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Era of extreme integration

Multi-Cores are found on all kinds of devices & sizes
(Mobile, Automotive, Data Center, Wearables, loT sensors, Desktop, ...)

CMPs (chip Multi-Processors) MPSo0Cs (Multi-Processor System-on-Chips)

m Identical cores (CPU+L1+L2/Scratchpad) e Diverse IP cores

m Homogeneous,
regular, Tiled

e Heterogeneous,
irregular

m Driven by 608 PUs

ML applications
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Network-on-Chip: established communication medium
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Messages generated by Cores/Memory/IPs...
m ..are converted to packets & injected to the NoC (through Network Interfaces — NI)

m ..contending with other packets (in Routers)
m ..traversing physical distances (in Links)
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NoCs follow a distributed architecture by construction
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NoC Clocking Challenges

Fully-Synchronous NoC approach not scaling
generator
m Clock Distribution — Clock Tree Synthesis

" Global timing closure becomes challenging as
technology scales

® Clock must reach every chip corner overcoming
PVT variations

m Clock frequency may vary within the NoC

" n Ot J u St at itS bO rd ers Partition A |(Feedthrough)| Partition C

> im
<<

m Regular / Tiled chips can follow a mesochronous clocking discipline to simplify CTS
and timing closure
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Mesochronous Clocking

Clock net with large constant skew
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Mesochronous Synchronizer

Sender's clock domain .
o mod 4 counter . mod 4 counter
m FIFO moves synchronization elsewhere e =)
wr ptr : rd_ptr
m Sample data in using clk_tx A ;
: > :
m Mux data out using clk_rx data_snd . I ke ey
m Constant latency determined at reset al
clk snd ' clk rcv
m High throughput
g ghp Idil Comas,
clk_snd_+_ F 1 + + 1 F

m How do we initialize the pointers?
= Use brute force reset synchronizer

wr_ptr‘:Xl'XZX XeX1X2X3 =
o data_snd /W X C W,
Brute F:orce/@c: r:Jnizers c1k PCV-|_+_,§_+_' + + ,_+ + + |.
rSt—WP*G..E; -------- ------ L_D-’-r‘st_r‘d rdptr 2 X 3 X @ Y\ 1 X\ 2 X 3 X @ X: 2
clk tx B A R N A clk rx data PCV/WM B X C !%

a rst global
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P, .
. no virtual channels
Virtual Channels - =
m Share channel capacity between multiple Po .l & J{] [ [+
data streams blocked
= |nterleave flits from different packets L ) =
P Virtual
: | Channels
0 P.rowde dedicated buffer space for each \ (T
virtual channel K -
= Decouple channels from buffers }(’) _.H -
L1 ]
m “The Swiss Army Knife for Interconnection P, '
Networks” Elj Time-Shared Link
= Prevent deadlocks L /{ L]
= Reduce head-of-line blocking _’D R ~

b i i ~[H
= Also useful for providing Quality-of-Service 0 _*l =. U D
1] ]
I
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Synchronous Virtual-Channel flow-controlled link
bt 44

= Sender maintains credit counters whose values L D
correspond to the free slots of downstream — R155 LR_g ——

==
— i
—— —
P = —

Virtual Channel buffers =

A

A—’

m Forward Flow Control C_'f;;it_ S — dequeue
= Aflit can be transmitted for VC #v only FOUTENE synchronous link
if credit_count[v]>0 —> B data—> | |
= When a flit is transmitted: credit_count|[v]-- VC buffers
output / R1 input / R2

m Backward Flow control

= Receiver frees up a slot on VC #v: a credit update and the VC ID is transmitted to the sender
= When the sender receives a credit update for VC #v: credit_count[v]++

m Sender always in sync with downstream buffer availability
m How to transform a synchronous multi-VC credit-based link to a mesochronous one?
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Mesochronous VC flow-controlled link: The tightly-coupled approach

Sender's clock domain m VC buffers implemented as Vx parallel
Jual-clock mesochronous dual-clock FIFOs
A FIFO , |
> data/vcid-—-)-<<i | } m Backward flow-control altered to fit the
ot o] A BES dual-clock FIFO implementation

m Vx Clock Domain Crossing Points

clk snd clk rcv . . L. . .
) ) CDC points m Possible, but inefficient & impractical
Major Disadvantages
m Increased verification effort

- Multiple CDC points considered bad practice
m No buffer sharing across VCs

= Sharing is highly desirable since it minimizes total buffering
m Increased buffering

"  FIFO synchronizer buffering must be paid per VC due to increased RTT for full throughput
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Mesochronous VC flow-controlled link: The loosely-coupled approach

m 2 mesochronous synchronizers
pass signals on both directions

= Forward path
data (flit, VC ID, head/tail etc.)

= Backward path
credit updates & credited VC IDs

" One CDC point per signal direction
= Synchronizers share counters!

Sender's clock domain .
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m Forward flow control similar to synchronous case
m Data and credits arrive after paying the necessary synchronization latency
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Consolidated interfaces

clock domain A

.............................
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m Bidirectional links are very common in NoC topologies (meshes, rings, trees etc.)

m One synchronization point for each domain’s incoming signals is desirable

® Maximize design safety and minimize verification effort

m Consolidated Interfaces: merge synchronizers that synchronize same-direction signals

= E.g. lower part mesochronous synchronizer syncs data from A’s output to B’s input as well as credits

from A’s input to B’s output
12



ICLab @ DUTH

Minimum buffering required for full (100%) throughput

0 W FastCross [ Tightly Coupled W LIME

W
o

# of slots)

(

RN
o

Buffering

o

m In all cases FIFOs deep enough to cover Round-Trip Time (RTT)

= RTT in FastCross is increased due to the loosely coupled mesochronous synchronization

m FastCross use VC buffer sharing to amortize the increased RTT
= Tightly coupled approaches (LIME is also tightly coupled) does not
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SystemVerilog RTL

Silicon aread Compa risons Synthesis, P&R using standard EDA flow

Standard cell library (45nm, 0.8V, 120°C)

W FastCross [OTightly Coupled BLIME
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m Tightly coupled approaches that integrate input buffering and flow control is
effective when the number of employed VCs is small

m FastCross decouples synchronization from the VC flow-control semantics
= This decoupling enables the use of shared buffering at the receiver that saves hardware area

14
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Conclusions

m As NoCs are turning GALS CDC at the link level become a necessity
= Mesochronous interfaces a viable alternative for tiled/regular architectures
® Clock domain crossing should be smoothly combined with virtual-channel flow control

m FastCross mesochronous VC flow-controlled link offers:
" Credit-based VC flow control under mesochronous clock domains
= An efficient & low-cost implementation with Design Safety & Verification Effort in mind

m FastCross leverages a loosely coupled approach that separates synchronization
from buffering
= Sharing of VC buffers amortizes the cost of separate sync + functional buffering
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