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Streaming Dilated Convolution Engine
Dionysios Filippas, Chrysostomos Nicopoulos and Giorgos Dimitrakopoulos

Abstract—Convolution is one of the most critical operations in
various application domains and its computation should combine
high performance with energy efficiency. This requirement is
critical both for standard convolution and for its other spatial
variants, such as dilated, strided, or transposed convolutions. In
this work, we focus on the design of a streaming convolution en-
gine, called LazyDCstream, that is tuned for dilated convolution.
LazyDCstream utilizes a sliding-window architecture for input
data reuse and leverages the already-known decomposition of
dilated convolution to: (a) maximize window buffer sharing, and
(b) enable “lazy” data movement that keeps data transfers per
clock cycle as few as possible, and, most importantly, independent
of the dilation rate. These two architectural features reduce the
power consumption relative to efficient streaming convolution
engines without introducing any throughput or area penalty.

Index Terms—spatial filtering, dilated convolution, convolu-
tional neural network, low power design

I. INTRODUCTION

The quality of deep learning has increased significantly with
Convolutional Neural Networks (CNNs) [1]. CNNs consist of
multiple convolutional layers that convolve the input feature
maps with multiple filters to produce a new set of output
feature maps [2], [3].

Standard 2D convolution assumes that each filter slides
across the pixels of an input to produce a filtered output.
Several other spatial convolution variants are also possible [3].
Strided convolution assumes that the filter is applied at a stride
of k elements, which reduces the output resolution by the
same factor k. Transposed convolution is the inverse of strided
convolution and increases output resolution. In an effort to
increase the receptive field [4], [5], the filter’s coefficients
are spaced out R elements apart in dilated convolution. Two
examples of an inflated kernel are shown in Fig. 1. For R = 1,
dilated convolution is the same as standard convolution.

The widespread proliferation and adoption of CNNs has
triggered the need to accelerate them directly in hardware.
CNN accelerators are built using mainly two architectural tem-
plates [6]. In the first approach, shown in Fig. 2(a), CNN layers
are executed on systolic array accelerators [7], after transform-
ing convolutions to matrix multiplications [2]. The alternative
setup, shown in Fig. 2(b), involves spatial pipeline dataflow
architectures, such as those in [8], [9], [10], which consist
of multiple streaming engines with each one implementing a
specific CNN layer using locally-stored weights. Data transfers
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Fig. 1. The kernel in a dilated convolution for varying dilation rates.

between the engines occur in a pipelined manner through
convolution-specific buffer architectures that employ line and
window buffers to facilitate data and memory reuse [11], [10],
[12]. The streaming nature of data transfers allows for the use
of much simpler Direct Memory Access (DMA) engines that
are only tasked with rudimentary access patterns. The addition
of support for unconventional convolutions would require the
handling of irregular memory accesses [13], or rearrangement
of the flow of data inside the systolic array [14], [15].

In this work, we focus on the design of a power-efficient
dilated convolution engine that is part of a spatial dataflow
pipeline accelerator (see Fig. 2(b)). Our goal is to optimize the
data movement to reduce power consumption without obstruct-
ing the uninterrupted pipelined flow of data across consecutive
engines, and without relying on any data re-organization, or
any irregular data fetching from a DMA engine. The proposed
design, called LazyDCstream, does not alter the architecture of
the streaming engines themselves. Instead, it optimizes their
buffer usage when performing dilated convolutions, without
restricting any other orthogonal optimizations that may be
employed (e.g., datapath unrolling).

LazyDCstream utilizes the decomposition of dilated convo-
lution to multiple non-dilated convolutions [16] to:

(a) Minimize the amount of buffering needed to support di-
lated convolutions by appropriate time-sharing of buffers;

(b) Improve clock gating efficiency by limiting data switching
activity during the engine’s operation to the absolute
minimum needed for the algorithm’s correctness. In fact,
data movements per cycle are equal to the number of
kernel coefficients and are independent of the dilation rate.

To highlight the effectiveness of LazyDCstream in reducing
power consumption, we designed a spatial dataflow accelerator
that embeds LazyDCstream in each engine and executes infer-
ence on a variant of VGG-16 [17], [18] that includes dilation
in all CNN layers. The experimental results demonstrate that
LazyDCStream can reduce the power consumption of various
CNN layers by 15–39% for ASIC implementations and 2–15%
for FPGA implementations, without incurring any throughput
or area penalty.
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(a) Systolic array accelerator.

(b) Spatial pipeline dataflow accelerator.

Fig. 2. The two main architectural templates used for CNN accelerators.

II. STREAMING CONVOLUTION ENGINES FOR STANDARD
AND DILATED CONVOLUTIONS

The spatial pipelined dataflow accelerators of Fig. 2(b) are
composed of a series of streaming convolution engines, with
each engine adapted to the characteristics of the implemented
CNN layer [6], [8]. To handle incoming data streams, each
engine utilizes a sliding-window memory architecture [10],
[12] that consists of: 1) the line buffers that store the elements
of the active rows of the input feature map, following the
sliding-window pattern of the kernel; 2) a window buffer able
to store all the currently active features of an input feature map
where the corresponding filter will be applied. The size of the
kernel determines the number of line buffers and the size of
the window buffer. For instance, in standard convolution, a
W ×W kernel needs a W ×W window buffer (registers) and
W − 1 line buffers, which are mapped to SRAM blocks.

Incoming input features are pushed in the corresponding
window buffer and in the upper row of line buffers. In the
meantime, the window buffer is filled with data coming from
the line buffers. This data is also moved downwards in the line
buffers, thereby simulating the downward sliding of the filter.
To simulate the rightward sliding of the filter over the input,
the window buffer shifts its content to the right. Following this
data movement, the engine manages to keep the input features
aligned with the corresponding filter coefficients needed in
each cycle to compute a new output. A new output feature
is produced by accumulating the individual results across the
multiple input features maps.

The reference dataflow architecture can be customized to
various performance requirements [19], [9]. Unrolled archi-
tectures using wide enough window and line buffers and
multiple MAC operators can store data from multiple input
feature maps and compute multiple output features per clock
cycle. Other area-efficient architectures allow buffer sharing
by producing only a part of the output features.

Computing dilated convolution for a reference streaming
convolution engine would require more line buffers and a
larger window buffer. In dilated convolution, the filter’s size
is artificially increased according to the dilation rate. For
a W × W kernel and a dilation rate of R, the streaming
convolution engine would need (W − 1)R line buffers and

Fig. 3. The decomposition of a dilated convolution with R = 2 to multiple
independent non-dilated convolutions as proposed in [16]. Each channel works
on the non-dilated version of the kernel applied on parts of the original input.

larger window buffers for all input features. Input data would
be continuously shifted in and out of the window buffers
following the same access pattern. However, in some clock
cycles, those pixels would be multiplied with zero coefficients
without affecting the output. The rows of the window buffers
that contain just the holes of the inflated kernel can be com-
pletely removed, thus simplifying the reference architecture.

III. THE ARCHITECTURE OF LAZYDCSTREAM FOR
DILATED CONVOLUTIONS

Without loss of generality, to easily elucidate the func-
tionality of LazyDCstream, we will henceforth describe the
architecture of a streaming dilated convolution engine that
convolves a single input feature map with a single filter.

Dilated convolution can be decomposed to multiple standard
convolutions applied on different parts of the input [16]. This
decomposition is highlighted in Fig. 3 for a 3×3 kernel applied
using a dilation rate of R = 2. Each one of the four smaller
convolutions (channels) receives a subset of the input and the
same non-dilated 3×3 kernel. For the example shown in Fig. 3
the input is broken down into four channels: A, B, C and D.
A and B consist of data that are found in the even rows of
the input, while C and D consist of data from the odd rows.
Equivalently, A and C contain data from the even columns of
the input, while B and D contain data from the odd columns.

In the general case, a dilated convolution of rate R is split
to R2 channels. Input (i, j) of the input belongs to channel
(k, l) where k = i mod R and l = j mod R. In the example
of Fig. 3, channels A, B, C, and D represent channels (0, 0),
(0, 1), (1, 0), and (1, 1), respectively.

A. Decomposed dilated computation on time-shared hardware

Adopting “as is” the decomposition of a dilated convo-
lution [16] means that it can be computed using multiple
standard streaming convolution engines each one operating on
the original “small” kernel and a subset of the input.

Although such an approach leads to a functionally-correct
design, it has a lot of redundancy. The multipliers and adders
that compute the convolution operation can be shared across
channels. Each arriving data item belongs to one of the four
channels of Fig. 3. Therefore, in only one of the channels
data will need to move (get shifted in the window buffer
and move across line buffers). As a result, in this cycle, only
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one channel needs to compute a new output. To share the
multipliers and adders, we insert multiplexing logic at the input
of the multipliers to pick the correct data depending on which
channel is active. This organization is shown in Fig. 4 for a
3×3 kernel and a dilation rate of R = 2. Each channel consists
of a 3× 3 window buffer and two smaller line buffers, since
each channel performs a convolution on a subset of the input.

Fig. 4. The decomposition of dilated convolution allows its computation
using multiple smaller standard convolution engines that can share a common
parallel multiply-add unit.

In our example, the line buffers of channel A contain data
that come from the even rows and even columns of the input.
In the case of channel B, line buffers store data from the even
rows and odd columns. Since data arrive in a row-wise manner,
the line buffers of channel A and B will contain data from
the same rows but from different columns. This observation
allows us to merge the line buffers from the two channels
into a bigger double-size line buffer (the size of the merged
line buffer is no more than the one used for reference non-
dilated convolution). Data are stored in the line buffers in an
interleaved manner; data from even columns are stored in even
addresses and those from the odd columns are stored in the
odd addresses. The same merging can be done for channels C
and D as shown in Fig. 5. The demultiplexers are used to align
the data transfer from the line buffers to the window buffers
based on the channel that the incoming data item belongs.

Fig. 5. Line buffers that correspond to channels of the same group of rows
can be merged to avoid memory fragmentation. The size of the merged line
buffers is equal to the size of a standard convolution engine.

The streaming mode of data arrival allows our architecture
to be further optimized. In the running example for R = 2,
when reading a specific input row, only two of the four
channels will be active. For the even-numbered rows channels
A and B will be active and C and D will be inactive.
The opposite holds for the odd-numbered rows. This means

that when a data item arrives from a new row, the channels
that correspond to that row will start pushing data into their
window and line buffers, while the rest will stay inactive. This
means that only two window buffers in case of R = 2 are
necessary to compute dilated convolution. Those two window
buffers will be used either by channels A and B or channels
C and D depending on the index of the active row.

Fig. 6. The organization of LazyDCstream for a 3× 3 kernel and a dilation
rate R = 2 that consists of merged line buffers, time-shared window buffers
and a single multiply-add datapath.

To achieve the sharing of the window buffers among all
channels we add extra multiplexing logic at the output of line
buffers that enables the sharing of the window buffers between
the different channels. This is shown in Fig. 6 where the four
line buffers are interleaved depending on the row index of the
current input. Line buffer to window buffer connectivity has
not changed when moving from Fig. 5 to 6. In both cases,
the upper line buffers of all channels feed the middle row of
the corresponding window buffers, while the lower line buffers
feed the last row of the window buffers. Multiplexing logic just
selects which line buffers would feed the the corresponding
rows of the shared window buffers.

In the general case, we need (W − 1)R line buffers that
are active in groups depending on the row index of the input.
We need, as well, R time-shared window buffers, each one
holding the original small kernel of W ×W input data.

B. Lazy data movement

The channels of the decomposed dilated convolution operate
in groups in a mutually exclusive way based on the the row
and column indexes of the incoming input. R window buffers
are time shared across the R active channels. In each cycle,
however, only one window buffer will be active shifting data
and computing output data. The other window buffers can be
clock gated. At most W ×W data movements will occur in
each cycle that correspond to the size of the original (non-
inflated) kernel. This amount of data transfers per clock cycle
is constant and, most importantly, independent of dilation rate.

Fig. 7 illustrates an example on how data move inside
the two time-shared window buffers in the case of 2-dilated
convolution for a 3 × 3 kernel. In cycle tn, channel A is
activated as the new inputs A7, A4 and A1 arrive from the
input channel and the line buffers. The window buffer shifts
its content to the right. During this time, the third column
of the upper window buffer as well as the second and third
columns of the lower window buffer have not yet received
any input. In fact, the lower window buffer does not receive
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Fig. 7. A snapshot of four cycles (three consecutive cycles and one at a
later time) of the operation of LazyDCstream that highlights the reduced data
movement and the clock gating of the registers of the inactive windows.

any inputs in this cycle and thus remains clock gated. On the
contrary, in cycle tn+1, channel B is activated and receives
input {B7, B4, B1} from the corresponding line buffers and
the input to its first column. The rest of its columns are shifted
right, following the operation of standard convolution. In this
cycle, the upper window buffer is clock gated. In the next
cycle tn+2, channel A is activated again while channel B gets
deactivated. The same operation is repeated until the end: the
two window buffers are activated in turns leading to nine data
elements moving per cycle.

When a new row is being read from the input, as in cycle
tm, the two window buffers are used to accommodate the input
from channels C and D. During this time, the outputs have no
dependency to input data from channels A and B and therefore
the data inside the window buffers are overwritten.

Apart from the window buffer, the amount of data transfers
per clock cycle between the line buffers is also constant. On
each new input, only one channel is activated by writing also
data across line buffers (like shifting data downwards). As
shown also Fig. 6, each channel consists of W−1 line buffers.
Thus, W − 1 writes will occur in each clock cycle again
independent of the dilation rate.

Although LazyDCstream is optimized for dilated convolu-
tions, it can also compute standard convolutions in parallel.
For instance, a design that supports a maximum dilation rate
of R can utilize the R window buffers available for computing
R standard convolutions in parallel.

IV. EXPERIMENTAL RESULTS

To highlight the benefits of LazyDCStream, we designed
two spatial dataflow accelerators that both execute inference
on a variant of VGG-16 [17] that employs dilation in all
CNN layers. The first accelerator utilizes LazyDCStream as
its streaming convolution engine, while the second one is a
state-of-the-art architecture, as employed in [10], [19]. As
suggested in [19], even if each CNN layer can employ a
separate datapath unroll factor, it is safe to use a uniform
unroll factor for all layers. For both designs under comparison,
we employed a (4,16) unroll factor for the input and output
features, respectively. Therefore, both designs exhibit the same
amount of parallelism per layer and, thus, have the same total

execution time. They only differ in their buffering architecture
for dilated convolution layers.

All designs have been implemented in C++ and synthesized
to Verilog RTL using Catapult HLS. The buffers in the refer-
ence state-of-the-art design – as used in [10], [11] – operate
directly on the inflated kernel and utilize the same number of
line buffers as LazyDCstream. Using a carefully-designed C++
model for the reference state-of-the-art, hereafter referred to as
“Reference,” allowed Catapult HLS to keep the same multiply-
add units needed for a non-inflated kernel. In this way, the area
complexity of both the Reference and LazyDCstream designs
is almost the same.

A. ASIC implementation results

Fig. 8 reports the average power consumption of LazyDC-
Stream and the Reference design for each CNN layer of the
modified VGG-16 [17]. The modified VGG, similar to the
original one, is split in blocks of two or three CNN layers of
the same dilation rate. The dilation rate increases exponentially
across blocks. Using dilation in all CNN layers (except the first
two) enables us to better quantify the expected savings when
using LazyDCStream. The numbers for each CNN layer also
include the power consumed in padding and in the activation
stages that accompany each convolution layer. Pooling and
fully-connected layers are not shown, since they consume only
a small part of the total power.

Fig. 8. The average power consumption of the Reference and LazyDCstream
architectures for the CNN layers of a modified VGG-16 [17].

Power consumption – both dynamic and leakage – was
estimated after logic synthesis using the PowerPro power
analysis and optimization tool for a 45 nm standard-cell
library. Both designs operate at 500 MHz with 16-bit fixed-
point inputs and weights. Switching activity information was
gathered after feeding the modified VGG-16 with sample
images from ImageNet. Verilog RTL code was derived from
C++ using Catapult HLS and synthesized using the Oasys
logic synthesis tool. The line buffers are mapped to SRAM
macro blocks to minimize the area of the convolution engines.

As can be seen in Fig. 8, LazyDCstream is more power
efficient in all layers that involve dilation, mainly due to its
reduced data movement and its time-shared window buffers.
Power savings range between 15%, for layers with R=2, up
to 39%, for the last block with R=16. Since all CNN layers
utilize the same datapath unroll factor, they exhibit almost the
same power for the same dilation rate. The differences are only
due to data switching activity. For the Reference design, the
power consumption increases with increasing dilation rate. On
the contrary, as expected, LazyDCStream is only marginally
affected by the increase in dilation rate.
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Even though LazyDCstream requires additional multiplex-
ing logic to implement the time sharing of the window buffers,
the area overhead is negligible. The area is dominated by the
line buffers and the parallel multiply-and-add units that are the
same for both the LazyDCstream and Reference designs.

B. FPGA implementation results

Similar conclusions are drawn when considering the FPGA
implementations of the same Reference and LazyDCstream
architectures. We implemented each CNN layer separately on
the Virtex Ultrascale VCU108 Evaluation Board, targeting a
clock frequency of 150 MHz. The results were obtained after
mapping the Verilog RTL code produced by Catapult HLS to
the FPGA using Xilinx Vivado 2021.1.

The average power consumption numbers – for each layer
of the modified VGG-16 – in the two compared designs are
shown in Fig. 9. The obtained results clearly indicate that
LazyDCstream computes dilated convolution with less power.
Depending on the dilation rate of each layer, the power savings
range between 2% (for R=2) to 15% (for R=16), while, in both
cases, static power consumption contributes around 900 mW to
the overall consumption. The key takeaway point is that, unlike
the Reference design, LazyDCstream’s power consumption is
independent of the dilation rate.

Fig. 9. The power consumption of the Reference and LazyDCstream
architectures when implementing the modified VGG-16 layers on the Virtex
Ultrascale VCU108 Evaluation board at 150 MHz.

Regarding the area consumption, Table I reports the utiliza-
tion of FPGA resources for two layers of the modified VGG-
16 [17] for the two architectures. Both designs utilize the same
number of DSP and BRAM blocks, since they employ the
same number of multipliers and adders and the same number
of line buffers. In each case, 576 DSP blocks are used to
implement the parallel MAC operations of 4 × 16 unrolled
3 × 3 filters, while the number of BRAM blocks differs per
layer, as the dilation affects the number of line buffers in
the design. The time-shared operation in LazyDCstream has
two contradictory effects with respect to FPGA utilization:
it increases the number of LUTs required to implement the
multiplexing logic, while it reduces the amount of registers
needed to implement the window buffers.

V. CONCLUSIONS

Dilated convolution spreads the kernel’s coefficient to a
larger window that slides on the input, similar to traditional
convolution. In this way, the receptive field of the applied
filter is enlarged in a computationally efficient manner. In this
work, we take advantage of the “holes” inside the inflated

TABLE I
THE UTILIZATION OF FPGA RESOURCES FOR REFERENCE AND

LAZYDCSTREAM FOR TWO LAYERS OF THE MODIFIED VGG-16.

Layer R Architecture LUTs FFs DSP BRAM
C21 2 LazyDCstream 14688 5862 576 96

Reference 14085 6505 576 96
C41 8 LazyDCstream 15384 7033 576 144

Reference 14256 8160 576 144

filter of a dilated convolution to perform computation in time-
shared streams. These streams operate in groups in a mutually
exclusive way, thus requiring only one set of multiply-add
units and R window buffers of size equal to the original non-
inflated kernel. Most importantly, the data switching activity
remains constant per clock cycle and independent of the
dilation rate.
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