4.1 shows the minimum number of pixels that an input image should have to make the
implicit prediction of the output checksum more efficient than its explicit counterpart. For instance,
for stride S = 2 and a filter or size 5×5 the input image should be at least 17×17 pixels, while for a
larger 11×11 filter, the minimum image size increases to a 38×38 pixels. When the stride is larger
than the filter, the multi-channel decomposition of the original strided convolution is degenerated.

52

4.4 EVALUATION

Table 4.2: The area and power complexity of an application-specific convolution engine and Conv-
Guard operating at 1 GHz.

Filter Image Area (µm2) Power (mW)@ 1GHz
Engine Checker Engine Checker

3×3
14×14 26908 9860 3.99 1.31
28×28 32947 11278 4.90 1.53
56×56 36678 12164 5.26 1.84

5×5
28×28 74104 18651 10.36 2.09
56×56 100900 20184 11.16 2.35

112×112 115380 22451 15.56 2.78

11×11
56×56 508873 63536 37.88 4.65

112×112 544887 74463 54.95 5.37
224×224 616364 68110 65.39 5.46

In this case, each channel may contain only one filter coefficient or none. Hence, in such cases, the
differentiation between implicit and explicit prediction no longer makes sense.

4.4 Evaluation

For the evaluation, we aim to highlight three aspects of ConvGuard. In the first set of experiments,
our plan is to measure the hardware overhead of ConvGuard, relative to a customized convolution
engine. Then, ConvGuard is compared, in terms of hardware complexity, with a state-of-the-art
checker that minimizes the number of required additions to explicitly predict the output checksum.
Finally, in the third set of experiments, we explore the fault detection properties of both checkers.

4.4.1 Hardware Overhead added to check an Optimized Convolution Engine

Convolution engines can employ various architectures. Choosing a high-throughput, but area-efficient,
sliding-window based architecture – similar to the one used in [55] and [110] – would reveal the
worst-case overhead expected from ConvGuard. In such sliding-window-based convolution engines,
the incoming pixels are streamed in the engine and stored in an active window buffer of the same
size as the filter, and in row buffers that keep the K−1 recently fetched lines of the input image [55],
as it was also described in detail in Section 2.2.2. Row buffers can be built either using registers,
or SRAM blocks. The filtering function is an unrolled and possibly pipelined arithmetic datapath.
The baseline input-output throughput of 1 pixel/cycle of these architectures can easily be increased
to facilitate parallelism by accepting and producing more pixels/cycle [116].

The sliding-window-based convolution engine and the ConvGuard checker that operates in par-
allel have been designed in C++ and synthesized to Verilog RTL using Catapult HLS and driven
by a commercial-grade 45 nm standard-cell library. Final timing/area results are derived from the
Oasys logic synthesis tool. Line buffer memories are mapped to SRAM macro blocks to further
minimize the area of the convolution engine. Keeping line buffers in registers would have increased
the area of the convolution engine significantly and would unrealistically minimize the overhead of
the checker. Power was estimated after synthesis using the PowerPro power analysis and optimiza-
tion tool. Switching activity information was gathered after simulating the convolution engine and
the checker using actual images and filters.

53

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

5%

10%

15%

20%

25%

30%

14 28 56 112 224

A
re

a
 o

v
e
rh

e
a
d

Side of square image (pixels)

3x3
5x5
11x11

0%

5%

10%

15%

20%

25%

30%

14 28 56 112 224

P
o
w

e
r

o
v
e
rh

e
a
d

Side of square image (pixels)

3x3

5x5

11x11

(a) (b)

Figure 4.8: The (a) area and (b) power cost of the ConvGuard checker as a percentage of the total
area and power of the protected convolution engine.

Both the convolution engine and ConvGuard have been synthesized for various image and filter
sizes assuming 16-bit wide input pixels. In all cases, we assumed a target clock frequency of 1
GHz. Table 4.2 shows the area and power of each constituent part of a protected convolution engine.
Additionally, Figure 4.8 highlights the area and power percentage of ConvGuard, relative to the total
area and power of the protected convolution engine, for each one of the examined cases.

ConvGuard provides checking capability to the convolution engine by incurring only a small
additional area and power overhead. The overhead added is below 10% for 11 × 11 filters and
increases for smaller filters and smaller image widths. The cost of ConvGuard is mostly determined
by the size of the filter and is only slightly affected by the size of the image. Image size determines
only logarithmically the bit-width of the checker’s accumulators. Further, when increasing the bit-
width of the input pixels, the cost of the convolution engine that buffers actual pixels increases faster
than the cost of ConvGuard, which only stores their sum. For instance, for 32-bit inputs (instead of
16-bit), the highest overhead shown in Figure 4.8(a) for the case of a small 3× 3 filter and a small
14×14 input image drops from 25% – for 16-bit inputs – to 19% for 32-bit inputs (not shown in the
Figure).

Figure 4.9 illustrates the area and power scaling of the ConvGuard architecture for increasing
stride. The synthesized designs assume an 11×11 filter, where using non-unity strides makes more
sense. From the reported results, we can see that increasing the stride only marginally increases the
total area of the checker. Roughly, for every step of increasing stride, the area and power increases
by 6% and 11%, respectively. This result can easily be explained, since the majority of the area
of ConvGuard is occupied by the area of the accumulators per filter coefficient and their associated
datapath logic, and less by the area of the common sum accumulators used in each channel (see
Figure 4.7). Moreover, part of the area/power increase observed when increasing the stride is the
result of the complexity of the mask logic shown in Figure 4.7. The mask logic introduces additional
multiplexing to forward the result of the multiple common-sum accumulators (one per channel) to
the appropriate subtraction units.

4.4.2 Hardware Complexity Comparison with a State-Of-The-Art Checker

Having quantified the overhead of adding ConvGuard to a customized convolution engine, we now
aim to highlight its efficiency relative to a recent state-of-the-art checker architecture [83]. In [83],
the prediction of the output checksum is done explicitly and the already computed sums of pixels
are kept and reused when forming larger sums. On one hand, this approach significantly reduces
the number of additions, as shown in Figure 4.5, but, on the other hand, it increases the number of
buffers added to store the intermediate results. The HLS-ready C implementation of this “Reuse”

54

4.4 EVALUATION

0K

20K

40K

60K

80K

100K

1 2 3 4 5 6

A
re

a
 (

m
2
)

Stride

0

2

4

6

8

10

1 2 3 4 5 6

P
o

w
e

r
(m

W
)

Stride

(a) (b)

Figure 4.9: The (a) area and (b) power scaling of ConvGuard with increasing stride for an 11× 11
filter and a 56×56 example image.

architecture is publicly available in Git and used in this work after easily modifying the Vivado-
specific synthesis constraints to Catapult-HLS-specific constraints. Although the design of [83] was
targeting an FPGA implementation for testing overclocking possibilities, it was easily ported to an
ASIC implementation with marginal modifications that kept the original organization of the checker.
To enable a comparison against ConvGuard of the hardware cost, the C model was successfully
synthesized to 1 GHz using a 45 nm technology library.

0K

50K

100K

150K

200K

250K

3x3 5x5 11x11

A
re

a
 (

m
2
)

ConvGuard

Reuse

0

5

10

15

20

3x3 5x5 11x11

P
o
w

e
r

(m
W

)

Filter size

ConvGuard

Reuse

(a) (b)

Figure 4.10: The (a) area and (b) power overhead cost of the ConvGuard checker, as compared to
the Reuse architecture [83] for an input image size of 56×56.

The area/power results obtained after synthesizing both designs for various filter sizes, and as-
suming an input image of 56×56 pixels, are shown in Fig 4.10. The trend for other image sizes is
the same. The cost of both checkers is mostly affected by the size of the filter, while the size of the
input image only determines the bit-width of the accumulators.

In all cases, it is evident that ConvGuard requires significantly less area and power. This attribute
of ConvGuard is attributed to the complete lack of buffering resources that fits well to its low-
cost profile. Besides its accumulators, ConvGuard does not store any incoming pixels, nor any
previous intermediate checksum result. On the contrary, the “Reuse” architecture requires a set
of accumulators that handle final additions (equal in number to ConvGuard), and an additional set
of accumulators for storing intermediate results. This extra sequential storage is inherent to the
organization of the “Reuse” architecture.

Similar conclusions are drawn when considering FPGA implementations of ConvGuard and the
“Reuse” architecture. We implemented two versions of the protected convolution engine – the en-
gine and the checker – on a Xilinx Artix-7 chip (XC7A100T) targeting a clock frequency of 100
MHz. The first version includes ConvGuard as the checker, while the second uses the “Reuse” ar-

55

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

chitecture [83]. To study the impact of the filter size and the input image size on the final design, we
report the implementation results for input image sizes of 56×56 and 112×112, and for filter sizes
of 5×5 and 11×11.

Table 4.3: FPGA resource utilization of an unprotected convolution engine and two protected en-
gines using the ConvGuard and Reuse [83] checkers.

Image 56×56 112×112
Filter 5×5 11×11 5×5 11×11

Unprotected
Engine

SLICE 511 2587 524 2707
BRAM 2 5 2 5

DSP 25 121 25 121
ConvGuard SLICE 1268 5406 1274 5513
Protected BRAM 2 5 2 5
Engine DSP 26 122 26 122

Reuse [83] SLICE 2201 13861 2317 14418
Protected BRAM 2.5 5.5 2.5 5.5
Engine DSP 26 123 26 123

The results obtained after mapping the Catapult-derived Verilog RTL to the FPGA using Xilinx
Vivado 2021.1 are depicted in Table 4.3. The results include the resource utilization of an unpro-
tected engine and the two versions of protected engines. The convolution engine utilizes as many
DSP blocks as the square of the filter size to enable a fully unrolled implementation of the datapath.
On the contrary, the number of BRAM blocks that implement the line buffers of the convolution
engine [55] are determined linearly, both by the size of the input image and the size of the filter. The
addition of the checker in parallel to the convolution engine increases the resource utilization for
the two protected convolution engines, as shown in Table 4.3. Both checkers need additional DSP
blocks and LUT slices to accommodate their arithmetic datapaths. “Reuse” also needs an extra half
BRAM to implement its buffers. In all examined cases, it is evident that the ConvGuard checker
leads to implementations with lower cost than “Reuse” that scale favorably with increasing image
and filter sizes.

4.4.3 Fault Detection Comparison with a State-Of-The-Art Checker

In the last set of experiments, the goal is to quantify the fault detection properties of ConvGuard and
compare them to the state-of-the-art checker analyzed in Section 4.4.2. In this way, we highlight
the additional benefit offered by the reduced buffering requirements, as compared to reducing the
number of additions. The smaller the number of buffers a checker needs, the smaller the probability
to experience a fault inside the checker itself. Checker faults may lead to false alarms and/or missed
fault detections.

Our experiments are based on injecting bit-flips in random clock cycles during the time interval
needed to complete a convolution. Faults are injected to random storage elements in both the con-
volution engine and the checker. The number of faults injected in each run is a user parameter. The
probability to experience a bit-flip is proportional to the area of the corresponding storage elements.
For instance, the SRAM-based row buffers of the convolution engine are expected to experience
a bit-flip more often than the accumulators of the checker. The input pixels and the filter coeffi-
cients used in each run are the ones used for power estimation. At the end of each convolution, we
record the outcome of the fault injection campaign. The observed behavior may fall into one of four

56

4.4 EVALUATION

categories:

• Detected: A fault occurred in the convolution engine and the checker detected it.

• Silent: A fault occurred in the convolution engine and the checker did not detect it. In this
case, we must be certain that the checker did not experience any faults. The effect of the fault
was masked at the checksum level.

• False Positive: The checker flagged a fault detection but no fault occurred in the convolution
engine.

• False Negative: A fault occurred in the convolution engine and the checker did not detect it. In
this case, we must be certain that the checker experienced a fault that caused its malfunction.

70%

80%

90%

100%

1 4 7 10

F
a

u
lt
 D

e
te

c
ti
o

n

Faults injected

3x3 Filter

ConvGuard

Reuse
70%

80%

90%

100%

1 4 7 10

F
a

u
lt
 D

e
te

c
ti
o

n

Faults injected

3x3 Filter

ConvGuard

Reuse

70%

80%

90%

100%

1 4 7 10

F
a

u
lt
 D

e
te

c
ti
o

n

Faults injected

5x5 Filter

ConvGuard

Reuse
70%

80%

90%

100%

1 4 7 10

F
a

u
lt
 D

e
te

c
ti
o

n

Faults injected

5x5 Filter

ConvGuard

Reuse

70%

80%

90%

100%

1 4 7 10

F
a
u
lt
 D

e
te

c
ti
o
n

Faults injected

11x11 Filter

ConvGuard

Reuse
70%

80%

90%

100%

1 4 7 10

F
a

u
lt
 d

e
te

c
ti
o

n

Faults injected

11x11 Filter

ConvGuard

Reuse

(a) 56x56 (b) 112x112

Figure 4.11: Fault detection efficiency of the ConvGuard and “Reuse” [83] architectures after inject-
ing a varying number of faults to the same 10 K convolutions of (a) 56× 56, and (b)
112×112 input images using 3×3, 5×5 and 11×11 filters. In the case of 1 injected
fault, it is assumed that this is injected only into the convolution engine in a random
clock cycle.

Figure 4.11 shows the percentage of faults detected by ConvGuard and the “Reuse” architec-
ture [83] after executing the same 10 K convolutions of 56× 56 and 112× 112 input images and
using 3×3, 5×5 and 11×11 filters. In each case, an increasing number of faults were injected per
convolution. In the case of injecting only a single fault, we assume that the fault is always injected

57

4 CNN SPECIFIC ALGORITHM-BASED FAULT TOLERANCE

in the convolution engine and the checker remains error-free. This is the reason why the fault detec-
tion performances of both checkers match (their performance depends solely on the fault detection
properties of checksum-based checking). In the following cases, the faults are injected randomly to
both the convolution engine and the checker. The increased number of buffers in the “Reuse” archi-
tecture, relative to ConvGuard, reduces its fault detection efficiency. This difference is mostly the
result of False Positive outcomes. Even if the convolution engine is error-free, the checker signals
an error. When the number of faults injected is increased, both approaches converge to a high fault
detection rate. The multiple faults occurring almost certainly cause a difference between the true
and the predicted checksum in both cases.

Increasing the filter size increases the number of accumulators needed in both checkers, thus
decreasing their fault detection capabilities. However, the effect is more pronounced in the ‘Reuse’
architecture, due to the buffers needed by construction to store the intermediate results. On the other
hand, increasing the input image size affects marginally the detection capabilities of both checkers,
since it only affects logarithmically the bit-width of the checksum accumulators.

Table 4.4: The observed behavior after injecting either 2 or 4 random faults in convolutions of in-
creasing input size and a 3×3 filter.

Faults
Injected Image Fault Categories

Detected Silent False Pos False Neg

2

14×14 91.36% 3.98% 4.62% 0.01%
28×28 95.95% 2.03% 2.01% 0.01%
56×56 97.96% 1.45% 0.59% 0.00%

112×112 98.58% 1.17% 0.25% 0.00%

4

14×14 99.54% 0.23% 0.23% 0.00%
28×28 99.85% 0.12% 0.02% 0.00%
56×56 99.93% 0.07% 0.00% 0.00%

112×112 99.94% 0.06% 0.00% 0.00%

To quantify the fault detection efficiency of ConvGuard when increasing the image size, we in-
jected 2 and 4 random faults in 10 K convolutions using a 3×3 filter. The same number of convolu-
tions was repeated for different input image sizes. The results are presented in Table 4.4. With small
images, the probability of injecting a fault into the checker is higher, which leads to a measurable
amount of false alarms (False Positive and False Negative cases). Instead, when the input image
increases, the area of the line buffers increases, as compared to the rest of the sequential storage.
Thus, the line buffers inevitably experience the majority of the faults. Since the checker is less likely
to experience a fault, it can detect the errors of the convolution engine more often. As the number
of injected errors increases, the possibility of having a false alarm drops to almost zero. Overall,
due to its low cost and high fault detection efficiency, ConvGuard can act complementary to other
protection mechanisms, such as parity checking added to memory blocks [65].

4.5 Conclusions

Algorithm-based fault tolerance is a generic approach for detecting random hardware failures by
identifying when there is a difference between the actual and the expected outcome at the checksum
level. Such approaches can be used even for post-silicon design validation. In this work, we focus
on convolution-specific ABFT implemented directly in hardware.

58

4.5 CONCLUSIONS

Our proposal identifies a generic invariance checking condition for convolution and uses it to
design simpler online checksum checkers. To avoid any performance degradation, the prediction is
computed in the same time frame that the convolution engine produces the true output. The proposed
ConvGuard architecture does not re-compute any output pixel; it only quickly predicts their sum.
The simple mathematical formulation that guides the design of ConvGuard allows it to adapt to any
convolution structure, including arbitrary stride parameters. Its algorithmic nature simplifies the
design process and allows its easy adoption in both ASIC and FPGA chips.

In addition to reducing the number of additions by predicting the output checksum implicitly,
ConvGuard operates using minimum buffering. Consequently, it saves considerable amount of area
relative to a current state-of-the-art checker architecture [83], and it is less susceptible to false nega-
tive or false positive alarms for precisely the same reason.

59

5 Customized Floating-Point Operators for
ML Accelerators

Floating-point (FP) arithmetic is a fundamental component in the development and execution of
modern AI systems, particularly in deep learning algorithms that dominate areas such as computer
vision [79,99], natural language processing [141], and robotics [119]. It provides a powerful method
for representing real numbers using a finite number of bits by dividing each number into a significand
(or mantissa), an exponent, and a sign bit—allowing for the representation of a vast dynamic range.
This flexibility is essential in neural networks, where operations such as weight updates, activations,
and gradient computations span a wide range of magnitudes. Training these models requires high
numerical precision to ensure stable convergence, avoid issues like vanishing or exploding gradients,
and maintain algorithmic fidelity. As such, IEEE-754 single-precision FP (FP32) has long been
the standard in training deep learning models due to its balance between numerical accuracy and
computational cost.

Despite its strengths, FP arithmetic comes with challenges, primarily due to its limited precision.
Not all real numbers can be exactly represented, leading to rounding errors and potential cumulative
inaccuracies over successive operations. The IEEE 754 standard [59] provides a structured frame-
work for handling these limitations, defining rules for rounding, special values like not-a-number
(NaN), infinity, and denormals, and ensuring consistency across platforms. This standard has en-
abled the consistent implementation of FP arithmetic in hardware accelerators and general-purpose
processors alike. Still, as deep learning models continue to evolve in scale and complexity, the care-
ful selection and implementation of FP formats—tailored to the application’s needs—will remain a
critical aspect of AI system design.

5.1 Floating-Point Representations

Every FP number consists of three fields: the sign bit (s), the exponent (e), and the mantissa (m).
The value of the FP number is given as (−1)s× 1.m×2e−bias. The bias is a fixed value that depends
on the bit-width of the exponent. The mantissa, combined with a hidden bit, forms the normalized
fraction of the FP number that is equal to 1.m. Corner cases, such as NaN, infinity, or denormal
are also appropriately encoded in every representation. In most deep-learning hardware operators,
denormals are flushed to zero for maximum efficiency [2, 127].

The IEEE-754 single- and double-precision formats are widely used in general purpose compu-
tations. To achieve lower-cost implementations when employing FP arithmetic, the designers need
to achieve a balance between numerical performance and cost. For deep-learning applications, it
suffices to use reduced-precision FP arithmetic that may use 16 or fewer bits in total, in an effort to
balance numerical performance and cost [2, 5, 127]. For instance, the 16-bit Bfloat16 format [127]
provides the same dynamic range as the IEEE-754 single-precision FP format, but with a smaller pre-
cision. The 8-bit FP format [87] that was introduced recently by NVIDIA, Intel, and ARM exhibits
adequate performance for the training and inference tasks of mainstream CNN models. Figure 5.1
depicts the formats of standard 32-bit floats, 16-bit Bfloats, and the two most dominant 8-bit wide
variants. Reduced precision representations lose some of the accuracy of single-precision floats, but

61

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

they approach the hardware cost of integer implementations [58, 118].

Figure 5.1: The structure of the most commonly used and recently proposed FP formats.

5.2 Basic Floating-Point Operations

Unlike integer arithmetic, FP operations are significantly more complex due to the structure of FP
numbers and the precision management required by the IEEE 754 standard. As the FP number
consists of three fields, each operation—i.e., addition or multiplication—must manage these compo-
nents in a carefully coordinated manner to preserve numerical correctness and handle special cases
like underflow, overflow, NaNs, infinities and denormals. The hardware implementation of these
operations reflects their complexity. Floating-point units (FPUs) typically occupy more silicon area
and consume more power compared to integer arithmetic units. For instance, the alignment, nor-
malization, rounding, and exception-handling logic of an FP adder may require several stages in a
pipeline, increasing the operation’s latency.

5.2.1 Addition

Floating-point addition is inherently more complex than integer addition because it requires align-
ment of exponents before the significands can be added or subtracted. When two numbers with
different exponents are added, the significand of the number with the smaller exponent must be
right-shifted to match the exponent of the larger number. This step introduces rounding errors and
potential loss of significant bits (a phenomenon known as ”catastrophic cancellation” when two
nearly equal numbers are subtracted). After mantissas’ alignment and addition, the result must be
adjusted so the most significant bit of the significand is non-zero (normalization), and then poten-
tially rounded to fit within the allowed number of bits. Each of these steps adds latency and control
logic to the hardware, making FP addition considerably more resource-intensive than its integer
counterpart. Figure 5.2 outlines the complex organization of a FP addition unit.

5.2.2 Multiplication

Floating-point multiplication, while generally more straightforward than addition in terms of algo-
rithmic flow, still involves considerable complexity. Multiplication proceeds by separately multiply-
ing the significands and adding the exponents, while the sign bit is determined by an XOR of the
operand signs. After the raw multiplication, the product must be normalized, as it may produce extra
bits requiring adjustment. Like addition, rounding must be applied, and special cases such as zero,
infinity, and NaN must be handled explicitly according to the IEEE 754 rules. Although exponent
addition and significand multiplication are simpler operations than alignment in addition, they still

62

5.2 BASIC FLOATING-POINT OPERATIONS

Figure 5.2: The organization of a standard floating-point addition unit.

require wide multipliers and barrel shifters in hardware, particularly in high-precision formats like
FP32 or FP64. The organization of a FP multiplier can be observed in Figure 5.3.

Figure 5.3: The organization of a standard floating-point multiplication unit.

63

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

5.3 Fused Dot-Product operators for Dataflow Accelerators

To reduce the inherent overhead of FP arithmetic when implementing vector-wide operations, such
as dot products, designers have turned to fusing individual FP operations to more complex ones that
implement the needed computation at once [50, 62, 63, 105, 115]. In this way, alignment, normal-
ization, and rounding steps can be shared across independent operations, thereby leading to more
efficient hardware architectures. State-of-the-art fused vector FP dot product architectures rely on
fixed pipeline organizations designed directly in RTL. Any parameterization within these designs
solely facilitates the resizing of certain blocks, based on the structure of the selected FP format.

Another approach to simplifying the implementation of FP operators is to allow wider precision
for the output result than the precision of the inputs [13,86], i.e., operating on two FP8 operands and
presenting the result as a 16-bit FP. In this way, rounding may be redundant and the overall hardware
cost is reduced.

In this work, our goal is twofold. On one hand, we leverage the state-of-the-art fused dot-product
architectures, such as [50, 62, 105], by modeling them in C++ and synthesizing then in RTL using
HLS. Thus, the parameterized design allows for compile-time selection of exponent and mantissa
widths, as well as vector sizes. On the other hand, we go beyond those designs’ fixed-pipeline
structure and let HLS tools optimize their internal pipeline structure on a per-application basis by
appropriately altering the examined architectural constraints.

Even though all commercial and academic HLS FP libraries [113, 120, 121, 137] can synthesize
a vector dot product using efficient primitive FP multiply and add operators, none of them – to the
best of our knowledge – supports fused dot product computation, thus paying the price of alignment,
normalization, and rounding per FP operation.

Overall, the contributions of this work can be summarized as follows:

• A templatized fused vector FP dot product C++ model is presented, which brings the efficiency
of fused FP architectures to High Level Synthesis for the first time, allowing the design of
efficient and customized architectures.

• The design is open-sourced as part of the FastFloat4HLS library [54] that allows the definition
of templatized FP datatypes and primitive operators built on top of the publicly available
ac_int library for integer arithmetic [113].

• Experimental results demonstrate that the proposed designs lead to area and latency savings
at the same clock frequency target. For 32-bit standard floats, this benefit comes with a power
increase, while for reduced precision 16-bit bfloats [127], power is, in fact, reduced with the
proposed architecture.

The proposed fused dot product operator is applied on arbitrary-precision floating point datatypes
defined in the FastFloat4HLS C++ library developed in house [54]. The corresponding datatypes
are defined as fast_float<M, E>, where constants M and E refer to the size of the mantissa and
the exponent fields, respectively. Single-precision floats correspond to fast_float<23, 8>, while
bfloat16 is equivalent to fast_float<7, 8>. FastFloat4HLS contains type-cast functions that al-
low the conversion from standard C++ floating point datatypes to fast_float. Also, similar to all
other FP libraries available for HLS [113,120,137], FastFloat4HLS implements primitive arithmetic
operators, allowing the designer to implement any algorithm in hardware using typical C++ behavior
modeling.

64

5.3 FUSED DOT-PRODUCT OPERATORS FOR DATAFLOW ACCELERATORS

5.3.1 Using the Dot Product in C++

The differentiating characteristic of FastFloat4HLS relative to other public FP libraries is the im-
plementation of an efficient fused dot product operator through the templatized function dot that is
defined as follows:

template<int N> // size of vectors
void dot(fast_float<M,E> a[N], fast_float<M,E> b[N])

The function accepts two vectors a and b of N elements each and computes in a fully parallel
approach

a0b0 +a1b1 + · · ·+aN−1bN−1.

The only constraint is that the elements of the vectors a and b should follow the same fast_float
configuration.

Synthesizing the dot product from primitive FP multipliers and adders would limit the expected
gains due to the high latency, area, and energy cost for alignment, normalization, and rounding
in each step [24, 120]. On the contrary, a fused architecture mitigates these overheads to a single
alignment, normalization, and rounding step [50].

typedef fast_float<23,8> fp;
template<int M=16, int N=4>
void MatVecMult(fp A[M][N], fp V[N], fp out[M]) {
for (int i=0; i<M; i++)
out[i].dot<N>(A[i],V);

}

Figure 5.4: A matrix-vector multiplication using the dot product of FastFloat4HLS.

The proposed dot product operator can be used in the context of HLS to implement more complex
operations. For instance, Figure 5.4 depicts the implementation of a matrix×vector multiplication,
where the matrix A is multiplied with vector V using the proposed vector dot product unit.

5.3.2 Architecture of the Fused FP Dot Product

The fused computation of the dot product follows a tree structure that is split in four consecutive
steps. This computation pattern may imply that the hardware organization follows the same four-
level fixed-pipeline structure. However, the actual pipeline is determined automatically by HLS,
based on the designer’s constraints. For, instance, we can get area-efficient single-cycle designs,
or high-speed pipelined implementations, without altering the C++ hardware model. Implementing
the dot-product with a chain of multiply-add units is not preferred as it leads to inferior designs
according to [49].

The N pairs of FP inputs are first unpacked, creating the fraction of each operand by inserting
the hidden bit to the mantissa, before being forwarded to the multiplication units. Since we target
deep-learning accelerators de-normals at the input are flushed to zero [2].

Multiplication of Fractions Each multiplication unit computes the product of the two fractions
1 mA and 1 mB and adds their exponents. The product of the two fractions is computed using an
integer unsigned multiplier. The product is positive when the two inputs have equal signs, and
negative otherwise.

The sum of the two exponents is computed in parallel to the multiplication. Since the exponent of
each operand also contains its bias, the sum of two exponents would result in adding the bias twice,
i.e., eA + bias+ eB + bias = eA + eB + 2bias. For the result to follow the correct representation,

65

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

Figure 5.5: The unrolled architecture of the fused many-term dot product unit modeled for HLS.
The organization resembles other fixed-pipeline organizations, such as these architec-
tures [50, 62].

one constant bias should be removed. Thus, the exponent of the product is calculated as eY =
eA + eB −bias.

This result is correct unless the multiplication operation overflows. Each FP number represents
a value in the range [1,2). This means that by multiplying two numbers, the range of the product
will be [1,4). As a normalized value is always in the range [1,2), a result that is greater than, or
equal to, 2 is denoted as an overflow and needs to be re-normalized. For example, when multiplying
1.0102×1.1102 the result of the multiplication is 10.0011002, which is greater than 2. To normalize
the product, the fraction should be shifted to the right by one position, while the exponent should
be increased by 1. Since we do not want this correction of the exponents to be performed after the
multiplication, we pre-compute speculatively the overflowed value for the exponents in parallel to
the multiplication. Based on the outcome of the multiplication (i.e., if the product is larger than 2),
the normal of the overflowed exponent value is selected.

Figure 5.6 depicts a snippet of the C++ model that describes the functionality of the multiplication
unit. The hls_unroll pragma guides the HLS tool to generate N parallel instances, equal to the
amount of individual multiplications that are defined by the template parameter N. The two versions

66

5.3 FUSED DOT-PRODUCT OPERATORS FOR DATAFLOW ACCELERATORS

of the exponent and the multiplication of the two fractions are computed in parallel, as all three
operations are independent to each other. The correct exponent is selected depending on the value
of the product, when this becomes available.

#pragma hls_unroll

for (int i=0; i<N; i++) {
mul_exp[i] = a[i].exponent + b[i].exponent - bias;

mul_exp_overf[i] = a[i].exponent + b[i].exponent - bias + 1;

// mul_overf is 1 when the MSB of the res_prod is 1

res_prod[i] = fracA[i]*fracB[i];

res_expo[i] = (mul_overf[i]) ? mul_exp_overf[i] : mul_exp[i];

}

Figure 5.6: A snippet of the C++ description that implements the N parallel multiplication units.

Alignment of Products Each multiplication unit produces the product of the corresponding frac-
tions and the sum of their exponents. To add these intermediate results, we first need to align them,
since each one is associated with a different exponent.

To perform the necessary alignment, we need to find the maximum of the N exponents and then
right-shift the fraction of each operand so that their exponents become equal to the maximum. Each
right shift on the fraction equals to an increase by 1 in the exponent, meaning that each operand
should be right-shifted as many times as the difference between the corresponding exponent and the
maximum one. To compute the difference between the maximum exponent and the exponent of each
part, the maximum exponent value is forwarded to all subtraction units, where the amount of shifting
for each individual fraction is calculated.

To design a tree-based max function that finds the maximum exponent of the N intermediate expo-
nents, a recursive template meta-programming [61] approach was adopted, as recommended in [37]
and shown in Figure 5.7. In each iteration of the recursion, the function searches for the maximum
value in each half of the input vector.

template<int N>
struct max_s {
template<typename T>
static T max(T *a) {
T m0 = max_s<N/2>::max(a);

T m1 = max_s<N-N/2>::max(a+N/2);

return m0 > m1 ? m0 : m1;
}

}

template<>
struct max_s<1> {
template<typename T>
static T max(T *a)
return a[0];

}

template<int N, typename T>
T max(T *a)

return max_s<N>::max(a);

Figure 5.7: A recursive template meta-programming approach for the design of a maximum-element
identification hardware unit with logarithmic depth.

Addition After alignment, we need to transform each pair of (sign, unsigned fraction) to its appro-
priate signed representation, in order to add them with the remaining fractions. After this transfor-
mation, the N product fractions are reduced to one using an N-to-1 addition tree, which is generated
through the C++ code depicted in Figure 5.8.

State-of-the-art designs [49, 50, 62, 115] utilize carry-save adders to implementing this multi-
operand addition. Since we are working at the C++ level, this is not a preferred choice. In our
case, multi-operand addition is abstractly represented as an unrolled reduction C++ loop. Even with

67

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

#pragma hls_unroll

for (int i=0; i<N; i++)
acc += (mulSign[i]) ? -shifted_prod[i] : shifted_prod[i];

Figure 5.8: The C++ description that generates the addition tree by adding the positive or the negative
value of the intermediate shifted product, depending on its sign.

this abstract form, this approach does not limit the efficiency of the final hardware, since carry-save
arithmetic will be enabled after all post-HLS processes by the bit-level transformations of the RTL
logic synthesis tool.

If the result of the multi-operand adder is negative, we need to compute its absolute value. To do
so, we need to complement the output of the multi-operand adder and increment it by 1. To save
delay, we postpone the +1 increment for the rounding step. Therefore, the value that is forwarded to
the rounding and normalization stage is selected between the original and the inverted version of the
output of the multi-operand addition, depending on the sign of this output.

Normalization and Rounding At the end, the result of the dot product should be normalized and
rounded. To complete normalization, we need to count the number of leading zeros of the fraction,
and then shift the fraction to the left as many positions as the number of leading zeros. In parallel,
the computed Leading Zero Count (LZC) should be subtracted from the exponent.

Leading-zero counting implements in C++ the fast design proposed in [27], using recursive tem-
plates, as depicted in Figure 5.9(a). In this way, LZC is not treated as a monolithic block, but it can
be scheduled in a fine-grained manner along with the exponent update and mantissa alignment.

The operation initiates through the top LZC function, which receives the input A and starts the
recursion by calling the lzc_s function. In each recursive step of lcz_s, lzc_reduce decides if
the number of leading zeros is an odd, or even number. Initially, lzc_reduce is applied to the whole
input and, in each one of the following steps, the input is reduced to half by computing the logic OR
of neighbor bits. When only one bit remains, the recursion stops. If the input is the all-zero vector
from the beginning, flag ZF is asserted. In this case, this implementation [27] treats the remaining
bits of the leading-zero count as “don’t care”. Otherwise, the complementary value of the inverted
sequence of the intermediate results, which gets returned by the top function LZC at the end of the
operation, indicates the number of leading zeros in A.

The recursive template, combined with the unrolled loops in the C++ code, lead to the tree struc-
ture of the LZC unit, which is illustrated in Figure 5.9(b). The input is fed at the top level of the
structure, where the first output is generated form the lzc_reduction unit, and, as it moves to the
next level, its size is reduced to half, until a single bit remains. At each level, the produced output is
inverted before its value is used.

The M+N least significant bits of the normalized fraction are used to compute the round bit that
will be added to the LSB of the M+2 most significant bits. If the result of the addition was negative
and the output was inverted, then the increment by 1 that was postponed from the addition step is
also performed. As a single-bit value, this addition does not require an extra addition unit, but,
instead, the value is pushed to the carry-in bit of the already existing adder. In the case that rounding
overflows, the exponent is increased by 1 and the fraction is shifted right by one position.

At the end, the E less significant bits of the exponent, the M less significant bits of the fraction
and the sign bit that was produced by the MSB of the multi-operand addition are packed and pushed
to the output.

68

5.4 EVALUATION

// Top LZC function
template<int N>
ac_int<ac::log2_ceil<N>::val+1,

false> LZC(ac_int<N,false> A){
int BW = ac::log2_ceil<N>::val+1;
ac_int<BW,false> b,res;

lzc_s<N>::lzc_s(A,b);// First call

#pragma unroll yes
for (int i=0; i<BW; i++)
res[i] = b[BW-i];

return res.bit_complement();
}

// Recursion
template<int N>
struct lzc_s {
template<typename T>
static void lzc_s(

ac_int<N,false> a, T &out){
ac_int<N/2, false> a0;
out[ac::log2_ceil<N>::val] =

lzc_reduce<N>(a);
#pragma unroll yes
for (int i=0; i<N/2; i++)
a0[i] = a[2*i] | a[2*i+1];

// Recursive call
lzc_s<N/2>::lzc_s(a0,out);

}
}

// Terminate recursion
template<>
struct lzc_s<1> {
template<typename T>
static void lzc_s(

ac_int<1,false> a, T &out)
out[0] = a[0];

}

bool lzc_reduce (ac_int<W,false> a) {
ac_int<W/2,false> odd, even, out;
#pragma unroll yes
for (int i=0; i<W/2; i++) {
even[i] = a[2*i];
odd[i] = a[2*i+1];

}
even = even.bit_complement();
ac_int<W/2,false> even_prefix;
ac_int<1,false> t=true;
#pragma unroll yes
for (int i=W/2-1; i>=0; i--) {
if (i == W/2-1) t = even[i];
else t = t & even[i];
even_prefix[i] = t;

}
even_prefix = even_prefix >> 1;
even_prefix[W/2-1] = 1;
out = even_prefix & odd;
return out.or_reduce();

}

(a) Computing LZC using recursive template meta-programming in C++.

(b) The tree structure of the LZC unit.

Figure 5.9: The C++ model of the Leading Zero Count unit (a) and its structure (b).

5.4 Evaluation

The C++ model of the proposed FP many-term dot product unit was thoroughly tested through C++
simulation to ensure its correct functionality. Subsequently, the verified designs were synthesized
with Catapult HLS after setting the appropriate architectural constraints. Our goal was to achieve a
fully unrolled (parallel) architecture with the minimal latency, which operates with initiation interval
of one at a specified clock frequency target. Catapult HLS utilized the available resources, produced
an optimally pipelined architecture for the design and generated the corresponding Verilog RTL. To
verify its correct functionality, we tested the generated RTL through the SCVerify flow using the
Questa Advanced Simulator [112].

Since there is no HLS model that implements a fused many-term FP dot product, we include
two different set of comparisons: On the one hand, we compare the proposed fused many-term FP
dot product unit synthesized with Catapult HLS with state-of-the-art architectures of non-fused FP

69

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

vector dot products designed directly in RTL. Specifically, we compare against designs generated by
the FloPoCo RTL generator [24], which is publicly available and considered a reference point in FP
hardware designs. The RTL implementations of all designs under evaluation were mapped to the 45
nm Nangate standard-cell library and placed-and-routed using the Cadence digital implementation
flow that is shown in Figure 5.10. Genus [14] was used for logic synthesis, while place-and-route
was completed in Innovus [15].

Figure 5.10: The digital implementation flow from RTL to GDSII.

On the other hand, for completeness, we summarize in a common table at the end of the Evalu-
ation section the characteristics of state-of-the-art fused architectures, with respect to the proposed
designs, using as is the data presented in the corresponding papers.

It should be noted that FPGA-based experimental evaluation is deemed beyond the scope of this
paper, since the proposed approach targets ASIC implementations exclusively. In order to yield
meaningful insights, experiments on an FPGA would require our C++ code to target FPGA-specific
optimizations amenable to the underlying FPGA fabric, i.e., DSP blocks. Such transformations are
left as future work.

5.4.1 Identifying State-of-the-Art Non-Fused FP Vector Dot Product
Configurations

FloPoCo does not support fused vector dot product units. So, our goal is to use FloPoCo and identify
an optimal non-fused architecture by combining the available FP multipliers and adders and the
many possible pipeline configurations that FloPoCo allows for each operator without support for de-
normals. To better elucidate how we explored the available design space, we will use as an example
the design of a 4-term dot product unit. This unit requires four multipliers to compute the four
products in parallel, and three adders to construct the 4-to-1 reduction tree that will compute the
final result of the dot product.

With the goal being to minimize the latency in cycles, the dot product unit can be designed us-
ing combinational multipliers and adders that are connected with intermediate pipeline stages. The
performance of this approach, shown in Figure 5.11a, is bounded by the delay of the FP multipliers
and adders. Alternatively, we could allow the multipliers and adders to be internally pipelined. Two
alternatives emerge when using this approach. The one shown in Figure 5.11b pipelines the multi-
plier and the adders without using any extra pipeline registers between them. On the contrary, the
second approach, shown in Figure 5.11c, allows for both internal and external pipelining, i.e., across

70

5.4 EVALUATION

the FP units. FloPoCo employs efficient architectures for the design of each FP multiplier [39] and
FP adder [108]. The high-level organization of each unit is depicted at the bottom of Figure 5.11.

(a): Only external pipeline (b): Only internal pipeline (c): Internal and external

(d): Floating-point multiplier (e): Floating-point adder

Figure 5.11: Various pipelined organizations enabled by the FloPoco RTL generator for a 4-term dot
product unit built from efficient FP multipliers and adders.

We examined 196 designs that cover 4 and 8-term dot products for the standard float and bloat16
formats targeting various clock frequencies. The results derived for the bloat16 format are summa-
rized in Figure 5.12. The pareto curve inside each figure outlines the architectures with the least area
at each delay target.

(a): 4-term products (b): 8-term products

Figure 5.12: The design-space exploration of 4- and 8-term dot products for the bfloat16 FP format
generated with FloPoCo [24].

To uniquely identify each design choice in Figure 5.12, we follow a simple notation that describes
the pipeline structure followed by each architecture. For instance, the design D0p0p0 that appears to
be the best at 500 MHz in Figure 5.12a corresponds to the organization of Figure 5.11a for a 4-term

71

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

product. The three zeros denote that each level of the dot product has zero inner pipeline stages
and the letters ‘p’ between the zeros state that external pipelining is used across stages. On the
other hand, D1p3p3 – the best choice when targeting a clock frequency of 1 GHz in Figure 5.12a—
corresponds to a design of the category shown in Figure 5.11c. More specifically, it is 4-term design
with multipliers having 1 inner pipeline stage, the adders of both levels have 3 inner pipeline stages,
and extra pipeline registers are placed between the multipliers and adders. When an external pipeline
stage is missing, letter ‘p’ is replaced with an ‘x’. The same structure is followed for the 8-term
designs shown in Figure 5.12b, including more symbols per design due to the increased number of
addition stages required.

5.4.2 Comparisons with the Proposed Fused Vector FP Dot Product
Architecture

Having identified the best configurations of many design choices for 4- and 8-term dot products, we
compare them with the equivalent proposed designs synthesized in RTL from Catapult HLS. The
results obtained are summarized in Table 5.1. All designs are compared with respect to their area,
power, and latency, under the same clock frequency constraint. The reported power was measured
by running examples that cause, on average, a 25% toggle rate.

Table 5.1: Comparison of the proposed 4- and 8-term fused FP dot product units relative to state-of-
the-art non-fused designs.

4-term Proposed State-of-the-Art Non-Fused
Area (um2) Power (mW) Lat. Area (um2) Power (mW) Lat.

FP32 21,124 8.50 3 22,778 5.90 5
500 MHz BF16 5057 1.83 3 5151 2.47 3

FP32 31,518 13.26 6 32,568 11.32 12
1 GHz BF16 6750 4.62 6 7803 4.42 10

8-term Proposed State-of-the-art non-fused
Area (um2) Power (mW) Lat. Area (um2) Power (mW) Lat.

FP32 50,847 14.17 3 51,304 13.66 7
500 MHz BF16 10,096 4.11 3 11,422 5.78 4

FP32 60,863 25.07 7 67,953 25.62 19
1 GHz BF16 14,405 9.39 6 17,614 9.44 14

For single-precision floats (FP32) and 4-term products, the proposed design achieves significantly
lower latency and requires slightly less area than the corresponding state-of-the-art, at both clock
frequency targets. For 8-term products, the proposed design achieves even higher reductions in
latency. In general, the penalty for the comprehensive performance improvement achieved by the
proposed design in FP32 is increased power consumption.

Instead, for bfloat16 (BF16), the proposed architecture excels in all three salient metrics. The
improvement is greater at 1 GHz, where the latency is reduced by 40% and the area by around 14%
for an 4-term unit, and by 57% and 18%, respectively, for an 8-term unit. Most importantly, these
latency and area improvements at 1 GHz are achieved with similar power consumption. For instance,
the layout of the two units under comparison for the case of a 4-term dot product of bfloats16
optimized for 1 GHz is shown in Figure 5.13.

At 500 MHz, the power consumption of the proposed design is lower by 26% and 29% for 4-
term and 8-term products, respectively, as compared to the state-of-the-art. This reduction in power
consumption at 500 MHz is achieved with slightly less area and with similar (or slightly lower)
latency.

72

5.4 EVALUATION

(a) Proposed (b) State-of-the-art non fused

Figure 5.13: The final layout for (a) the proposed and (b) the state-of-the-art non-fused 4-term dot
product architectures, assuming a bfloat16 representation.

Part of the efficiency of fused dot-product architectures stems from the fact that alignment, nor-
malization, and rounding are performed only once and are not repeated in each individual multiply
and add operation. This characteristic also favorably affects the numerical accuracy of the computa-
tion.

To evaluate the accuracy of the proposed fused vector dot-product unit, compared to a non-fused
architecture, we computed 1 million dot products for different implementations and FP formats. For
each test, the inputs were generated randomly, following a Gaussian distribution. In each case, the
computation error is compared relative to the “golden values” computed using the double precision
floating point datatype.

(a) 32-bit single precision input data (b) 16-bit Bfloat16 input data

Figure 5.14: The error introduced by the fused and non-fused architectures for two different FP
formats when computing dot products with increasing number of terms, relative to the
same computation implemented with double-precision (64-bit) FP arithmetic.

Figure 5.14 illustrates how the relative error scales with the increasing number of the dot product
terms for (a) IEEE-754 single precision data in, and (b) for bfloat16 data. When looking at the error

73

5 CUSTOMIZED FLOATING-POINT OPERATORS FOR ML ACCELERATORS

of the non-fused architecture, we can see that it scales with the number of terms in the dot product
calculation. This is due to the increasing amount of intermediate rounding that is performed at the
end of each individual adder or multiplier that comprise the design. On the other hand, the relative
error of the proposed units remains constant and close to the minimum step between two consecutive
floating point numbers. This behavior is due to the increased internal data width datapath used in
all cases. which increases linearly with the number of terms of the dot product. A similar technique
was used in Intel’s Nervana NPP-T [50] fused architecture, where the width of the final accumulator
was selected so that it could compute every dot product in its supported applications, without a loss
in accuracy.

5.4.3 Performance Summary of Fused Dot Product Architectures

Even though fused vector dot product designs are not available as open-source, we summarize—for
completeness—in Table 5.2 the characteristics of efficient fused vector dot product architectures and
of the proposed design. The data for the competing approaches is taken verbatim from the corre-
sponding papers. Obviously, one of the key strengths of the proposed approach is its templatized
nature (unique in Table 5.2) that provides designers with unprecedented flexibility. This flexibility,
in conjunction with HLS, fine-tune the resulting implementation for the specified design constraints
and FP format. Consequently, as evidenced in Table 5.2, the proposed approach leads to balanced
design configurations where the pipeline latency, clock frequency, and area are cohesively optimized.

Table 5.2: Comparison between the different fused floating-point vector dot product architectures.
Design Templatized Open #Terms FP Format Technology Frequency Area (um2) Latency

Source (GHz) ×1000 (Cycles)
[63] No No 4 single 180 nm 0.08 ∼620 1
[105] No No 2 single 45 nm 0.37 16.10 1
[115] No No 2 single 45 nm 1.50 33.29 3
[62] No No 32 bfloat16 10 nm 1.11 ∼2.75 5
[50] No No 32 bfloat16 45 nm N/A N/A 10

Proposed Yes Yes * 4 single 45 nm 1.00 31.52 6
8 bfloat16 45 nm 1.00 14.41 6

*: https://github.com/ic-lab-duth/Fast-Float4HLS.

5.5 Conclusions

Floating-point representations are very important for modern applications due to their increased pre-
cision compared to integers. Selecting the appropriate representation depending on the requirements
and carefully designing the architecture of the operators is crucial for the overall performance and
accuracy. Implementing the many-term FP dot product units required in the majority of deep learn-
ing applications with a fused architecture leads to highly efficient solutions, in terms of latency, area,
and power. To enhance the scope of fused architectures on high-level synthesis design flows that
support custom-precision FP arithmetic, we designed them as templatized soft FP cores that allow
the designers to use them with arbitrary FP types in their C++ HLS models. The design is available
under a permissive open-source license as part of the header-only FastFloat4HLS library [54]. The
experimental results that compare the proposed approach to state-of-the-art non-fused many-term dot
product architectures show that it can achieve lower latency and area at the same clock frequency,
while its power consumption depends on the chosen FP format.

74

6 Reduced Precision Fused Multiply Add
Operators for Systolic Arrays

Matrix multiplications are at the heart of deep learning algorithms and their computation in hard-
ware maps naturally onto SAs [70]. TPUs [57] and other related architectures [20, 74, 93, 106] are
characteristic examples of newly designed SAs. Matrix multiplication can be implemented in SAs
using integer or FP arithmetic [58, 118]. For increased accuracy, the use of FP arithmetic dominates
during the training of deep learning models. To increase energy efficiency, inference is typically
executed using integer arithmetic, after appropriate data quantization and pruning [41]. However,
recent studies have shown that FP arithmetic cannot be avoided, if one wishes to preserve the infer-
ence quality [58].

The introduction of reduced-precision FP formats has enabled the use of FP arithmetic also in
the inference, as they offer the good precision of FP while maintaining low cost, close to integer
arithmetic. The incorporation of these formats inevitably affects also the architecture of the cor-
responding FP operators. For instance, the operation of the traditional pipelined FP units used in
SAs is dominated by the delay of the wide multipliers, while the logic dedicated to the exponent
calculations is not time-critical. However, in reduced-precision FP operators this delay profile is
partially flipped, since the bit-width of the mantissa (fraction) field is now equal to, or smaller than,
the bit-width of the exponent field. Consequently, new architectures are required that must account
for this new delay attribute of reduced-precision FP arithmetic, and, at the same time, tackle the
chained structure of the SA’s processing elements.

To address said challenges, this work proposes a novel pipeline architecture for SAs that operate
on reduced-precision FP arithmetic, with the following salient characteristics:

• A new skewed pipeline micro-architecture is proposed that reorganizes the operations inside
the pipelined organization of the FP fused multiply-add units, thereby enabling parallel execu-
tion of the pipeline stages of consecutive PEs within the SA. The proposed design minimizes
the overall latency of matrix multiplication, as compared to traditional pipelined architectures,
with minimal area and power overhead.

• Pipeline skewing is enabled by the introduction of new speculative forwarding paths within the
exponent field’s logic. These forwarding paths eliminate the restricting dependencies across
pipeline stages and effectively increase pipeline parallelism.

Experimental evaluation using state-of-the-art CNNs demonstrates the effectiveness of the pro-
posed architecture. The overall execution latency is markedly reduced by 16% and 21% for Mo-
bileNet [52] and ResNet50 [48], leading to overall energy reductions of 8% and 11% respectively.
These savings were achieved with a minimal area cost of 9%.

6.1 Systolic Arrays using Floating-Point Arithmetic

As it was discussed in Section 2.1, the typical SA hardware structure consists of an array of PEs,
where each PE computes a MAC operation, and streams data to neighboring PEs. The structure and
the flow of data inside the SA are defined by the implemented dataflow scheme.

75

6 REDUCED PRECISION FUSED MULTIPLY ADD OPERATORS FOR SYSTOLIC ARRAYS

Under the WS dataflow, a chain of multiply-add operations is computed in each column of the ar-
ray. The FP multiply-add units (FMA) in each PE have a fused/cascaded structure [39,49], whereby
the product of the multiplication is passed directly to the adder, without intermediate normalization
and rounding. Normalization occurs after each addition at the South border of each PE. To further
reduce hardware cost, state-of-the-art implementations [33, 50, 62] do not perform rounding after
each multiply-add step in each PE. Instead, the rounding is performed only once, at the South end of
each column. To avoid precision loss, the intermediate results produced at the South output of each
PE use double-width precision [58]. For instance, for Bfloat16 inputs, the reduction that occurs in
the vertical direction is implemented with FP32 arithmetic.

State-of-the-art FP multiply-add units in each PE may adopt one of the two pipelined datapaths
shown in Figure 6.1. The diagrams in the figure highlight only the most critical blocks involved in
the multiply-add datapath and omit, for clarity, several logic-level details. Note that, for reduced-
precision FP arithmetic, a two-stage pipeline – as depicted in Figure 6.1 – is sufficient to achieve the
required clock frequency. On the contrary, traditional full-precision FP units rely on deeper pipelines
for high clock frequencies [72].

(a) FMA for regular precision. (b) FMA for reduced precision.

Figure 6.1: The two main pipeline organizations that may be employed by the FP multiply-add units
in each PE of the SA. In reduced-precision FP arithmetic, two pipeline stages are suffi-
cient to achieve the required clock frequency.

In the first pipeline stage of Figure 6.1(a), multiplication is performed in parallel with the exponent
computation, which calculates the amount of alignment required for the incoming partial addition
result. This approach is adopted by many multiply-add architectures [72, 144]. It is based on the
fundamental assumption that the delay of the multiplier completely hides the computation on the
exponents and the delay of alignment. However, this assumption is only true in full-precision FP
arithmetic, where the delay of the multiplication dominates the delay of the exponent computations.

In the second pipeline stage of Figure 6.1(a), addition is performed. Leading-Zero Anticipation
and counting (LZA) [27, 107], running in parallel to the addition, predicts the amount of shifting
needed to normalize the adder’s result. This shift amount is also used to correct the already computed
exponent of the final result.

Since the delay of the multiplication cannot hide the delay of the exponent computations in
reduced-precision FP arithmetic, it is preferable to move the alignment to the second pipeline stage,
as shown in Figure 6.1(b). The alignment may involve either the output of the multiplier, or the
incoming partial addition result [77,81]. This approach is a more natural fit to the delay profiles ob-
served with the new the pipeline of Figure 6.1(b) serves as the state-of-the-art reference FP multiply-

76

6.2 THE PROPOSED SKEWED PIPELINE ARCHITECTURE

add design for reduced-precision FP arithmetic.

6.2 The Proposed Skewed Pipeline Architecture

The two-cycle latency incurred by either the pipelined FP multiply-add units shown in Figure 6.1
increases the number of cycles required to complete the reduction within each column of the SA.
Also, the pipeline parallelism across PEs is limited since the computation in each PE can begin only
after the previous PE in the same column has finished its operation.

Figure 6.2: The dependencies arising in a chained FP multiply-add operation across two neighboring
PEs of the same column of the SA. These dependencies prohibit the interleaving, in time,
of the pipeline execution.

6.2.1 The serialization problem

The fundamental reason for this serial execution is the dependency that appears between the result
of the second pipeline stage of the PE in row i of the SA and the first pipeline stage of the PE in
row i+1 of the same column. This dependency is highlighted in Figure 6.2 across cycles t0 +1 and
t0 +2. Recall that each PE employs the 2-stage pipelined organization of Figure 6.1(b).

To increase parallelism, we would like the first pipeline stage of the PE in row i+ 1 to execute
in parallel with the second pipeline stage of the previous PE (i.e., both in cycle t0 +1). If this were
allowed, it would create a new critical combinational logic path across the two neighboring PEs,
emanating from the exponent output of the first PE: the alignment logic of the first PE would be
connected in series with the LZA module of the first PE, the exponent correction logic of the first
PE, and the exponent computation logic of the following PE.

To avoid the formation of this long path, the operation in each PE begins only after the previous
PE has completed its entire computation at the end of its second pipeline stage.

77

6 REDUCED PRECISION FUSED MULTIPLY ADD OPERATORS FOR SYSTOLIC ARRAYS

6.2.2 Removing dependencies using speculative paths

To interleave, in time, the operation of the pipeline stages in each PE, a new pipelined organiza-
tion for the FP multiply-add datapath is required, which relaxes the above-mentioned restricting
dependencies and avoids the introduction of new combinational logic critical paths. The first step in
optimizing the FP multiply-add pipeline is to decouple the exponent correction logic of the second
pipeline stage of one PE from the exponent compute logic of the first pipeline stage of the next PE.
This decoupling is achieved by the pipeline organization shown in Figure 6.3.

Figure 6.3: Removing the dependency across the exponent output of each PE. A speculative ex-
ponent is produced at the output of the first pipeline stage, which is corrected at the
beginning of the second stage.

In this setup, the exponent correction logic is replaced by exponent fix logic and moved to the
input of the second pipeline stage of each PE. This is the new module ‘Fix Sign & Exponent’ shown
in green in Figure 6.3. To enable this relocation, the exponent fix logic no longer depends on the
output of the LZA module of the current PE, but, instead, it receives the output of the LZA logic of
the previous PE. This decoupling allows for the interleaving, in time, of the pipelined execution of
the multiply-add operation in consecutive PEs of the same column of the SA.

The output of the exponent fix logic controls the alignment of the adder’s inputs in the same
pipeline stage and it is also given to the next PE in the place of the output exponent. This output is
not the final exponent, but an intermediate and partially correct result. The correct exponent value
will be computed in the exponent fix logic of the next PE.

In each PE, the exponent compute logic selects the maximum between the exponents of the multi-
plication that was just calculated and the input exponent that comes from the previous PE. This max-
imum value, which is denoted as êi, represents the exponent of the unnormalized result of the FMA’s
addition and it is calculated as êi = max(eMi ,ei−1), where eMi = eAi + eBi is the exponent of the
multiplication in the current PE. Furthermore, the difference of the two exponents di = |eMi − ei−1|,

78

6.2 THE PROPOSED SKEWED PIPELINE ARCHITECTURE

serves as the alignment value of the two addends. In the setup of Figure 6.2, êi gets corrected by the
value of the LZA Li and the corrected exponent output ei = êi −Li, now referring to the normalized
output, is forwarded to the next PE.

On the other hand, in the case of Figure 6.3, the compute exponent logic of the PE in row i receives
the intermediate êi−1 exponent, instead of the corrected one, as Li−1 is not yet available to correct
it. This means that the outputs of its first pipeline stage e′i = max(eMi , êi−1) and d′

i = |eMi − êi−1| are
speculative values, as the exponent used refers to an unnormalized result and must be subsequently
fixed. At the beginning of its second pipeline stage, Li−1 becomes available and is forwarded to the
exponent fix logic, in order to correct the speculated values. The difference of the exponents required
for the alignment is:

di= |eMi− ei−1|= |eMi− (êi−1 −Li−1)|= |(eMi− êi−1)+Li−1|

As the value of Li−1 is always greater than, or equal to, zero, we can say that:

di =

{
|eMi − êi−1|+Li−1 = d′

i +Li−1 , if eMi ≥ êi−1

Li−1 −|eMi − êi−1|= Li−1 −d′
i , if eMi < êi−1

Additionally, the fix logic generates êi from e′i. However, since êi is either eMi , or ei−1 (see above),
e′i is not a computed quantity, but, instead, it comprises the two values eMi and êi−1 that are being
forwarded from the first to the second pipeline stage. After the correction of ei−1 = êi−1 −Li−1 in
the exponent fix logic, êi is computed and forwarded to the next exponent compute logic block.

As both êi and Li are computed in the same pipeline stage, and because Li becomes available at the
end of the cycle, the correction of the final exponent result (i.e., at the South edge of each column)
cannot happen in the same cycle. As a result, the correction for the exponent of the last PE of each
column will happen during the rounding stage at the end of the column.

The presented re-organization of the exponent computations allows for the parallel execution of
the pipeline stages of consecutive PEs. However, the placement of the exponent fix logic inevitably
increases the combinational path delay of the second pipeline stage of each PE. To overcome this
overhead, we can retime the normalization step.

This retiming is shown in Figure 6.4. Instead of normalizing the result of the addition in the
same cycle, normalization occurs in parallel to the alignment logic at the input of the adder. The
unnormalized value that arrives from the adder of the PE in row i−1 requires at most Li−1 left shifts
to get normalized. In the meantime, the alignment value that is computed by the fix logic determines
the amount of right-shifting that may be required, if the addend was already normalized. Depending
on the relation between the alignment value and Li−1, the addend would need to either shift to the
left, or to the right. As only one of these options may occur, the two operations are completely in
parallel, removing the serial dependency in the delay. The new alignment scheme also affects the
alignment value of the second addend that comes from the multiplication. However, only a right shift
may occur in that case. The unnormalized output of the final PE will be normalized at the rounding
stage at the end of the column.

Overall, the proposed pipeline structure blurs what a PE actually is across the pipeline stages. In
the new design, a PE implements, in parallel, part of the second pipeline stage of the first PE and
part of the first pipeline stage of the next PE (in the same column). In fact, this new operational
attribute of the PE is explicitly seen in cycle t0 + 1 in Figure 6.4. Assuming that the highlighted
PE of Figure 6.4 is the last of the column, an extra addition stage is needed for the operation to be
complete. Similar to the baseline case, an extra stage is also needed to round the final result of each
column.

Leveraging the recently proposed approach in [3] for online alignment and addition can simplify
speculation hardware without significantly increasing overall hardware costs.

79

6 REDUCED PRECISION FUSED MULTIPLY ADD OPERATORS FOR SYSTOLIC ARRAYS

Figure 6.4: The normalization logic is retimed in parallel to the align logic of the next PE. The
addition result that flows across PEs is properly shifted to the left, or right, according to
the exponent fix logic of the same stage.

6.3 Evaluation

In this section, we demonstrate the effectiveness of the proposed architecture in reducing the energy
requirements when computing CNNs, as compared to state-of-the-art FP multiply-add architectures
employing the traditional two-stage pipeline organization of Figure 6.1(b). In both cases, we assume
Bfloat16 inputs that are reduced in the vertical direction using single precision FP32 arithmetic.

Both designs under comparison were implemented in C++ and synthesized to Verilog RTL using
Catapult HLS, driven by a commercial-grade 45-nm standard-cell library. Both SA architectures
have an array size of 128×128 PEs. Final timing/area results are derived from the Oasys logic syn-
thesis tool. Power was estimated after synthesis using the PowerPro power analysis and optimization
tool.

The proposed design, depicted in Figure 6.4, requires 9% more area than the state-of-the-art FP
multiply-add architecture shown in Figure 6.1(b). We assume that both designs have been optimized
for a clock frequency of 1 GHz. This area overhead is due to the extra pipeline registers required by
the proposed design to pass intermediate exponent and LZA output values across the two pipeline
stages, and the extra combinational logic of the exponent fix module. Similarly, the proposed design
consumes 7% more power, on average, when computing layers from state-of-the-art CNNs, such as
MobileNet [52] and ResNet50 [48].

This marginal hardware area and power overhead is amortized by the latency savings reaped by
the proposed approach, which allows for the parallel execution of the pipeline stages of consecutive
PEs. Such latency savings allow the computation of each CNN layer to finish much sooner, thus
yielding a reduction in the overall energy consumption of the computation.

To clarify this result, Figures 6.5 and 6.6 report the per-layer energy consumed when executing
each layer of the MobileNet [52] and ResNet50 [48] CNNs. The energy reported refers to the average
energy observed after computing MobileNet and ResNet50 on 100 randomly picked images from the
ImageNet database [103].

80

6.4 CONCLUSIONS

Figure 6.5: The per-layer energy consumption when executing MobileNet [52] with the two pipeline
architectures under comparison.

Figure 6.6: The per-layer energy consumption when executing ResNet50 [48] with the two pipeline
architectures under comparison.

In both Figures 6.5 and 6.6, we observe that, in the first layers, the proposed approach actually
leads to energy increases. The reason for this behavior is that the latency reduction cannot offset the
small power overhead of the skewed pipeline organization. For the last layers, where the structure
of the CNN layers changes, more latency is saved, thereby leading to significant per-layer energy
savings. Most importantly, these per-layer savings translate to an overall/total energy reduction of
8% for MobileNet [52] and 11% for ResNet50 [48].

6.4 Conclusions

The design of balanced pipelined FP multiply-add units for the PEs of a SA should not stop at
the boundaries of each PE, but it should also account for the dependencies arising across pipeline
stages of consecutive PEs. The proposed skewed pipeline architecture focuses exactly on this aspect
and effectively optimizes the latency of the reduction within each column of the SA. In effect, this
reduces the overall latency of matrix multiplication. The small area and power overhead incurred by
this pipeline reorganization is compensated by significant overall energy reductions when computing
the layers of state-of-the-art CNNs.

81

7 Automatic Hardware Generation for CNN
Accelerators

The need for custom CNN accelerators, that can easily adapt to the requirements of each application,
has been increased as more applications have emerged, ranging from low power wearable devices to
high performance data centers. To cover the wide variety of CNN applications and their constraints,
the design of custom hardware accelerators has to be easily accessible and configurable.

This need has already been recognized in various cases. For instance, Gemmini [40], Angel-
Eye [45] and DNNWeaver [109] allow the automated design of custom CNN accelerators derived
from a highly parameterized architectural template. Other approaches instead of following a fixed ar-
chitecture paradigm employ HLS for synthesizing the design from high-level C++ models. hls4ml [30]
allows the translation of trained Python models to HLS-ready C++ models. Kalms et al. [60] pro-
posed a HLS library that explores multiple parallelization schemes to improve efficiency and perfor-
mance. Similarly, fpgaConvNet [126], Caffeine [143], and FlexCNN [8] use HLS to design CNN
accelerators offering also various performance tuning strategies. FP-DNN [44] follows a hybrid
approach using both HLS and traditional RTL-based design flows.

The automatic generation of CNN accelerators is often enhanced by architectural tuning tech-
niques such as quantization and model pruning, which aim to reduce memory usage and execution
latency. Quantization lowers the precision of the model’s parameters and can be applied either af-
ter training [7, 22, 67] or during training [21, 56, 146]. Another well-studied technique that impacts
the memory footprint is pruning [29, 38, 46], which involves removing specific parameters from the
CNN model. When quantization or pruning is performed during training, the model can better adapt
to these changes, thereby mitigating potential accuracy loss [56, 80].

Similar to state-of-the-art frameworks for the automated design and optimization of CNN accel-
erators, this work leverages the simplicity of Python-based CNN modeling and the flexibility of
High-Level Synthesis (HLS) to automate the generation of CNN hardware accelerators. The ap-
proach emphasizes ease of use, enabling users to effortlessly create custom hardware accelerators,
targeting either ASIC or FPGA platforms, directly from TensorFlow or PyTorch CNN models. These
models are automatically translated into HLS-ready C++ code.

The synthesized designs follow the SPD template [123, 131], that was discussed in Section 2.2.
The proposed generator, leveraging HLS and template metaprogramming, includes multiple opti-
mization knobs, streamlining the automatic exploration of diverse architectural alternatives to boost
performance and energy efficiency.

The novelty of the proposed approach can be summarized as follows:

• The introduced framework is highly configurable, allowing for the design of a wide-spectrum
of CNN accelerators ranging from low-cost energy efficient designs up to high-performance
variants. It supports all relevant CNN layers and enables the customization of the size and the
parallelism offered by the synthesized datapath and the corresponding buffer stages.

• It supports low-power buffering architectures for the CNN dataflow architectural template that
cover both traditional and non-traditional (such as strided or dilated) CNN layers.

83

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

• It integrates a low-power ABFT error-checking mechanism that performs a checksum check-
ing for convolutional layers of arbitrary structure, enabling online functional safety at mini-
mum extra cost, both in terms of buffering and error-checking logic.

• A wide spectrum of data representations and quantization models and their optimized hard-
ware architecture are supported. Data representations include traditional FP representations,
reduced precision FP formats [2, 87, 127] as well various forms of integer and fixed-point
arithmetic.

• The experimental results highlight the hardware efficiency of three CNN accelerators syn-
thesized automatically by the proposed framework directly from their Python models. Also,
the proposed design framework is compared to other similar state-of-the-art CNN accelerator
design frameworks and/or generators both in terms of their supported features as well as the
hardware complexity of the derived designs for FPGA implementations.

7.1 Enabling Fast Acceleration Directly from Python

Machine learning engineers are constantly working on improving the accuracy and the runtime ef-
ficiency of their models. To support this effort, libraries such as Tensorflow and Pytorch have been
developed that provide a rich collection of data structures and functions that simplify the process of
developing and experimenting with new ML models.

On the contrary, this simplicity is not equally enjoyed by hardware engineers. Designing a custom
hardware accelerator for a specific CNN model is much more complicated.

Table 7.1: The available layers in the developed C++ library for developing CNN applications.
Layer Description

Conv2D Implements the 2D convolution operation, similarly to
the Conv2D of PyTorch, covering strided and dilated spatial
variants. Activation functions (i.e. Linear, ReLU,
Sigmoid, Softmax) are supported internally.

Pool2d Implements the pooling function, that supports both
“Max” and “Average” pooling, following an equivalent
implementation to their PyTorch or Tensorflow counterpart.

Dense Implements the fully-connected layer, similarly to
the PyTorch Linear layer with support for an in-place
activation function like in Conv2D.

Activation Implements a stand-alone activation layer that supports
the implementation of the activation layers like ReLU,
Sigmoid and Softmax.

Flatten Implements the conversion of a 3D matrix to a 1D
vector, just like the PyTorch equivalent.

BatchNorm2d Implements the BatchNorm2d layer from PyTorch.
Add residual Performs the addition of the outputs from

two layers in residual connections.

With the goal to simplify the design and optimization of CNN hardware accelerators, we designed
a library of C++ models for all relevant CNN layers that are ready for HLS and a API that automat-
ically converts Tensorflow and PyTorch layers to their corresponding C++ versions. The available

84

7.1 ENABLING FAST ACCELERATION DIRECTLY FROM PYTHON

Figure 7.1: Overview of the design flow that converts Tensorflow or PyTorch models to their C++
equivalents, that are used to generate RTL though High-Level Synthesis.

layers summarized in Table 7.1, can be used to convert any CNN architecture, that can be defined
by these, from Python to its corresponding HLS-ready C++ equivalent. The add residual shown in
the last row of Table 7.1 is not an actual layer, but it is used to implement residual connections sim-
ilar to the add layers found in Pytorch and Tensorflow. In this way, we can leverage both the wide
acceptance of Python-level development efforts with respect to ML and the versatility of HLS tools
for efficient hardware synthesis.

7.1.1 Python to HLS-Ready C++ Conversion

Figure 7.1 illustrates the overall design flow. First, the Python-based CNN model is parsed to extract
key characteristics such as the size and shape of convolution layers, activation functions, and spatial
patterns (e.g., strided or dilated). Next, this extracted information, along with a user-defined Python
dictionary specifying architectural options for each CNN layer, is used by the proposed framework
to generate an equivalent HLS-ready C++ model that exactly matches the structure of the model.
The layers in the Python model are replaced with corresponding layers from a custom-developed
HLS C++ library.

In addition to the C++ model, a testbench is automatically generated. This testbench verifies
the functional correctness of the model and ensures it is equivalent to its TensorFlow or PyTorch
counterpart.

The generated C++ model is then synthesized to produce a custom CNN accelerator for either
ASIC or FPGA deployment, guided by the user’s architectural constraints. The resulting hardware
design adheres to the SPD architectural template discussed in Section 2.2. To demonstrate the con-
version process from a PyTorch model to its C++ equivalent, we use a version of LeNet [73] as an
example. The Python implementation of LeNet is shown in Algorithm 5, and its structure is graph-
ically depicted in Figure 7.2. This model includes a series of layers comprising convolution, max
pooling, and fully connected layers, along with the appropriate activation functions at each stage.

Using the proposed framework, the Python model of LeNet is translated to an equivalent C++

85

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

Algorithm 5 Describing the LeNet architecture of Figure 7.2 in Python using the PyTorch API
1 import torch.nn as nn
2 class Net(nn.Module):
3 def __init__(self):
4 super().__init__()

5 self.conv_0=nn.Conv2d(in_channels=1,

6 out_channels=6,

7 kernel_size=5,

8 padding=2)

9 self.relu=nn.ReLU()

10 self.max_0=nn.MaxPool2d(kernel_size=2,

11 stride=2,)

12 self.conv_1=nn.Conv2d(in_channels=6,

13 out_channels=16,

14 kernel_size=5,

15 padding=2)

16 self.max_1=nn.MaxPool2d(kernel_size=2,

17 stride=2,)

18 self.flatten=nn.Flatten()

19 self.fc_0=nn.Linear(in_features=784,

20 out_features=120)

21 self.fc_1=nn.Linear(in_features=120,

22 out_features=84)

23 self.fc_2=nn.Linear(in_features=84,

24 out_features=10)

25

26 def forward(self, x):
27 x=self.relu(self.conv_0(x))

28 x=self.max_0(x)

29 x=self.relu(self.conv_1(x))

30 x=self.max_1(x)

31 x=self.flatten(x)

32 x=self.relu(self.fc_0(x))

33 x=self.relu(self.fc_1(x))

34 x=self.fc_2(x)

35 return x
36

37 model=Net()

model. The result is depicted in Algorithm 6. Each layer is defined as a class with many tem-
plate parameters, where some of these define the characteristics of the layer, similar to the PyTorch
counterpart, while some others are used to configure the architecture of the synthesized hardware.
The architecture-configuration parameters CNFG# are also passed as template parameters during the
instantiation of each layer (lines 4–11 in Algorithm 6).

One notable difference between the Python and C++ model is the declaration of the activation
functions. While in Python activation functions correspond to explicit function calls, in the proposed
C++ models they are implemented within the layer itself, specified via a template parameter, and
executed as a final operation before passing the output to the next layer. Additionally, unlike Python
models, their C++ counterparts require the explicit definition of arrays that store the parameters,
inputs and outputs for each layer and their corresponding data type. The shape of the arrays depends

86

7.2 CONFIGURATION OF THE CNN ACCELERATOR

Figure 7.2: The structure of LeNet, implemented by 2 convolutional layers, 2 max pooling layers
and 3 fully-connected layers.

on the shape of the layer’s parameters as extracted from the Python model, while the structure of
the interconnection channels depends on the customization of the hardware architecture, through the
loop optimization techniques that were discussed in Section 2.3.

7.2 Configuration of the CNN Accelerator

The developed C++ models are designed so that they can support all the possible architectural
choices that were discussed in Section 2.3. Through specifying template parameters, the model
can generate arbitrary structures for each CNN layer. This makes the proposed framework a highly
parameterizable solution for generating accelerators according to the available resources or required
performance.

Apart from allowing the parameterization of the CNN engines, this framework incorporates all
the different architectures discussed so far.

7.2.1 Optimized Buffering for Spatial Convolutions

In dataflow CNN accelerators, the stream of data between the engines implies that consecutive inputs
are adjacent features of the IFM. In spatial convolution variants, however, each output is computed
using features that are not adjacent. Thus, the engine should be able to carefully re-organize the
inputs, to avoid redundant computations and data movements. The library utilizes the buffering op-
timizations for strided (LeapConv) and dilated (LazyDCStream) convolutions that were presented
in Chapter 3 and manage to optimize the data movement inside the engine, thus resulting in more
energy efficient hardware implementations. These architectures are selected over the standard con-
volution engine architecture, when spatial convolution layers are present in the CNN structure.

The architectural configurations that were presented in Section 2.3 are also applicable to both
architectures of spatial variants, without affecting their functionality or performance. Figure 7.3
shows the organization of a Leapconv layer with stride 2, when an arbitrary unroll factor Tn or Tm is
applied. Similarly, Figure 7.4 presents the respective organization of a LazyDCStream layer that is
designed for a convolution with dilation rate 2.

7.2.2 Integrated Checksum Checker

For many applications it is important to ensure that the output of the computation is correct, thus the
library integrates the power efficient error checking mechanism [31], that was presented in Chapter 4

87

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

Algorithm 6 Describing the CNN of Figure 7.2 in C++ using the designed library
1 class Net() {
2 private:
3 // Layer instantiation

4 Conv2d<1,6,5,5,CNFG0,relu> conv_0;

5 Pool2d<6,2,2,CNFG1, max> max_0;

6 Conv2d<6,16,5,5,CNFG2,relu> conv_1;

7 Pool2d<16,2,2,CNFG3, max> max_1;

8 Flatten<7,7,16,CNFG4> flatten;

9 Dense<784, 120,CNFG5,relu> fc_0;

10 Dense<120, 84,CNFG6,relu> fc_1;

11 Dense<84, 10,CNFG7,linear> fc_2;

12

13 // Define external memory for parameters

14 weight_dtype w0[1][6][5][5], b0[6];

15 weight_dtype w1[6][16][5][5], b1[16];

16 weight_dtype w2[784][120], b2[120];

17 weight_dtype w3[120][84], b3[84];

18 weight_dtype w4[84][10], b4[10];

19

20 // layer interconnection

21 custom_dtype c0,c1,m0,m1,fl,f0,f1;

22

23 public:
24 Net() {};

25 ˜Net() {};

26

27 // model function

28 void forward(inp, out) {
29 conv_0(inp, c0, w0, b0);

30 max_0(c0, m0);

31 conv_1(m0, c1, w1, b1);

32 max_1(c1, m1);

33 flatten(m1, fl);

34 fc_0(fl, f0, w2, b2);

35 fc_1(f0, f1, w3, b3);

36 fc_1(f1, out, w4, b5);

37 }

38 };

and can be implemented alongside each convolution engine. Although this checksum method was
introduced for a convolution between one IFM and a single kernel, its properties can be used to
calculate the checksum of a whole CNN layer, where N IFMs of size R×C convolve with M filters
of size K×L to produce M OFMs. In the general case, the explicit checksum for a whole CNN layer
can be calculated using (7.1), where a(k,l)i, j,n is a feature located at row i and column j of the n IFM
and that during the convolution it gets multiplied with a weight that is located in row k and column
l of a kernel. The sum of all a(k,l)i, j,n is then multiplied with the sum of all weights with indexes k, l, n
across all the M filters.

K−1

∑
k=0

L−1

∑
l=0

N−1

∑
n=0

[(
R

∑
i=0

C

∑
j=0

a(kl)
i jn

)
M−1

∑
m=0

hklnm

]
(7.1)

88

7.2 CONFIGURATION OF THE CNN ACCELERATOR

Figure 7.3: Organization of a LeapConv streaming convolution engine optimized for strided convo-
lutions, and enhanced for computing a complete CNN layer.

Figure 7.4: Organization of a LazyDCStream streaming convolution engine optimized for dilated
convolutions, and enhanced for computing a complete CNN layer.

Similarly, the implicit checksum is given by (7.2), where the main difference with (7.1) is that the
sum of the features that get multiplied with the same weight is computed implicitly as presented
in [31].

K−1

∑
k=0

L−1

∑
l=0

N−1

∑
n=0

[(
R

∑
i=0

C

∑
j=0

ai jn−
R

∑
i=0

C

∑
j=0

â(kl)
i jn

)
M−1

∑
m=0

hklnm

]
(7.2)

The proposed library supports checksum units that accompany convolutional layers and can com-
pute the checksum either implicitly or explicitly, depending on the size of the IFM, resulting always
in the most power-efficient version of the checker. In either case, the number of parallel checksum
units utilized is defined by the unrolling of the architecture, as described in Section 2.3. These units
compute the accumulation of features per IFM, multiply their values with the sum of weights from
the M filters and add the individual results to produce the checksum.

7.2.3 Arithmetic Representation and Quantization

The proposed library supports both fixed- and floating-point arithmetic, giving the flexibility to the
designer to select the best, based on the application’s requirements. The FP operators integrated into
the library are based on the FastFloat4HLS [54] open-source HLS library for FP arithmetic that sup-
port custom datatypes as well as dot-product fused operations that –to the best of our knowledge–
have not yet been integrated into any other open-source HLS CNN model. The HLS implementation
for fused dot-product operations that was discussed in Section 5.3 and is integrated in the Fast-
Float4HLS library, allows the design of any term fused dot-product units. This, combined with the

89

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

support for arbitrary datatypes, allows the implementation of custom optimized operators depending
on the characteristics of the CNN layer.

In many cases, the limited memory resources or the need for small integer operators demand a
quantization of the model. Quantization [135] is a method performed during or after the training
phase of a CNN model, to convert the floating-point parameters into integers of either 32, 16 or 8
bit width. Apart from the quantization of its parameters, a quantized CNN model, requires that the
input of each layer should be also quantized before used. This quantization of the inputs is performed
between the layers of the CNNs, by scaling the output of each layer before it is moved to the next
one. To support the inference of quantized models, the hardware should be enhanced to perform
the appropriate quantization and de-quantization operations on the parameters and the data that are
being passed between the CNN layers.

The proposed library is designed to support quantized models, by storing the quantization gen-
erated parameters in the local buffers dedicated to each layer, and by performing the scaling of the
data as an extra operation at the output of each layer.

Overall, the representation of data is determined by the ML engineer’s choice of quantization for
the CNN. To reduce its complexity and improve its efficiency, the ML engineer may opt to quan-
tize its parameters into either smaller floating-point or fixed-point representations. The quantization,
however, comes with an impact to the accuracy of the CNN. By supporting both fixed- and floating-
point representations, as well as quantized models, our proposed library facilitates easy design space
exploration. This enables users to assess the hardware complexity associated with different repre-
sentations and study the tradeoff between model accuracy and hardware complexity.

Table 7.2: The supported layers of the proposed library and their template parameters.
Structural Architectural

Layer FMAP Kernel Stride Dilation Padding Pooling Activation Datatype Unroll Tilling Forward Out ABFT
Conv2D R, C, N, M K, L - - P - A fixed/float Tn, Tm Tr, Tc - True/False
Dense N, M - - - - - A fixed/float Tn, Tm - - -

Pool2D R, C, N K, L - - - Max, Avg - any Tn Tr, Tc - -
Activation R, C, N - - - - - A any Tn Tr, Tc - -

BatchNorm2D R, C, N - - - - - - fixed/float Tn Tr, Tc - -
Flatten R, C, N - - - - - - any Tn, Tm Tr, Tc - -

SConv2D R, C, N, M K, L S - P - A fixed/float Tn, Tm Tr, Tc - True/False
DConv2D R, C, N, M K, L - D P - A fixed/float Tn, Tm Tr, Tc - True/False
QConv2D R, C, N, M K, L - - P - A int Tn, Tm Tr, Tc - True/False
QDense N, M - - - - - A int Tn, Tm - - -

Residual connections
Add R, C, N - - - - - - any Tn Tr, Tc - -
Copy R, C, N - - - - - - any Tn Tr, Tc True/False -

Duplicate - - - - - - - any Tn - - -

A: Linear, ReLU, Sigmoid Softmax

7.2.4 Available Configuration Options per Layer

All supported layers, along with their parameters through which the designer can configure the
architecture, are summarized in Table 7.2. In addition to the conventional C++ implementation
for the Conv2D layer, the optimized architectures for strided and dilated convolutions are realized
through the SConv2D and DConv2D classes, respectively. Furthermore, the QConv2D and QDense
classes handle the corresponding layers for quantized models.

The parameters for each layer can be categorized into two groups; the structural parameters, de-
rived from the model definition, and the architectural parameters, which characterize the hardware
architecture associated with each layer. Starting from the structural parameters, the “FMAP” and

90

7.3 EVALUATION

“Kernel” parameters determine the size of the IFM and the kernel, respectively, bounding the com-
putation loops within the layer. The parameters “Stride” and “Dilation” are exclusive to layers
optimized for their corresponding convolutions, and define the named values. “Padding” is specific
to convolutional layers, dictating the amount of padding on each side of the IFM. In the Pool2D
layer, the “Pooling” parameter selects the pooling function to be implemented, either maximum or
average. Finally, the “Activation” parameter determines which of the supported activation functions
(i.e. Linear, ReLu, Sigmoid, Softmax) will be implemented in-place to the corresponding layer.

The architectural parameters are similar for all the supported layers, with slight variations due to
the differences in input shapes. The “Datatype” parameter, defined as a C++ typename, specifies
the arithmetic representation of input and output data for each layer. In quantized models, this
parameter can be an integer representation of any precision, while for other variants of the Conv2D
layer and for the Dense layer, it can be either a fixed- or floating-point datatype. The remaining layers
support any representation as they do not involve complex mathematical operations. The “Unroll”
and “Tilling” parameters determine the loop optimizations as detailed in Section 2.3. Unrolling
generates Tn and Tm parallel units, where Tn and Tm denote the number of input and output feature
maps, respectively. Layers that maintain the number of feature maps utilize only the Tn parameter. In
the case of the Flatten layer, these parameters dictate the parallelization of data arriving at its input
and those forwarded to its output, respectively. Tiling parameters are applicable to layers with 3D
inputs, enabling the tiling of input feature arrival with respect to the size of the feature map R×C.

Finally, the instantiation of the available functional-safe architectures for the convolutional layers
can be enabled by the “ABFT” parameter.

The Add, Copy, and Duplicate layers facilitate the hardware implementation of residual architec-
tures. Within the C++ model, layer connectivity is achieved using the channel datatype (ac channel)
from the HLSLibs library [113]. To execute the Add operation on the outputs of two layers, both
outputs must be accessible. However, since the pipeline structure may make one output available
earlier than the other, it must be stored until required. This task is performed by the Copy layer.
Meanwhile, the Duplicate layer, as its name suggests, forwards the value of one ac channel, repre-
senting the output of a layer, to two others, serving as inputs for subsequent layers. The “Forward
Out” parameter of the Copy layer, determines whether the stored data are necessary for another layer
and should therefore be forwarded to it.

All these layers can be used to define any CNN architecture, which can be decomposed into these
fundamental elements. However, when it comes to designing a hardware accelerator, the scalability
of the CNN architecture depends on the available resources. Smaller architectures can be fully
unrolled with ease, while larger ones may need to be partially unrolled or fully rolled to fit within
the resource constraints. This constraint arises from the nature of dataflow accelerators, where each
layer cannot be reused. Nonetheless, we are actively working on enhancing our framework to support
implementations capable of reusing existing layers.

In addition to computational resources, larger CNN architectures may also entail a higher num-
ber of parameters. To fit these parameters into the local buffers, a tradeoff may be studied between
the data width and the accuracy degradation. In any case, very big architectures utilize the exter-
nal memory, thus leading to increased memory communication and potentially impacting overall
throughput.

7.3 Evaluation

To showcase the capabilities of the proposed framework, first, we illustrate its effectiveness through
three distinct application scenarios. In each case, we crafted and accelerated a unique machine
learning model on an FPGA platform. Second, we compare the properties of the proposed C++

91

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

library and the efficiency of the hardware generated from it to other accelerator frameworks and
generators found in the literature.

7.3.1 Evaluation Setup

The models for the three applications were first implemented and trained in PyTorch. We then con-
verted them into C++ using our proposed Python API. The C++ code was then used to generate RTL
code through Catapult HLS. Afterward, the Verilog code was synthesized using Vivado 2022.1 tar-
geting a clock frequency of 100MHz, and embedded onto the Virtex-Ultrascale VCU108 Evaluation
board for practical application.

Figure 7.5: Overall architecture of the accelerator system implemented for the Virtex-Ultrascale
VCU108 Evaluation board.

The overall design that is mapped in the FPGA and includes the proposed CNN accelerator is
depicted in Figure 7.5. The overall accelerator block consists of four main parts: (a) the CNN
accelerator; (b) a set of BRAMs that store the parameters per layer of the model; (c) the Double Data
Rate (DDR) memory controller; and (d) a Universal Asynchronous Receiver-Transmiter (UART)
interface for initializing externally on-chip buffering structures. The logic outside the “Accelerator”
block is fixed and it is the same for all examined applications. When the number of parameters of
specific layers exceeds the in-memory storage of the FPGA chip the “Double-buffering” module is
instantiated to transfer online all necessary weight and biases parameters from the external DRAM.
When the parameters of the CNN can be fully stored inside the on-chip memory of the FPGA
“Double-buffering” and DRAM are not utilized.

7.3.2 Examined CNN Models

LeNet

For the first application we designed LeNet [73], a simple image classification model which was
trained for the MNIST [26] dataset and its parameters were quantized to INT8 representation using
quantization-aware training. The model receives input images of size 28×28 and returns a 10-
element vector that classifies the input into one of the numbers from 0 to 9.

In this case, we designed the hardware without any specific latency requirements, targeting on a
small area footprint. To achieve this, we unroll each convolutional layer only with respect to the size
of the kernel K ×L, allowing the dot product of K ×L elements to be performed in parallel. The
remaining components of the architecture were not unrolled, instead they were designed as a fully
pipelined architecture, resulting in a sequential computation for each input and output feature map.

92

7.3 EVALUATION

Table 7.3: Layer characteristics and the unroll factors per layer for the convolutional and fully con-
nected layers of the three applications under review.

Application Layer R C N M K L Tn Tm
conv-0 28 28 1 6 5 5 1 1
conv-1 14 14 6 16 5 5 1 1

LeNet fc-0 - - 400 120 - - 1 1
fc-1 - - 120 84 - - 1 1
fc-2 - - 84 10 - - 1 1
conv-0 32 32 3 16 3 3 1 1
conv-1 32 32 16 16 3 3 1 1
conv-2 32 32 16 16 3 3 1 1
conv-3 (s2) 32 32 16 32 3 3 1 1

MLPerf Tiny conv-4 16 16 32 32 3 3 1 1
conv-5 (s2) 32 32 16 32 1 1 1 1
conv-6 (s2) 16 16 32 64 3 3 1 1
conv-7 8 8 64 64 3 3 1 1
conv-8 (s2) 16 16 32 64 1 1 1 1
fc-0 - - 64 10 - - 1 1
conv-0 38 114 3 18 3 13 3 2

Human conv-1 36 102 18 32 3 13 2 2
activity conv-2 34 90 32 32 3 13 2 2

recognition fc-0 - - 79872 164 - - 8 4
fc-1 - - 164 2 - - 4 2

The small size of the model allows the complete storage of its parameters at the on-chip memory. The
key characteristics of each layer of the model that define its hardware architecture are summarized
in Table 7.3. The selected architecture achieves a latency of 0.8ms for computing a single inference
operation, and due to the pipelined design, it produces a new output result every 0.6ms.

After quantization-aware training, LeNet achieved an accuracy of 98% on 1000 samples from the
MNIST dataset. The corresponding hardware implementation of LeNet, tested on the same dataset,
showed a slight reduction in accuracy, achieving 95.5%.

MLPerf Tiny

For the second scenario, we choose to accelerate MLPerf Tiny [6], a TinyML model that belongs to
the MLPerf [98] benchmarks collection. TinyML models have been proven crucial for edge devices
as they manage to achieve high accuracy and throughput while maintaining a low power and area
profile. MLPerf Tiny has multiple variants depending on the application, however, in this case we
selected the image classification model, trained for the CIFAR10 [68] dataset and quantized to a
16-bit fixed-point representation.

Our goal is to design a hardware accelerator that can support a 60fps input frame rate, meaning
that a new input will insert the architecture every 16.6ms. To achieve that, we have fully unrolled the
kernel loops K, L, while the rest of the loops remain fully rolled and pipelined, as shown in Table 7.3.
In addition, the convolutional layers with stride 2, which are found in the model and are denoted as
(s2) on Table 7.3, have been implemented using the optimized architecture of LeapConv [32] that is
integrated into the proposed library.

The selected architecture presents a 12.8ms latency, while its pipelined implementation enables
a throughput of 11ms. After running 1000 inference operations, the accuracy of the implemented
accelerator was measured to be 83%, very close to the 86% reported by the MLPerf Tiny bench-
marks [6].

93

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

Figure 7.6: The resource utilization for the three applications implemented for the Virtex Ultrascale
VCU108 Evaluation board.

Human-activity recognition

In the third scenario, we opted for a technique tailored for recognizing human activities based on
joint awareness [89]. In this particular instance, a 2-dimensional CNN architecture is utilized to
categorize five typical daily activities in indoor settings using 3-D skeletal data. The CNN model
comprises three convolutional layers, followed by two fully connected layers, as shown in Table 7.3.
In this approach, the input to the 2-D CNN model consists of a vector containing the x, y, and z
coordinates of the human body’s joints, identified as the most indicative for each action scenario.

To identify the five different activities, the model has been trained separately for each one, and
during the inference, each input has to pass five times from the CNN, each time using a different
set of parameters. Each input is constructed using 114 frames of a video. The data are being pre-
processed and fed into the accelerator through the UART interface with a Baud Rate of 921600,
meaning a new input will arrive almost every 80ms. For the accelerator to perform the five inference
operations inside this time period, each inference should take at maximum 16ms, while the updating
of the on-chip memory of the FPGA with the next set of parameters is performed in parallel to the
inference operation, and after each layer is finished.

Every layer of the CNN, except the first fully connected layer, fc-0, has its parameters stored
inside the on-chip memory. In the case of fc-0, the big size of its parameters, suggests that only a
part of them will be stored inside the on-chip memory, which will update its content on-line during
the inference operation.

Looking at the parameters outlined in Table 7.3, the kernel loops have been fully unrolled, while
the loops that iterate of the N and M dimensions have been partially unrolled by the factors of Tn and
Tm respectively. These architectural choices facilitate the implementation of a hardware structure
adhering to latency requirements by achieving a latency of 16ms per inference operation.

In terms of accuracy, the implemented accelerator achieves an overall accuracy of 84.2%, showing
a minimal reduction compared to the 86.4% accuracy reported by the corresponding software model.

The observed accuracy degradation in all application examples is attributed to the utilization of
quantized fixed-point arithmetic in all operations, relative to the floating-point representation em-
ployed in the reference model. This accuracy loss can be ameliorated by allowing either in-training
quantization or employ more sophisticated post-training quantization techniques. Selecting the ap-
propriate quantization approach is orthogonal to the introduced HLS-design framework introduced
in this work.

7.3.3 Hardware Complexity Results

Using the parameters from Table 7.3, we synthesized the three models for the Virtex-Ultrascale
VCU108 Evaluation Board. For our evaluation, we designed each convolutional layer accompanied
by a checksum checker to monitor the correctness of the computations. The resource utilization

94

7.3 EVALUATION

for each of the three applications is summarized in Figure 7.6. Each bar represents the sum of
resources required for the actual CNN accelerator and the resources associated with the checker
component of the design. In each case, the checker component is relatively small compared to the
overall architecture, contributing approximately 16% to the total resource utilization. The additional
BRAMs, that are observed in the MLPerf Tiny and Human-activity recognition cases, are employed
to build the accumulators within the design’s checkers. This quantity of BRAMs correlates directly
with both the number and size of convolutional layers within the CNN architecture, as the number
of IFMs per layer directly impacts the count of accumulators in the checker’s circuit. Furthermore,
the increased count of convolutional layers in the MLPerf Tiny application results in an increased
number of checkers, necessitating a greater number of DSPs to execute these operations efficiently.

Looking at the overall resource utilization, the compact size of LeNet results in very low resource
usage, while its 8-bit quantization minimizes the demand for DSPs. MLPerf Tiny exhibits higher
resource utilization due to its increased number of layers and its 16-bit quantization. Finally, the
human-activity recognition model, despite its smaller architecture compared to MLPerf Tiny, con-
sumes a significant amount of resources due to the increased hardware unrolling.

Figure 7.7: Power consumption for the three applications implemented on the Virtex-ultrascale
VCU108 Evaluation board at 100MHz.

The power consumption of the three models is illustrated in Figure 7.7. Power measurements
were conducted through post-implementation simulations using Vivado 2022.1, following the system
organization described in Section 7.3.1. The input data utilized to estimate power consumption aligns
with the data employed in our accuracy evaluation. For the first two cases, input data was sourced
from the respective datasets, namely MNIST [26] and CIFAR10 [68]. In the third case, input data
was collected from a group of healthy individuals with an average age of 69 ± 5 years. These
individuals were free from mobility or cognitive impairments and participated in motion capture
sessions [85].

For each application, we provide the power consumption for the accelerator and the associated
BRAMs, excluding the UART interfaces and DDR memory. Additionally, we highlight the contri-
bution of the checksum checker to the total power consumption. This power overhead is minimal,
accounting for less than 1% in the cases of the LeNet and Human-activity recognition applications.
However, in the case of MLPerf Tiny, it can reach up to 6%, a result of the higher DSP utilization.
In summary, the power overhead introduced by the checker is relatively small. This demonstrates
that the proposed library offers a low-power solution suitable for functional-safe architectures.

7.3.4 Comparison with State-Of-The-Art

To provide a comprehensive overview of the proposed automated CNN design framework, we com-
pare it with similar state-of-the-art design frameworks both in terms of available features and in
terms of the hardware complexity of the designed CNN accelerators for FPGAs.

Table 7.4 summarizes the properties of the most closely related design frameworks. Unlike the

95

7 AUTOMATIC HARDWARE GENERATION FOR CNN ACCELERATORS

Table 7.4: Summary of the various accelerator frameworks found in the literature, in comparison to
the proposed library.

Framework, Model Target Accelerator Design Representation Quantized Loop Pipeline Optimized Residual Functional
Library Instantiation Platform architecture Method Floats Fixed models Unroll Conv. layers Safety

hls4ml [30] Tensorflow, ASIC, Dataflow HLS Any Any ✓ ✓ ✓ ✗ ✓ ✗
Torch FPGA

L. Kalms et al. [60] C++ FPGA Dataflow HLS FP32 Any ✓ ✓ ✓ ✗ ✗ ✗

FlexCNN [8] ONNX FPGA Systolic Array HLS FP32, FIX16, ✗ ✗ ✓ Dilate, ✓ ✗
FP16 FIX8 Transpose

fpgaConvNet [126] Caffe, Torch FPGA Dataflow HLS FP32 Any ✗ ✓ ✓ ✗ ✓ ✗

Caffeine [143] Caffe, Torch, FPGA Systolic-like HLS FP32, Any ✗ ✓ ✓ ✗ ✗ ✗
Tensorflow FP16

DnnWeaver [109] Caffe FPGA Systolic-like RTL ✗ Any ✗ ✓ ✓ ✗ ✗ ✗

Angel-Eye [45] Caffe FPGA Dataflow RTL ✗ FIX16, ✓ ✓ ✓ ✗ ✗ ✗
FIX8

FP-DNN [44] Tensorflow FPGA Systolic Array RTL-HLS FP32 Any ✗ - - ✗ ✓ ✗

Proposed Tensorflow, ASIC, Dataflow HLS Any Any ✓ ✓ ✓ Stride, ✓ ✓
Torch FPGA Dilate

Table 7.5: A comparison of the resources utilization for various FPGA accelerators designed for
VGG-16 and derived from the different frameworks.

Framework Platform Precision Frequency Resources Performance Power
(MHz) LUT (K) FF (K) BRAM DSP GOPs GOPs/kLUT GOPs/DSP (W)

FlexCNN Alveo U250 FIX16 241 682 359 1124 4463 1543.4 2.26 0.34 -
fpgaConvNet Zynq 7020 FIX16 125 53.2 - - 200 48.53 0.91 0.24 1.75
Caffeine Virtex-7 690T FIX16 150 300 - - 2848 354 1.18 0.12 26
Angel-Eye Zynq 7045 FIX16 150 182.6 127.7 486 780 187.8 1.03 0.24 9.63
DnnWeaver Zynq 7020 FIX16 150 35.07 33.2 140 140 31.38 0.91 0.22 -
Proposed UltraScale VCU108 FIX16 100 33.64 27.76 1728 176 31.5 0.93 0.18 3.62

majority of state-of-the-art, the proposed library supports arbitrary-precision floating-point arith-
metic, by leveraging the –in house– developed open-source floating-point library FastFloat4HLS [54].
Similar to FlexCNN [8] that utilizes a versatile systolic array to optimize the computation of Dilated
and Transpose convolutions, the proposed design framework integrates optimized buffering archi-
tectures that enable power efficient dataflow implementations for strided and dilated convolutions.
Additionally, supporting the online self-checking of the output of convolution layers is a unique
feature of the proposed approach.

Table 7.5 summarizes the performance of various FPGA implementations of VGG16. Each case
has been synthesized by a different design framework including state-of-the-art and the proposed
one. Resource utilization data for the state-of-the-art accelerators under comparison was sourced
from the corresponding work’s reported results, with varying FPGA platforms used for different
accelerators. For FlexCNN the reported performance includes only convolution layers of VGG16,
since this framework does not support fully-connected layers. To ensure a fair comparison, perfor-
mance is evaluated relative to resource utilization, as indicated in the GOPs/kLUT and GOPs/DSP
columns of Table 7.5. Overall, the proposed framework demonstrates comparable results to the
majority of accelerators. Likewise, a similar observation can be made concerning power consump-
tion. According to the reported power of the proposed accelerator, 0.91W accounts for device static
power consumption, with the remaining 2.71W attributed to dynamic power consumption. Although
the proposed accelerator demonstrates higher power consumption compared to fgpaConvNet, it still
remains relatively low in comparison to the rest state-of-the-art accelerators.

96

7.4 CONCLUSIONS

7.4 Conclusions

CNNs have emerged as powerful tools in ML applications. This widespread adoption has under-
scored the necessity for specialized hardware accelerators to enhance their performance. In response
to this demand, the framework presented here offers a unique solution by seamlessly integrating the
simplicity of Python-based CNN modeling with the adaptability of HLS. This combination enables
the automated generation of hardware accelerators tailored to specific CNN architectures. Through
rigorous evaluation, the framework demonstrates its capability to produce efficient hardware so-
lutions for various CNN models. Furthermore, compared to other state-of-the-art generators and
frameworks, the proposed approach introduces new features while yielding hardware performance
comparable to other state-of-the-art approaches.

97

8 Conclusions

8.1 Summary

This dissertation introduces a flexible and automated design framework that streamlines the de-
velopment of hardware accelerators for Convolutional Neural Networks (CNNs) using High-Level
Synthesis (HLS). Aimed at meeting the performance and efficiency demands of machine learning
inference in edge and embedded systems, the framework creates a seamless path from high-level
CNN models—developed in platforms such as TensorFlow or PyTorch—to optimized hardware im-
plementations. By abstracting low-level hardware complexities, the framework accelerates develop-
ment cycles and reduces manual design effort.

Central to the framework is a customizable accelerator generator capable of exploring a wide array
of architectural configurations. It offers fine-grained control over key design dimensions, including
parallelism, buffer organization, tiling schemes, and dataflow strategies. Unlike traditional solutions,
the framework incorporates features that go beyond performance tuning, such as support for safety-
critical applications and advanced memory management techniques. It also provides flexible options
for arithmetic precision and data formats, catering to a broad spectrum of application needs and
hardware budgets.

To address the inefficiencies in specialized convolution types, the framework includes two dedi-
cated hardware engines. LazyDCstream targets dilated convolutions and employs a sliding-window
dataflow optimized for structured reuse. Its defining innovation is a “lazy” data fetch mechanism
that ensures consistent and minimal memory traffic, regardless of dilation parameters. LeapConv is
tailored for strided convolution operations, which are typically irregular and inefficient in hardware.
It restructures strided layers into multiple concurrent unity-stride computations that are then unified,
enhancing data reuse and reducing redundant memory access.

The thesis also presents ConvGuard, a runtime fault detection mechanism based on Algorithm-
Based Fault Tolerance (ABFT). ConvGuard leverages a newly identified invariance property in con-
volutions to compute checksums from input boundaries, enabling output verification without storing
internal intermediate states. This makes the solution highly efficient in terms of area and power,
while maintaining compatibility with various convolution configurations, including different kernel
sizes and strides.

The framework also supports a broad spectrum of data representation options, from traditional
floating-point to fixed-point and integer formats. Each format is paired with tailored arithmetic units
to ensure efficient computation under varying precision requirements.

In conclusion, this research delivers a comprehensive and practical solution for the automated
generation of CNN hardware accelerators. By uniting high-level design automation with low-level
architectural optimizations, it enables scalable, safe, and efficient deployment of deep learning mod-
els in constrained environments, addressing critical challenges in modern machine learning hardware
design.

99

8 CONCLUSIONS

8.2 Future Work

As machine learning models continue to grow in complexity and diversity, one of the key challenges
for future dataflow ML accelerators lies in supporting highly irregular and dynamic computation
patterns. Emerging models—such as transformers, dynamic neural networks, and sparse architec-
tures—exhibit behavior that deviates significantly from the regular, statically scheduled computation
patterns traditionally favored by dataflow architectures. Designing accelerators that can adaptively
manage data dependencies, irregular memory access patterns, and variable execution paths with-
out sacrificing energy efficiency or throughput remains an open and pressing problem. Future re-
search must explore hybrid scheduling techniques, dynamic dataflow graph reconfiguration, and
fine-grained runtime control to bring dataflow paradigms in line with the evolving needs of modern
ML workloads.

Another major research challenge involves co-optimizing data movement, on-chip memory hier-
archy, and interconnect topologies for next-generation accelerators. As dataflow architectures scale
to support larger models and higher throughput, the cost of moving data—rather than computa-
tion—becomes the dominant factor in both energy consumption and latency. Achieving optimal
data locality while maintaining flexibility requires advances in compiler-guided memory partition-
ing, intelligent buffering, and reconfigurable interconnects. Additionally, the growing importance of
multi-tenant and cloud-edge deployment scenarios calls for dataflow architectures that can dynami-
cally share and isolate resources without incurring significant performance degradation. Addressing
these challenges will be critical for sustaining the scalability, efficiency, and adaptability of dataflow-
based ML acceleration in the years ahead.

Designing ML accelerators for ultra-low-power Systems-on-Chip (SoCs) presents a unique set
of research challenges that go beyond traditional performance-driven optimization. In these power-
constrained environments—typical of wearable, implantable, or always-on edge devices—the en-
ergy cost of memory access, data movement, and leakage dominates computation, requiring a fun-
damental rethinking of accelerator microarchitecture. Key challenges include developing energy-
proportional dataflows, aggressively minimizing off-chip memory usage, and exploiting approxi-
mate computing or in-situ processing to reduce power without compromising essential accuracy.
Additionally, ultra-low-power ML accelerators must support fine-grained power gating, scalable
voltage-frequency domains, and efficient wake-up mechanisms to adapt to intermittent workloads
and energy harvesting conditions. Balancing programmability, model flexibility, and extreme en-
ergy efficiency remains an open problem, especially as applications demand increasingly complex
inference tasks on sub-milliwatt budgets.

Finally, future research in functional safety for ML accelerators must evolve beyond basic fault
detection mechanisms to address end-to-end system-level safety in increasingly autonomous and
critical applications. While current approaches, such as error detection in convolutional layers or
arithmetic units, provide localized protection, they fall short of guaranteeing correct behavior at the
system level, especially under silent data corruptions or adversarial fault scenarios. Ensuring end-
to-end safety requires a holistic approach that encompasses model-level robustness, data integrity
across the memory hierarchy, and fault propagation analysis throughout the entire inference pipeline.
Moreover, future ML accelerators must support adaptive safety mechanisms that can dynamically
adjust protection levels based on workload criticality, real-time operating conditions, or detected
anomalies. Integrating formal verification, resilience-aware compilation, and runtime monitoring
into the accelerator stack will be essential to meet the stringent reliability demands of domains such
as autonomous vehicles, medical devices, and industrial automation, where incorrect predictions,
even if rare, can have catastrophic consequences.

100

Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[2] Ankur Agrawal, Silvia M. Mueller, Bruce M. Fleischer, Xiao Sun, Naigang Wang, Jungwook
Choi, and Kailash Gopalakrishnan. DLFloat: A 16-b Floating Point format designed for
Deep Learning Training and Inference. In Int. Symp. on Computer Arithmetic (ARITH), 2019.

[3] Kosmas Alexandridis and Giorgos Dimitrakopoulos. Online alignment and addition in mul-
titerm floating-point adders. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 33(4):1182–1186, 2025.

[4] AMD. Vitis HLS.

[5] Michael Andersch, Greg Palmer, Ronny Krashinsky, Nick Stam, Vishal Mehta, Gonzalo
Brito, and Sridhar Ramaswamy. NVIDIA Hopper architecture, 2022.

[6] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Ki-
raly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al. Mlperf tiny bench-
mark. Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, 2021.

[7] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolu-
tional networks for rapid-deployment. Advances in Neural Information Processing Systems,
32, 2019.

[8] Suhail Basalama, Atefeh Sohrabizadeh, Jie Wang, Licheng Guo, and Jason Cong. Flexcnn:
An end-to-end framework for composing cnn accelerators on fpga. ACM Transactions on
Reconfigurable Technology and Systems, 16(2):1–32, 2023.

[9] Robert C Baumann. Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Trans. on Device and Materials Reliability, 5(3):305–316, 2005.

[10] Ismet Bayraktaroglu and Alex Orailoglu. Concurrent test for digital linear systems. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 20(9):1132–1142,
2001.

[11] Michaela Blott et al. FINN-R: An end-to-end deep-learning framework for fast exploration of
quantized neural networks. ACM Trans. on Reconfigurable Technology and Systems, 11(3):1–
23, 2018.

[12] Shekhar Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

101

BIBLIOGRAPHY

[13] Neil Burgess, Jelena Milanovic, Nigel Stephens, Konstantinos Monachopoulos, and David
Mansell. Bfloat16 processing for neural networks. In 2019 IEEE 26th Symposium on Com-
puter Arithmetic (ARITH), pages 88–91. IEEE, 2019.

[14] Cadence. Genus Synthesis Solution.

[15] Cadence. Innovus Implementation System.

[16] Narendra Chaudhary, Sanchit Misra, Dhiraj Kalamkar, Alexander Heinecke, Evangelos Geor-
ganas, Barukh Ziv, Menachem Adelman, and Bharat Kaul. Efficient and Generic 1D Dilated
Convolution Layer for Deep Learning. arXiv:2104.08002, 2021.

[17] Chun-Fu Richard Chen, Rameswar Panda, Kandan Ramakrishnan, Rogerio Feris, John Cohn,
Aude Oliva, and Quanfu Fan. Deep analysis of cnn-based spatio-temporal representations
for action recognition. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6165–6175, 2021.

[18] Jieyang Chen, Xin Liang, and Zizhong Chen. Online algorithm-based fault tolerance for
cholesky decomposition on heterogeneous systems with GPUs. In IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), pages 993–1002, 2016.

[19] Liang-Chieh Chen et al. Deeplab: Semantic image segmentation with deep convolutional
nets, à trous convolution, and fully connected crfs. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 40(4):834–848, 2017.

[20] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices. IEEE JETCAS, 9(2):292–308, 2019.

[21] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quan-
tized neural networks. arXiv preprint arXiv:1805.06085, 2018.

[22] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural
networks for efficient inference. In 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3009–3018. IEEE, 2019.

[23] Steven Colleman, Man Shi, and Marian Verhelst. Coac: Cross-layer optimization of accel-
erator configurability for efficient cnn processing. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2023.

[24] Florent De Dinechin, Bogdan Pasca, and E Normale. Custom arithmetic datapath design for
FPGAs using the FloPoCo core generator. IEEE Design & Test of Computers, 28(4):18–27,
2011.

[25] Allison McCarn Deiana et al. Applications and techniques for fast machine learning in sci-
ence. Frontiers in big Data, 5, 2022.

[26] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[27] Giorgos Dimitrakopoulos, Kostas Galanopoulos, Christos Mavrokefalidis, and Dimitris Niko-
los. Low-power leading-zero counting and anticipation logic for high-speed floating point
units. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(7):837–850,
2008.

102

BIBLIOGRAPHY

[28] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
arXiv:1603.07285, 2016.

[29] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. In International Conference on Machine Learning, pages
2943–2952. PMLR, 2020.

[30] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jindariani, Nhan
Tran, Luca P Carloni, Giuseppe Di Guglielmo, Philip Harris, Jeffrey Krupa, et al. hls4ml: An
open-source codesign workflow to empower scientific low-power machine learning devices.
arXiv preprint arXiv:2103.05579, 2021.

[31] Dionysios Filippas, Nikolaos Margomenos, Nikolaos Mitianoudis, Chrysostomos Nicopou-
los, and Giorgos Dimitrakopoulos. Low-cost online convolution checksum checker. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 30(2):201–212, 2021.

[32] Dionysios Filippas, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos. Leapconv:
An energy-efficient streaming convolution engine with reconfigurable stride. In 2022 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 200–205. IEEE, 2022.

[33] Dionysios Filippas, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos. Templatized
fused vector floating-point dot product for high-level synthesis. Journal of Low Power Elec-
tronics and Applications, 12(4):56, 2022.

[34] Dionysios Filippas, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos. Streaming di-
lated convolution engine. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2023.

[35] Dionysios Filippas, Christodoulos Peltekis, Giorgos Dimitrakopoulos, and Chrysostomos
Nicopoulos. Reduced-precision floating-point arithmetic in systolic arrays with skewed
pipelines. In 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pages 1–5, 2023.

[36] Dionysios Filippas, Christodoulos Peltekis, Vasileios Titopoulos, Ioannis Kansizoglou, Geor-
gios CH Sirakoulis, Antonios Gasteratos, and Giorgos Dimitrakopoulos. A high-level syn-
thesis library for synthesizing efficient and functional-safe cnn dataflow accelerators. IEEE
Access, 12:57194–57208, 2024.

[37] Michael Fingeroff. High-level synthesis: blue book. Xlibris Corporation, 2010.

[38] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[39] Sameh Galal and Mark Horowitz. Latency sensitive fma design. In IEEE Symp. on Comp.
Arithmetic (ARITH), pages 129–138, 2011.

[40] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry
Zhao, Daniel Grubb, Harrison Liew, Howard Mao, et al. Gemmini: Enabling systematic deep-
learning architecture evaluation via full-stack integration. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 769–774. IEEE, 2021.

[41] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt
Keutzer. A survey of quantization methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021.

103

BIBLIOGRAPHY

[42] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson, 3rd edition, 2007.

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[44] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen, Guangyu Sun,
Wei Zhang, and Jason Cong. Fp-dnn: An automated framework for mapping deep neural
networks onto fpgas with rtl-hls hybrid templates. In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 152–159.
IEEE, 2017.

[45] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han,
Yu Wang, and Huazhong Yang. Angel-eye: A complete design flow for mapping cnn onto
embedded fpga. IEEE transactions on computer-aided design of integrated circuits and sys-
tems, 37(1):35–47, 2017.

[46] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[47] Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, and Stephen W Keckler. Mak-
ing convolutions resilient via algorithm-based error detection techniques. IEEE Trans. on
Dependable and Secure Computing, 2021.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[49] Brian Hickmann and Dennis Bradford. Experimental analysis of matrix multiplication func-
tional units. In IEEE Symp. on Comp. Arithmetic (ARITH), pages 116–119, 2019.

[50] Brian Hickmann, Jieasheng Chen, Michael Rotzin, Andrew Yang, Maciej Urbanski, and
Sasikanth Avancha. Intel Nervana Neural Network Processor-T (NPP-T) Fused Floating Point
Many-Term Dot Product. In IEEE Symp. on Comp. Arithmetic (ARITH), pages 133–136,
2020.

[51] Andrew Hopkins. Silicon evolution for the automotive revolution. ARM whitepaper, 2019.

[52] Andrew G Howard et al. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv:1704.04861, 2017.

[53] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for matrix oper-
ations. IEEE Trans. on Computers, C-33(6):518–528, 1984.

[54] IC-Lab-DUTH Repository. FastFloat4HLS C++ Library, 2022.

[55] Lenos Ioannou, Abdullah Al-Dujaili, and Suhaib A. Fahmy. High throughput spatial con-
volution filters on FPGAs. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
28(6):1392–1402, 2020.

[56] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2704–2713, 2018.

104

BIBLIOGRAPHY

[57] Norman P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit. In Int.
Symp. on Comp. Arch. (ISCA), page 1–12, 2017.

[58] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin,
George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant
Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David Patterson. Ten Lessons From
Three Generations Shaped Google’s TPUv4i. In International Symposium on Computer Ar-
chitecture (ISCA), pages 1–14. IEEE, 2021.

[59] William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture Notes on the
Status of IEEE, 754(94720-1776):11, 1996.

[60] Lester Kalms, Pedram Amini Rad, Muhammad Ali, Arsany Iskander, and Diana Göhringer. A
parametrizable high-level synthesis library for accelerating neural networks on fpgas. Journal
of Signal Processing Systems, 93(5):513–529, 2021.

[61] Philipp Käsgen and Markus Weinhardt. Using Template Metaprogramming for Hardware
Description. Universität Tübingen, 2018.

[62] Himanshu Kaul, Mark Anders, Sanu Mathew, Seongjong Kim, and Ram Krishnamurthy. Op-
timized fused floating-point many-term dot-product hardware for machine learning accelera-
tors. In IEEE Symp. on Comp. Arithmetic (ARITH), pages 84–87, 2019.

[63] Donghyun Kim and Lee-Sup Kim. A floating-point unit for 4d vector inner product with
reduced latency. IEEE Trans. on computers, 58(7):890–901, 2008.

[64] Chen Kong and Simon Lucey. Take it in your stride: Do we need striding in CNNs? arXiv
e-prints, December 2017.

[65] Israel Koren and C. Krishna. Fault-Tolerant Systems. Morgan Kaufmann, 2020.

[66] Mikhail V Koroteev. Bert: a review of applications in natural language processing and under-
standing. arXiv preprint arXiv:2103.11943, 2021.

[67] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference:
A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[68] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages. Tech Report, 2009.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[70] Hsiang-Tsung Kung. Why systolic architecture? Design Research Center, Carnegie-Mellon
University, 1982.

[71] Hsiang Tsung Kung and Charles E Leiserson. Systolic arrays (for vlsi). In Sparse Matrix
Proceedings 1978, volume 1, pages 256–282. Society for industrial and applied mathematics
Philadelphia, PA, USA, 1979.

[72] Tomas Lang and Javier D Bruguera. Floating-point multiply-add-fused with reduced latency.
IEEE Transactions on Computers, 53(8):988–1003, 2004.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

105

BIBLIOGRAPHY

[74] Jounghoo Lee, Jinwoo Choi, Jaeyeon Kim, Jinho Lee, and Youngsok Kim. Dataflow mirror-
ing: Architectural support for highly efficient fine-grained spatial multitasking on systolic-
array npus. In Design Automation Conference (DAC), pages 247–252. IEEE, 2021.

[75] Sae Kyu Lee, Paul N. Whatmough, David Brooks, and Gu-Yeon Wei. A 16-nm always-on
DNN processor with adaptive clocking and multi-cycle banked srams. IEEE Journal of Solid-
State Circuits, 54(7):1982–1992, 2019.

[76] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman,
Joel Emer, and Stephen W. Keckler. Understanding error propagation in deep learning neural
network (DNN) accelerators and applications. In Proc. of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2017.

[77] Kai Li, Junzhuo Zhou, Boyu Li, Shuxing Yang, Sixiao Huang, Shaobo Luo, Wei Mao, and
Hao Yu. A vector systolic accelerator for multi-precision floating-point high-performance
computing. In IEEE Intern. Conf. on Artificial Intelligence Circuits and Systems (AICAS),
pages 226–229, 2022.

[78] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pages 10012–10022,
2021.

[79] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Sain-
ing Xie. A convnet for the 2020s. In Proc. of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11976–11986, 2022.

[80] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017.

[81] David R. Lutz. Fused multiply-add microarchitecture comprising separate early-normalizing
multiply and add pipelines. In IEEE Symp. on Computer Arithmetic, pages 123–128, 2011.

[82] Yufei Ma et al. Optimizing the convolution operation to accelerate deep neural networks on
FPGA. IEEE Trans. on VLSI Systems, 26(7):1354–1367, 2018.

[83] Thibaut Marty, Tomofumi Yuki, and Steven Derrien. Safe overclocking for CNN accelerators
through algorithm-level error detection. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 39(12):4777–4790, 2020.

[84] Pascal Meinerzhagen, S. M. Yasser Sherazi, Andreas Burg, and Joachim Neves Rodrigues.
Benchmarking of Standard-Cell Based Memories in the Sub-VT Domain in 65-nm CMOS
Technology. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
1(2):173–182, 2011.

[85] Dimitrios Menychtas, Nikolaos Petrou, Ioannis Kansizoglou, Erasmia Giannakou, Athana-
sios Grekidis, Antonios Gasteratos, Vassilios Gourgoulis, Eleni Douda, Ilias Smilios, Maria
Michalopoulou, et al. Gait analysis comparison between manual marking, 2d pose estimation
algorithms, and 3d marker-based system. Frontiers in Rehabilitation Sciences, 4, 2023.

[86] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.

106

BIBLIOGRAPHY

[87] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard
Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8
formats for deep learning. arXiv preprint arXiv:2209.05433, 2022.

[88] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi. Design space
exploration of fpga-based deep convolutional neural networks. In 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 575–580. IEEE, 2016.

[89] Katerina Maria Oikonomou, Ioannis Kansizoglou, Pelagia Manaveli, Athanasios Grekidis,
Dimitrios Menychtas, Nikolaos Aggelousis, Georgios Ch Sirakoulis, and Antonios Gaster-
atos. Joint-aware action recognition for ambient assisted living. In 2022 IEEE International
Conference on Imaging Systems and Techniques (IST), pages 1–6. IEEE, 2022.

[90] ONNX GitHub repository. ONNX: Open Neural Network Exchange.

[91] Junhao Pan and Deming Chen. Accelerate Non-Unit Stride Convolutions with Winograd
Algorithms. In Proceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC), page 358–364, 2021.

[92] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[93] Christodoulos Peltekis, Dionysios Filippas, Giorgos Dimitrakopoulos, Chrysostomos
Nicopoulos, and Dionisios Pnevmatikatos. ArrayFlex: A Systolic Array Architecture with
Configurable Transparent Pipelining. In Design Automation and Test in Europe (DATE),
2023.

[94] Lucian Petrica et al. Memory-efficient dataflow inference for deep CNNs on fpga. In IEEE
Intern. Conf. on Field-Programmable Technology (ICFPT), pages 48–55, 2020.

[95] Stanislaw J. Piestrak and Piotr Patronik. Design of fault-secure transposed fir filters protected
using residue codes. In Euromicro Conference on Digital System Design, pages 575–582,
2014.

[96] Md Aminur Rab Ratul et al. Skin lesions classification using deep learning based on dilated
convolution. BioRxiv, page 860700, 2020.

[97] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu Lee, Niamh Mul-
holland, David Brooks, and Gu-Yeon Wei. Ares: A framework for quantifying the resilience
of deep neural networks. In Design Automation Conference (DAC), 2018.

[98] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling,
Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou,
Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave
Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St.
John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng
Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath
Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei,
Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao
Zhang, and Yuchen Zhou. Mlperf inference benchmark, 2019.

107

BIBLIOGRAPHY

[99] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once:
Unified, Real-Time Object Detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[100] Esther Roorda, Seyedramin Rasoulinezhad, Philip HW Leong, and Steven JE Wilton. Fpga
architecture exploration for dnn acceleration. ACM Transactions on Reconfigurable Technol-
ogy and Systems (TRETS), 15(3):1–37, 2022.

[101] Frank Rosenblatt et al. Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms, volume 55. Spartan books Washington, DC, 1962.

[102] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[103] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[104] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. An analysis of ISO 26262: Using
machine learning safely in automotive software, 2017.

[105] Hani H Saleh and Earl E Swartzlander. A floating-point fused dot-product unit. In 2008 IEEE
International Conference on Computer Design, pages 427–431. IEEE, 2008.

[106] Ananda Samajdar et al. A systematic methodology for characterizing scalability of DNN
accelerators using scale-sim. In IEEE Int. Symp. on Perf. Analysis of Systems and Software
(ISPASS), pages 58–68, 2020.

[107] Martin S Schmookler and Kevin J Nowka. Leading zero anticipation and detection-a compar-
ison of methods. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages
7–12, 2001.

[108] Peter-Michael Seidel and Guy Even. On the design of fast ieee floating-point adders. In
Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages 184–194, 2001.

[109] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai
Shao, Asit Mishra, and Hadi Esmaeilzadeh. From high-level deep neural models to fpgas.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12. IEEE, 2016.

[110] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. FPGA-based accelerators of deep
learning networks for learning and classification: A review. IEEE Access, 7:7823–7859, 2019.

[111] Siemens EDA. Catapult High Level Synthesis.

[112] Siemens EDA. Questa Advanced Simulator.

[113] Siemens EDA. Algorithmic C (AC) Datatypes Reference Manual, 2022.

[114] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[115] Jongwook Sohn and Earl E Swartzlander. Improved architectures for a floating-point fused
dot product unit. In IEEE Symp. on Comp. Arithmetic (ARITH), pages 41–48, 2013.

108

BIBLIOGRAPHY

[116] Greg Stitt, Abhay Gupta, Madison N. Emas, David Wilson, and Austin Baylis. Scalable
Window Generation for the Intel Broadwell+Arria 10 and High-Bandwidth FPGA Systems.
In Proc. of the Intern. Symp. on Field-Programmable Gate Arrays, page 173–182, 2018.

[117] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[118] Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander
Rush, David Brooks, and Gu-Yeon Wei. Algorithm-hardware co-design of adaptive floating-
point encodings for resilient deep learning inference. In Design Automation Conference
(DAC), pages 1–6, 2020.

[119] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM: Real-Time
Dense Monocular SLAM with Learned Depth Prediction. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 6243–6252, 2017.

[120] David B Thomas. Templatised soft floating-point for high-level synthesis. In IEEE Intern.
Symp. on Field-Programmable Custom Computing Machines (FCCM), pages 227–235, 2019.

[121] Yohann Uguen, Florent De Dinechin, Victor Lezaud, and Steven Derrien. Application-specific
arithmetic in high-level synthesis tools. ACM Trans. on Architecture and Code Optimization
(TACO), 17(1):1–23, 2020.

[122] Ultralytics. YOLOv5.

[123] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA international symposium on
field-programmable gate arrays, pages 65–74, 2017.

[124] Aravind Vasudevan, Andrew Anderson, and David Gregg. Parallel multi channel convolu-
tion using general matrix multiplication. In 2017 IEEE 28th international conference on
application-specific systems, architectures and processors (ASAP), pages 19–24. IEEE, 2017.

[125] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[126] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaconvnet: Mapping regular and ir-
regular convolutional neural networks on fpgas. IEEE transactions on neural networks and
learning systems, 30(2):326–342, 2018.

[127] Shibo Wang and Pankaj Kanwar. BFloat16: The secret to high performance on Cloud TPUs.
Google Cloud Blog, 4, 2019.

[128] Sying-Jyan Wang and N.K. Jha. Algorithm-based fault tolerance for FFT networks. IEEE
Trans. on Computers, 43(7):849–854, 1994.

[129] Zhengyang Wang and Shuiwang Ji. Smoothed dilated convolutions for improved dense pre-
diction. Data Mining and Knowledge Discovery, 35(4):1470–1496, 2021.

[130] Neil Weste and David Harris. CMOS VLSI Design a Circuits and Systems Perspective. Addi-
son Wesley (3rd Edition), 2010.

109

BIBLIOGRAPHY

[131] Paul Whatmough et al. FixyNN: Energy-efficient real-time mobile computer vision hardware
acceleration via transfer learning. Machine Learning and Systems, 1:107–119, 2019.

[132] Paul Whatmough, Sae Lee, David Brooks, and Gu-Yeon Wei. DNN engine: A 28-nm timing-
error tolerant sparse deep neural network processor for iot applications. IEEE Journal of
Solid-State Circuits, PP:1–10, 06 2018.

[133] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[134] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon,
and Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 16133–16142, 2023.

[135] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer
quantization for deep learning inference: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

[136] Panruo Wu, Qiang Guan, Nathan DeBardeleben, Sean Blanchard, Dingwen Tao, Xin Liang,
Jieyang Chen, and Zizhong Chen. Towards practical algorithm based fault tolerance in dense
linear algebra. In Proc. of the ACM Intern. Symp.on High-Performance Parallel and Dis-
tributed Computing, page 31–42, 2016.

[137] Xilinx. Vitis HLS Hardware Design Methodology - Arbitrary Precision Datatypes - Floats
and Doubles, 2022.

[138] Chen Yang, Yizhou Wang, Xiaoli Wang, and Li Geng. A Stride-Based Convolution Decom-
position Method to Stretch CNN Acceleration Algorithms for Efficient and Flexible Hardware
Implementation. IEEE Trans. on Circuits and Systems I, 67(9):3007–3020, 2020.

[139] Rongtian Ye, Fangyu Liu, and Liqiang Zhang. 3D Depthwise Convolution: Reducing Model
Parameters in 3D Vision Tasks. In Canadian AI 2019: Advances in Artificial Intelligence,
2019.

[140] Juan Yepez and Seok-Bum Ko. Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional
Neural Networks. IEEE Trans. on VLSI Systems, 28(4):853–863, 2020.

[141] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent Trends in Deep
Learning Based Natural Language Processing. IEEE Computational Intelligence Magazine,
13(3):55 – 75, 2018.

[142] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA international symposium on field-programmable gate arrays, pages 161–
170, 2015.

[143] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, and Jason Cong. Caffeine: To-
wards uniformed representation and acceleration for deep convolutional neural networks. In
Proceedings of the ACM Turing Award Celebration Conference-China 2023, pages 47–48,
2023.

110

BIBLIOGRAPHY

[144] Hao Zhang, Dongdong Chen, and Seok-Bum Ko. Efficient multiple-precision floating-
point fused multiply-add with mixed-precision support. IEEE Transactions on Computers,
68(7):1035–1048, 2019.

[145] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming Ouyang,
Franck Cappello, and Zizhong Chen. FT-CNN: Algorithm-based fault tolerance for convolu-
tional neural networks. IEEE Trans. on Parallel and Distributed Systems, 32(7):1677–1689,
2021.

[146] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

111

	Introduction
	Machine Learning Models
	Multi-Layer Perceptrons
	Convolution Neural Networks

	Evolution of Neural Network Architectures Beyond Convolution
	Using Machine Learning Models

	Hardware Acceleration of Machine Learning Models
	High-Level Synthesis of Machine Learning Accelerators
	Thesis Contribution
	Thesis Organization

	Hardware Accelerators for Convolutional Neural Networks
	Systolic-Array Accelerators
	Architecture of a Systolic Array
	Data Flow in Systolic Array Architectures

	Spatial Pipeline-Dataflow Accelerators
	Organization of a Spatial Pipeline-Dataflow Accelerator
	Streaming Convolution Engine

	Customizing the Architecture of a Spatial Pipeline-Dataflow Accelerator
	Loop Unrolling
	Loop Tiling
	Loop Interchange

	Energy Efficient Buffering for Non-Traditional Spatial Convolutions
	Optimized Buffering for Strided Convolutions
	LeapConv: Architectural Overview
	Evaluation

	Optimized Buffering for Dilated Convolutions
	LazyDCstream: Architectural Overview
	Evaluation

	Conclusions

	CNN specific Algorithm-based Fault Tolerance
	Prediction of Convolution Checksum
	An Invariant Condition for Convolution Checksum
	Explicit and Implicit Prediction of the Output Checksum

	On-line Checker Architecture
	Checker Organization
	When does Implicit Prediction of the Output Checksum make Sense?

	Checking Non-Unity Stride Convolutions
	Checking Independently per Channel
	Generalized Checker

	Evaluation
	Hardware Overhead added to check an Optimized Convolution Engine
	Hardware Complexity Comparison with a State-Of-The-Art Checker
	Fault Detection Comparison with a State-Of-The-Art Checker

	Conclusions

	Customized Floating-Point Operators for ML Accelerators
	Floating-Point Representations
	Basic Floating-Point Operations
	Addition
	Multiplication

	Fused Dot-Product operators for Dataflow Accelerators
	Using the Dot Product in C++
	Architecture of the Fused FP Dot Product

	Evaluation
	Identifying State-of-the-Art Non-Fused FP Vector Dot Product Configurations
	Comparisons with the Proposed Fused Vector FP Dot Product Architecture
	Performance Summary of Fused Dot Product Architectures

	Conclusions

	Reduced Precision Fused Multiply Add Operators for Systolic Arrays
	Systolic Arrays using Floating-Point Arithmetic
	The Proposed Skewed Pipeline Architecture
	The serialization problem
	Removing dependencies using speculative paths

	Evaluation
	Conclusions

	Automatic Hardware Generation for CNN Accelerators
	Enabling Fast Acceleration Directly from Python
	Python to HLS-Ready C++ Conversion

	Configuration of the CNN Accelerator
	Optimized Buffering for Spatial Convolutions
	Integrated Checksum Checker
	Arithmetic Representation and Quantization
	Available Configuration Options per Layer

	Evaluation
	Evaluation Setup
	Examined CNN Models
	Hardware Complexity Results
	Comparison with State-Of-The-Art

	Conclusions

	Conclusions
	Summary
	Future Work

	Bibliography

