
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Low-Cost Online Convolution Checksum Checker
Dionysios Filippas , Nikolaos Margomenos, Nikolaos Mitianoudis , Senior Member, IEEE,

Chrysostomos Nicopoulos , Member, IEEE, and Giorgos Dimitrakopoulos

Abstract— Managing random hardware faults requires the
faults to be detected online, thus simplifying recovery.
Algorithm-based fault tolerance has been proposed as a low-cost
mechanism to check online the result of computations against
random hardware failures. In this case, the checksum of the
actual result is checked against a predicted checksum computed
in parallel by a hardware checker. In this work, we target the
design of such checkers for convolution engines that are currently
the most critical building block in image processing and computer
vision applications. The proposed convolution checksum checker,
named ConvGuard, utilizes a newly introduced invariance con-
dition of convolution to predict implicitly the output checksum
using only the pixels at the border of the input image. In this way,
ConvGuard reduces the power required for accumulating the
input pixels without requiring large buffers to hold intermediate
checksum results. The design of ConvGuard is generic and
can be configured for different output sizes and strides. The
experimental results show that ConvGuard utilizes only a small
percentage of the area/power of an efficient convolution engine
while being significantly smaller and more power efficient than
a state-of-the-art checksum checker for various practical cases.

Index Terms— Algorithm-based fault tolerance, convolution,
error detection, reliability.

I. INTRODUCTION

CONVOLUTION is an essential operation in image
processing and it is widely applied in image signal

processors [1], [2], camera processing pipelines [3], and com-
putational photography [4]. The importance of convolution has
increased considerably with the emergence of deep learning
and, more specifically, convolutional neural networks (CNNs).
A CNN is a special type of neural network architecture
that relies on convolution layers and has shown remarkable
performance in many application fields, such as computer
vision [5], natural language processing [6], and robotics [7].

This widespread adoption of CNNs has triggered the need
to accelerate them directly in hardware, using a variety of
customized architectures that attempt to balance the need for

Manuscript received July 1, 2021; revised September 19, 2021; accepted
October 6, 2021. The work of Dionysios Filippas, Nikolaos Margomenos, and
Giorgos Dimitrakopoulos was supported by Siemens EDA Research Grant to
Democritus University of Thrace, Greece, on “High-Level Synthesis Research
for System on Chip.” (Corresponding author: Dionysios Filippas.)

Dionysios Filippas, Nikolaos Margomenos, Nikolaos Mitianoudis, and
Giorgos Dimitrakopoulos are with the Department of Electrical and Com-
puter Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
(e-mail: dfilippa@ee.duth.gr; nikomarg2@ee.duth.gr; nmitiano@ee.duth.gr;
dimitrak@ee.duth.gr).

Chrysostomos Nicopoulos is with the Department of Electrical and Com-
puter Engineering, University of Cyprus, 1678 Nicosia, Cyprus (e-mail:
nicopoulos@ucy.ac.cy).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2021.3119511.

Digital Object Identifier 10.1109/TVLSI.2021.3119511

high throughput with energy efficiency [8]. Specialized vector
and tensor processors are designed to accelerate convolutions
by first mapping them to equivalent matrix algebra operations,
covering both dense and sparse data representations [9]–[11].
Dataflow and systolic architectures follow a similar approach,
but orchestrate computation differently, with the goal being to
break the register file bottleneck [12], [13]. Specialized con-
volution engines compute convolutions using sliding-window
architectures and unrolled hardware units, thus taking better
advantage of local buffering and memory reuse [14].

Besides performance and energy-efficiency requirements,
the increasing prevalence of CNNs in safety-critical systems
also increases the need for building resilient CNNs as an essen-
tial piece in guaranteeing the correctness of inference appli-
cations [15], [16]. This combined need for high-performance
computation and functional safety is prevalent in various appli-
cation domains, such as automotive systems. Guaranteeing
correct computation in the presence of random hardware faults
is necessary for safety and possible standards compliance [17].
For instance, ISO 26262 functional safety compliance requires
that systems must function correctly, with potentially unsafe
faults detected and controlled to prevent a hazard [18].
Thus, compliant systems must have very high fault detection
capabilities.

Managing random hardware faults, such as soft [19] and
hard errors [20], requires special hardware modules for fault
detection [21] that allows faults to be detected online and
rapidly, possibly within a few cycles of their occurrence, thus
simplifying recovery. The importance of online error detection
is further increased, if one considers the additional reliability
constraints imposed by modern implementation technologies,
including process variations, device wear-out, and aging [20].
The problem is accentuated in ultralow-power applications
that execute CNN models at the edge in low-voltage setups
to enable always-on intelligence on mobile and Internet-
of-Things (IoT) devices [22], [23].

Algorithm-based fault tolerance (ABFT) techniques [24],
[25] offer a low-cost mechanism to detect abnormal behavior
in matrix-based computations [26] by comparing the true
output checksum with a predicted one. Checksum computation
and checking can be done either in software [27], [28] or in
hardware [29]. In this work, we focus on convolution-specific
ABFT hardware checkers.

In the case of a hardware online checker, as shown in Fig. 1,
the checker is attached to the input and the output of the
convolution engine and computes the true and the predicted
checksums that characterize the result of convolution. When
the two checksums differ, an error flag is asserted.

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4729-3336
https://orcid.org/0000-0003-0898-6102
https://orcid.org/0000-0003-3688-7865
https://orcid.org/0000-0001-6389-6068


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Online checksum checker operates in parallel to the convolution
engine and compares the true and the predicted checksums of convolution.

The checker does not interfere with, or interrupts, the opera-
tion of the convolution engine but simply provides online fault
detection at the checksum level. Checksum checking cannot
distinguish the correctness of every output pixel produced by
the convolution engine. Instead, it checks whether the sum
of a group of output pixels matches the expected sum. In a
similar vein, checking the result of convolution can be done
using residue checking architectures [21], [30] that fall behind
checksum-based hardware checkers, as shown in [29].

The prediction of the convolution checksum should be done
in a cost-efficient manner. In state-of-the-art approaches, such
as [28], [29], and [31], the predicted output checksum is
computed explicitly using the same input pixels used for
the actual convolution. Significant amount of computation
is saved [29] by reusing efficiently the already computed
checksums at the cost of additional buffering to store those
reusable results.

On the contrary, the proposed checksum checker, called
ConvGuard, follows a different approach, enabled by a new
fundamental property of convolution checksums introduced in
this work. Instead of accumulating the input pixels used for the
actual convolution, ConvGuard predicts the output checksum
of convolution implicitly by accumulating only the peripheral
pixels at the border of the input image that are dropped, or not
computed, at the output. In this way, ConvGuard significantly
reduces the power required for accumulating the input pixels,
without requiring large buffers to store intermediate checksum
results. Overall, the key contributions of this work can be
summarized as follows.

1) ConvGuard introduces a novel invariant condition for
2-D convolutions and utilizes it to predict implicitly the
checksum of the convolution output. This alternative
checksum computation can be computed rapidly with
a low-cost hardware module that can easily track the
performance (clock frequency and throughput) of the
monitored convolution engine.

2) The proposed checksum convolution checker can be
configured to various convolution structures, includ-
ing output size and stride. Especially in the case of
nonunity-stride convolutions, only useful input pixels are
accumulated and no redundant computation is involved.

3) The experimental results, using detailed hardware analy-
sis of synthesized designs, highlight that ConvGuard
utilizes only a small percentage of the area/power of
an efficient convolution engine while being significantly
smaller than a state-of-the-art checksum checker [29].

Fig. 2. Examples of output images as a result of the convolution of a 3 × 3
input image and a 2 × 2 filter. The useful output pixels are highlighted in
blue. The rest are the extra outputs that should have been dropped or not
calculated.

The results scale well for increased image and filter
sizes. Also, the minimum buffering requirements of
ConvGuard reduce its susceptibility to bit-flip errors.

The rest of this article is organized as follows. Section II
introduces the invariance condition of convolution checksum
and the implicit checksum prediction. Section III presents
the hardware checker that implements implicit prediction.
Section IV presents the checker for nonunity-stride convo-
lutions. Experimental results are given in Section V, while
conclusions are drawn in Section VI.

II. PREDICTION OF CONVOLUTION CHECKSUM

The convolution of an H × W image x with a filter h of
size M × M is calculated as follows [32]:

ymn =
M−1�
i=0

M−1�
j=0

hi j xm−i,n− j (1)

m ∈ [0, P − 1], n ∈ [0, Q − 1].
Formally, the size of the output y is P × Q, with P =

M + H − 1 and Q = M + W − 1, and is larger than the input
image. However, in practice, the output pixels on the border
of the image may not be computed. In such cases, the output
image is either of equal size to the input image or, most often,
smaller. Fig. 2 shows two possible convolution outputs (the
pixels in blue) for a 3 × 3 input image and a 2 × 2 filter

x =
⎡
⎣x00 x01 x02

x10 x11 x12

x20 x21 x22

⎤
⎦, h =

�
h00 h01

h10 h11

�
.

In the case of yD , convolution is performed only on
the pixels of the input image without requiring any border
padding [14]. Hence, the output image is smaller than the
input image.

Convolution can be equivalently expressed as a matrix–
vector multiplication [8]

y = Ahvec. (2)

Vector hvec contains all the M̂ = M × M coefficients of
the filter arranged one after the other in a row-wise fashion
in one column. Output vector y contains all elements of
convolution (P × Q in total) again in a row-wise fashion.
For the multiplication to be valid, matrix A contains one row
for each application of the filter to the input image, i.e., for
each possible position of the sliding window, including the
outer border. Therefore, since the M̂ filter coefficients will be
multiplied with an equal number of input pixels, matrix A
consists of M̂ columns.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FILIPPAS et al.: LOW-COST ONLINE CONVOLUTION CHECKSUM CHECKER 3

For the convolution of a 3 × 3 input with a 2 × 2 filter, A
consists of all elements of the input from where the filter h
would slide over, assuming a zero-padded border

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 x00

0 0 x00 x01

0 0 x01 x02

0 0 x02 0
0 x00 0 x10

x00 x01 x10 x11

x01 x02 x11 x12

x02 0 x12 0
0 x10 0 x20

x10 x11 x20 x21

x11 x12 x21 x22

x12 0 x22 0
0 x20 0 0

x20 x21 0 0
x21 x22 0 0
x22 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

A. Invariant Condition for Convolution Checksum

Since y = Ahvec, and A = [ai j], every element yi of y is
computed as

yi =
M̂−1�
j=0

ai jh
vec
j . (4)

Summing all yi ’s yields

P Q−1�
i=0

yi =
P Q−1�

i=0

M̂−1�
j=0

ai jh
vec
j . (5)

By rearranging the order of the two sums in (5), we get

P Q−1�
i=0

yi =
M̂−1�
j=0

P Q−1�
i=0

ai j h
vec
j =

M̂−1�
j=0

�
P Q−1�

i=0

ai j

�
hvec

j . (6)

The sum inside the parentheses of (6) corresponds to the
sum of the elements of the j th column of A. It can easily
be observed in (3) and proven in the general case that the
sum of the input pixels of each column of A is the same for
all columns and equal to the sum of all pixels of the input.
Therefore, we can replace


P Q−1
i=0 ai j with


H−1
k=0


W−1
l=0 xkl .

Based on this observation, we can write

P Q−1�
i=0

yi =
M̂−1�
j=0

�
H−1�
k=0

W−1�
l=0

xkl

�
hvec

j

=
�

H−1�
k=0

W−1�
l=0

xkl

�⎛
⎝M̂−1�

j=0

hvec
j

⎞
⎠. (7)

In other words, in (7), we have shown that the sum of all
output pixels of the convolution is equal to the product of the
sum of all input data elements xkl with the sum of all the
filter’s coefficients.

Let Sy denote the set of indices that support image y and Sh

and Sx denote the indices that support h and x , respectively.
The invariance condition (7) becomes

�
i∈Sy

yi =
⎛
⎝�

k∈Sx

xk

⎞
⎠

⎛
⎝�

j∈Sh

h j

⎞
⎠. (8)

The set Sy can be divided into two sets Sxtr
y and Scrp

y that
denote the pixel indices that are cropped from the original
image and the pixel indices that remain in the cropped image,
respectively. The set of Sxtr

y is not fixed and it represents
all pixels that are left off, depending on the choice of the
useful output and the structure of the convolution. It is
straightforward to see that Sy = Scrp

y + Sxtr
y . Thus, (8) becomes

�
i∈Scrp

y

yi +
�
i∈Sxtr

y

yi =
⎛
⎝�

k∈Sx

xk

⎞
⎠

⎛
⎝�

j∈Sh

h j

⎞
⎠. (9)

Let us see an arithmetic example of this newly introduced
invariance condition for the convolution of a 3×3 input image
x with a 2 × 2 filter h

x =
⎡
⎣1 1 2

1 1 2
1 1 2

⎤
⎦, h =

�
1 2
3 4

�
.

According to (1), the complete output consists of 4 × 4
pixels as follows:

y =

⎡
⎢⎢⎣

1 3 4 4
4 10 14 12
4 10 14 12
3 7 10 8

⎤
⎥⎥⎦.

Depending on which output pixels are considered useful,
invariant condition (9) would take a different form. For the
case of unity-stride convolutions and assuming that convolu-
tion is performed only on the pixels of the input image without
padding (such as case yD in Fig. 2), the useful pixels that
will actually be computed by the convolution engine are the
ones highlighted in bold. Inevitably, the remaining pixels at
the periphery of the output image are the extra pixels that will
not be computed by the convolution engine. The sum of the
highlighted outputs is equal to



ycrp = 48, while the sum of

the unused outputs



yxtr = 72. In all cases, according to (9),
the sum of the two disjoint sets of pixels (48 + 72 = 120) is
equal to the product of sums (



xk)(



h j) = 12 × 10.

B. Explicit and Implicit Prediction of the Output Checksum

An online checksum checker, similar to the one shown
in Fig. 1, would accumulate all useful output pixels coming out
of the convolution engine and compare the derived checksum
with the predicted one. Predicting the output checksum either
explicitly, or implicitly, means to recompute



i∈Scrp

y
yi directly

from the input without interfering at any point with the
convolution engine.

The useful output pixels ycrp and the extra ones yxtr can
both be computed according to (2) as follows:

ycrp = Acrphvec, yxtr = Axtrhvec. (10)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Matrices Acrp and Axtr contain only the rows of A that
correspond to each disjoint set of outputs. For our running
example (case yD in Fig. 2),

Acrp =

⎡
⎢⎢⎣

x00 x01 x10 x11

x01 x02 x11 x12

x10 x11 x20 x21

x11 x12 x21 x22

⎤
⎥⎥⎦, Axtr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 x00

0 0 x00 x01

0 0 x01 x02

0 0 x02 0
0 x00 0 x10

x02 0 x12 0
0 x10 0 x20

x12 0 x22 0
0 x20 0 0

x20 x21 0 0
x21 x22 0 0
x22 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From (10), we can compute the elements of ycrp and yxtr as
follows:

yi
crp =

M̂−1�
j=0

acrp
i j h j , yi

xtr =
M̂−1�
j=0

axtr
i j h j . (11)

To compute the checksum of the useful output pixels,
we need to sum all elements yi

crp. Let us assume that the
number of useful output pixels is equal to K

K−1�
i=0

yi
crp =

K−1�
i=0

M̂−1�
j=1

acrp
i j h j =

M̂−1�
j=0

K−1�
i=0

acrp
i j h j

=
M̂−1�
j=0

�
K−1�
i=0

acrp
i j

�
h j . (12)

The derived equation (12) tells us how to explicitly pre-
dict the output checksum using only the pixels that participate
in the convolution (i.e., the ones in the center of the input
image that are grouped in Acrp). To do so, we need to compute
the sum of each column of Acrp, i.e.,


K−1
i=0 acrop

i j for column j ,
and multiply the result with the corresponding filter coefficient.
Then, we should reduce the derived partial products to one
final predicted checksum.

Alternatively, with ConvGuard, we can compute implicitly
the same sum of output pixels using the new invariance
condition (9), which can be rewritten as

K−1�
i=0

yi
crp =

⎛
⎝�

k∈Sx

xk

⎞
⎠

⎛
⎝�

j∈Sh

h j

⎞
⎠ −

K̂−1�
i=0

yi
xtr. (13)

Since the number of useful pixels is assumed to be equal
to K , the number of extra pixels (zero and nonzero) is equal
to K̂ = P Q − K . The sum of extra output pixels can be
expressed similar to (12) as follows:

K̂−1�
i=1

yi
xtr =

M̂−1�
j=0

⎛
⎝K̂−1�

i=0

axtr
i j

⎞
⎠h j . (14)

Also, the product of sums (



xk)(



h j) can be restructured
as ⎛

⎝�
k∈Sx

xk

⎞
⎠

⎛
⎝�

j∈Sh

h j

⎞
⎠ =

M̂−1�
j=0

⎛
⎝�

k∈Sx

xk

⎞
⎠h j . (15)

By replacing (14) and (15) into (13), we get

K−1�
i=0

yi
crp =

M̂−1�
j=0

⎛
⎝�

k∈Sx

xk

⎞
⎠h j −

M̂−1�
j=0

⎛
⎝K̂−1�

i=0

axtr
i j

⎞
⎠h j

=
M̂−1�
j=0

⎛
⎝�

k∈Sx

xk −
K̂−1�
i=1

axtr
i j

⎞
⎠h j . (16)

Equation (16) corresponds to the implicit prediction of the
output checksum. Instead of directly using the central pixels
of the input image, we accumulate the columns of Axtr that
consist only of peripheral pixels, i.e.,


K̂−1
i=1 axtr

i j for each
column j . Each one of those accumulated sums (one for
each filter coefficient) is subtracted from a common sum that
corresponds to the sum of all input pixels, irrespective of their
position. Then, the derived differences are multiplied with their
corresponding filter’s coefficients and reduced to a final sum.

In the case of multiple filters, the same approach holds for
each separate filter. In addition, the approach can be applied
on the case of 3-D convolution. Since 3-D convolutions are
commonly decomposed to depth-wise convolutions or pseudo-
3-D convolutions [33], it is straightforward to apply the above
approach to each separable filter and check the result of the
corresponding convolution.

For realistic image sizes and unity-stride convolutions,
the number of extra pixels is much smaller than the useful
ones. Therefore, choosing to accumulate the peripheral input
pixels is expected to lead the overall fewer additions. This
choice is unique to ConvGuard and a direct consequence of
the invariance condition (9) introduced in this work.

III. ONLINE CHECKER ARCHITECTURE

The architecture of ConvGuard is shown in Fig. 3. The
checker module operates in parallel to the convolution engine,
without interfering with its operation. ConvGuard monitors the
input x and the output y of the engine and predicts implicitly
the output checksum by computing online equation (16).

A. Checker Organization

In each cycle, ConvGuard performs two tasks. On the output
side, it accumulates the valid output samples produced by the
convolution engine. Recall that, without loss of generality,
we assume that the convolution engine computes only the
useful output pixels and does not produce any invalid output.
If it does, it just needs to mark the pixels as invalid so that
ConvGuard can skip them. On the input side, to check the
correctness of convolution, ConvGuard computes one sum for
each column of Axtr and a common sum of all input pixels.
To do this, it employs one accumulator for each column of
Axtr (M̂ in total) and one accumulator for the common sum.

Initially, all accumulators are reset to zero. Then, as each
input pixel arrives (one per cycle, more pixels can arrive
per cycle after marginal design changes), it is added to the
appropriate accumulator, while all of the incoming pixels are
added to the common-sum accumulator. Depending on the
arriving input pixels, multiple accumulators may be enabled in
the same cycle. For instance, in our running example, when



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FILIPPAS et al.: LOW-COST ONLINE CONVOLUTION CHECKSUM CHECKER 5

Fig. 3. Organization of ConvGuard. It runs in parallel to the convolution
engine and it receives the same input and the engine’s output pixels.
Convguard accumulates the sum of the output pixels and compares it to
its predicted checksum value. The predicted output checksum utilizes a
set of accumulators—one for each filter coefficient—and a common-sum
accumulator that computes the sum of all input pixels.

Fig. 4. Peripheral pixels that should be added for the computation of the
sum of extra output pixels. Each highlighted pixel may contribute to many
accumulators in the same cycle, as dictated by the decoder function.

input pixel x00 arrives, it contributes to the running sum of
accumulators that correspond to the filter’s coefficients h01,
h10, and h11. On the contrary, when input pixel x20 arrives,
only the accumulator of h11 is activated. It should be noted
that central pixels—like x11—that do not appear in Axtr are
skipped and not added to any accumulator besides the common
one.

The decision to which accumulator each input pixel con-
tributes is done in the decoder, which is also shown in Fig. 3.
The decoder decides two things: 1) which peripheral input
pixels contribute to the computation of the extra output pixels
and 2) to which accumulator they should be added.

As shown in Fig. 4, the extra output pixels consist of the
(M − 1)/2 rows and columns on the border of the output.
To derive those outputs, a larger border of M − 1 rows

and columns is actually used from the input image. The
decoder would allow only those input pixels to be added to
the appropriate accumulators. On the contrary, all input pixels
are added to the common-sum accumulator. Stated formally,
an input pixel xi j is added to the accumulator that corresponds
to the filter’s coefficient hmn when at least one of the following
inequalities is satisfied:

m > i > H − M+ m n > j > W − M+ n. (17)

When all input pixels have passed through the convolu-
tion engine, the checker’s accumulators have accumulated
all needed sums: one common sum and one sum for each
column of Axtr. At this point, the sum that corresponds to
each coefficient is subtracted from the common sum, in order
to correctly compute the term in the parentheses of (16). Then,
each resulting term is multiplied with the corresponding filter’s
coefficient and the products are added to produce the final
value, which corresponds to the predicted output checksum of
the convolution.

For fixed-point implementations, which is the focus of this
work, all registers and arithmetic units are sized appropriately
so as to avoid any overflow conditions that would ruin the out-
put checksum prediction. For checking a floating-point-based
convolution engine, we cannot guarantee that the predicted
output checksum would match the true output checksum,
even under error-free operation. In these cases, the equality
comparison should be transformed to a bounds check. If the
predicted and the true output checksums differ by a certain
small error bound, the convolution would still be considered
fault free [21], [34].

Finally, it should be stressed that the prediction of the
output checksum is computed gradually without requiring any
buffering of intermediate results. This lack of buffering is
critical in reducing the cost of the checksum checker. It is
expected that an online checker should consume only a small
percentage of the area of the convolution engine and leave
only an incremental energy footprint, compared to the energy
consumed in computing the actual convolution.

B. When Does Implicit Prediction of the Output
Checksum Make Sense?

Predicting the output checksum implicitly using (16) is
useful only when it can be computed with fewer additions,
compared to an explicit prediction of the checksum. To under-
stand when the two approaches break even, we need to count
the number of additions needed in each case. Equivalently,
we need to count the number of nonzero elements of matrices
Acrp and Axtr.

In the case of explicit checksum prediction, Acrp consists of
only nonzero elements. It has as many rows as the number of
useful output pixels. According to Fig. 4, the number of useful
output pixels is K = (H − M +1)(W − M +1) for odd values
of M . The number of columns of matrix Acrp is always equal
to the number of the filter’s coefficients M̂ (equal to M2).
Therefore, by multiplying the two, the number of additions
required for the explicit computation of the checksum is

#explicit adds= M̂ K = M2(H − M + 1)(W − M + 1). (18)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. Number of additions needed for predicting the output check-
sum explicitly, implicitly, and with maximum reuse of already computed
results [29] for two filter cases and various square input image sizes.

On the contrary, the implicit checksum prediction has to
do with all the remaining output pixels. Recall from (3) that
each column of A contains all input pixels and some zero
elements. Therefore, the nonzero elements of every column of
Axtr that should be added are equal to the number of all input
pixels H W minus the elements of the same column of Acrp,
i.e., H W − (H − M + 1)(W − M + 1). Since there are M̂
columns in Axtr, the number of additions required is equal to
M̂(H W − (H − M + 1)(W − M + 1)). By replacing (18) in
the derived formula, we conclude that, to compute the sum of
the extra output pixels, we need

M̂ H W − #explicit adds

additions. The checker computes also a common sum that
involves the sum of all input pixels. Therefore, ConvGuard
requires H W more additions. Overall,

#implicit adds = (1 + M̂)H W − #explicit adds. (19)

Using (19) and (18), we can compare the efficiency of
these two approaches for arbitrary image and filter sizes.
The implicit approach proposed by ConvGuard requires fewer
additions than the explicit approach when

#explicit adds >

�
M̂ + 1

2

�
H W. (20)

Fig. 5 shows the number of additions required in each
case (“Explicit” and “Implicit”) for a 3 × 3 and a 5 × 5
filter for various square input dimensions. For really small
input images, it is more efficient—in terms of number of
additions—to predict the output checksum explicitly. When
the input image is larger, implicit prediction is more efficient
than explicit prediction. For instance, for a 3 × 3 input filter,
implicit prediction is more efficient for any input image larger
than 8 × 8 pixels. The minimum input image size required to
make implicit prediction more cost-efficient for various filter
sizes and for stride S = 1 is presented in the first column of
Table I. The presented sizes are encountered in many existing
applications. For instance, VGG-16 [35] has an input image
of size 224 × 224, which is convolved with a filter of size
3 ×3. Furthermore, the second-to-fifth convolutional layers of
AlexNet [36] perform convolutions on images with sizes of
27 × 27 and 13 × 13 using 5 × 5 or 3 × 3 filters.

Fig. 5 also shows the number of additions required by
the state-of-the-art “Reuse” checksum checker, as presented
in [29]. This approach relies on explicit prediction of the
output checksum and reduces the total number of additions

TABLE I

MINIMUM SIZE OF THE SIDE OF A SQUARE IMAGE THAT FAVORS IMPLICIT
OVER EXPLICIT PREDICTION OF THE OUTPUT CHECKSUM

by reusing many of the already computed sums. However,
the reduced number of additions comes at the cost of extra
buffering to store the required intermediate results. As clearly
shown in the experimental results in Section V-B, this extra
buffering significantly increases the total area and power
of this checker, relative to ConvGuard. Moreover, the extra
buffers make the checker more susceptible to random bit-flips
that would lead to false detection alarms, as analyzed in
Section V-C.

IV. CHECKING NONUNITY-STRIDE CONVOLUTIONS

In the nonunity-stride convolutions found in many practical
applications, the useful output pixels are even fewer. Further-
more, in these cases, extra pixels are present not only at the
periphery of the image but also in the center as well. In such
cases, predicting the output checksum implicitly would always
require more additions than the explicit prediction. To enable
the applicability of ConvGuard to nonunity-strided convolu-
tions, we utilize a recently proposed transformation [37], [38]
that allows the computation of any convolution with stride
S > 1 using multiple channels of unity-stride convolutions.
By applying the implicit checksum prediction on each inde-
pendent unity-stride channel, we can still design a low-cost
checksum checker.

A. Checking Independently Per Channel
In a unity-stride convolution, the filter is applied to every

pixel of the input. On the contrary, in the case of a
nonunity-stride convolution, the filter moves on the input with
a step of S. In this case, each input pixel will not be multiplied
with every filter coefficient, but with a subset of them. Fig. 6
groups the input pixels based on which filter’s coefficient
“touches” them. The blue input pixels will be multiplied only
with the blue filter coefficients, while the green ones will be
multiplied only with the green filter coefficient. Based on this
observation, the work in [37] and [38] proposed to compute
any nonunity-stride convolution by summing the result of
S2 smaller and independent unity-stride convolutions. The
unity-stride convolutions are applied on selected subimage and
subfilter pairs, as also shown in Fig. 6.

Being able to transform a nonunity-stride convolution into
multiple unity-stride ones allows us to apply ConvGuard
efficiently to arbitrary strides. More precisely, ConvGuard
predicts the output checksum implicitly using (16) separately
per channel. Since—according to [38]—the result of the each
subconvolution is added to form the final convolution result,
then the final prediction of the output checksum is the sum of
all intermediate implicit predictions.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FILIPPAS et al.: LOW-COST ONLINE CONVOLUTION CHECKSUM CHECKER 7

Fig. 6. Transformation of a strided convolution with S = 2 to a four-channel
unity-stride convolutions, depicted with symbol ∗.

B. Generalized Checker

The organization of generalized ConvGuard is shown
in Fig. 7. To compute (16) for each channel, we need more
accumulators. Since the number of the filter’s coefficients does
not change, the number of accumulators that sum the input
pixels per coefficient remains the same as in the baseline case
(S = 1). However, we need more than one common-sum
accumulators. Since we compute a common sum for the
subimage of each channel, we need S2 common-sum accumu-
lators in total (one per channel). Thus, overall, for supporting
convolutions with stride S, we need S2 + M2 accumulators.

For convolutions of arbitrary stride, decoding is a two-step
procedure. The first step decides to which channel each pixel
belongs, and the second step decides whether it is a peripheral
pixel of the channel’s subimage or not. The first check
determines to which channel’s common-sum accumulator the
pixel should be added, and the second check (also using the
result of the first check) decides to which filter coefficients the
incoming pixel refers.

For the first check, the common-sum accumulator of channel
(k, l) is increased when, for the input pixel (i, j), the following
hold: k = i mod S and l = j mod S.

For the second check, we actually need to check whether
at least one of the inequalities in (17) holds after mapping the
indices of the input pixels (i, j) and the filter’s coefficients
(m, n) to the “smaller” coordinates of each channel. The
considered sizes for the subimages and subfilter should be
scaled too. To achieve this, we merely need to integer-divide
each variable of the inequalities with the selected stride S.

Once the common sums per channels have been accumu-
lated and the coefficient accumulators get their final values,
the appropriate common sums are subtracted from the appro-
priate accumulators, as shown in Fig. 7. The mask logic of
Fig. 7 decides the assignment by identifying the common sums
and the filter coefficients that belong to the same channel.

The number of additions required for the implicit prediction
of the output checksum depends on the size of the input
image, as well as the size of the filter. In addition, in the case

Fig. 7. Generalized ConvGuard architecture that supports arbitrary strided
convolutions.

of nonunity-stride convolutions, the efficiency of ConvGuard
also depends on the sizes of all subimages and subfilters that
emerge after the transformation to multichannel unity-stride
convolutions. Thus, the number of additions depends on the
selected stride as well.

Table I shows the minimum number of pixels that an input
image should have to make the implicit prediction of the
output checksum more efficient than its explicit counterpart.
For instance, for stride S = 2 and a filter or size 5 × 5,
the input image should be at least 17 × 17 pixels, while for
a larger 11 × 11 filter, the minimum image size increases
to 38 × 38 pixels. When the stride is larger than the filter,
the multichannel decomposition of the original strided convo-
lution is degenerated. In this case, each channel may contain
only one filter coefficient or none. Hence, in such cases,
the differentiation between implicit and explicit prediction no
longer makes sense.

V. EXPERIMENTAL EVALUATION

In the experimental results, we aim to highlight three aspects
of ConvGuard. In the first set of experiments, our plan is
to measure the hardware overhead of ConvGuard, relative to
a customized convolution engine. Then, ConvGuard is com-
pared, in terms of hardware complexity, with a state-of-the-art
checker that minimizes the number of required additions to
explicitly predict the output checksum. Finally, in the third set
of experiments, we explore the fault detection properties of
both checkers.

A. Hardware Overhead Added to Check an Optimized
Convolution Engine

Convolution engines can employ various architectures.
Choosing a high-throughput, but area-efficient, sliding-
window-based architecture—similar to the one used in [14]
and [39]—would reveal the worst case overhead expected
from ConvGuard. In such sliding-window-based convolution
engines, the incoming pixels are streamed in the engine and
stored in an active window buffer of the same size as the
filter and in row buffers that keep the M − 1 recently fetched



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II

AREA AND POWER COMPLEXITY OF AN APPLICATION-SPECIFIC
CONVOLUTION ENGINE AND CONVGUARD

OPERATING AT 1 GHZ

lines of the input image [14]. Row buffers can be built either
using registers or SRAM blocks. The filtering function is
an unrolled and possibly pipelined arithmetic datapath. The
baseline input–output throughput of 1 pixel/cycle of these
architectures can easily be increased to facilitate parallelism
by accepting and producing more pixels/cycle [40].

The sliding-window-based convolution engine and the
ConvGuard checker that operates in parallel have been
designed in C++ and synthesized to Verilog RTL using
Catapult HLS and driven by a commercial-grade 45-nm
standard-cell library. Final timing/area results are derived
from the Oasys logic synthesis tool. Line buffer memories
are mapped to SRAM macro blocks to further minimize
the area of the convolution engine. Keeping line buffers in
registers would have increased the area of the convolution
engine significantly and would unrealistically minimize the
overhead of the checker. Power was estimated after synthesis
using the PowerPro power analysis and optimization tool.
Switching activity information was gathered after simulating
the convolution engine and the checker using actual images
and filters.

Both the convolution engine and ConvGuard have been
synthesized for various image and filter sizes assuming 16-bit
wide input pixels. In all cases, we assumed a target clock
frequency of 1 GHz. Table II shows the area and power of each
constituent part of a protected convolution engine. In addition,
Fig. 8 shows the area and power percentage of ConvGuard,
relative to the total area and power of the protected convolution
engine, for each one of the examined cases.

ConvGuard provides checking capability to the convolution
engine by incurring only a small additional area and power
overhead. The overhead added is below 10% for 11×11 filters
and increases for smaller filters and smaller image widths. The
cost of ConvGuard is mostly determined by the size of the
filter and is only slightly affected by the size of the image.
Image size determines only logarithmically the bit-width of
the checker’s accumulators. Furthermore, when increasing the
bit-width of the input pixels, the cost of the convolution engine
that buffers actual pixels increases faster than the cost of
ConvGuard, which only stores their sum. For instance, for
32-bit inputs (instead of 16-bit), the highest overhead shown
in Fig. 8(a) for the case of a small 3 × 3 filter and a small

Fig. 8. (a) Area and (b) power cost of the ConvGuard checker as a percentage
of the total area and power of the protected convolution engine.

Fig. 9. (a) Area and (b) power scaling of ConvGuard with increasing stride
for an 11 × 11 filter and a 56 × 56 example image.

14 × 14 input image drops from 25%—for 16-bit inputs—to
19% for 32-bit inputs (not shown in the figure).

Fig. 9 shows the area and power scaling of the ConvGuard
architecture for increasing stride. The synthesized designs
assume an 11 × 11 filter, where using nonunity strides makes
more sense. From the reported results, we can see that
increasing the stride only marginally increases the total area
of the checker. Roughly, for every step of increasing stride,
the area and power increase by 6% and 11%, respectively. This
result can easily be explained since the majority of the area
of ConvGuard is occupied by the area of the accumulators
per filter coefficient and their associated datapath logic and
less by the area of the common-sum accumulators used in
each channel (see Fig. 7). Moreover, part of the area/power
increase observed when increasing the stride is the result of
the complexity of the mask logic shown in Fig. 7. The mask
logic introduces additional multiplexing to forward the result
of the multiple common-sum accumulators (one per channel)
to the appropriate subtraction units.

B. Hardware Complexity Comparison With a State-of-the-Art
Checker Using ASIC and FPGA Implementations

Having quantified the overhead of adding ConvGuard to a
customized convolution engine, we now aim to highlight its
efficiency relative to a recent state-of-the-art checker archi-
tecture [29]. In [29], the prediction of the output checksum
is done explicitly and the already computed sums of pixels
are kept and reused when forming larger sums. On one hand,
this approach significantly reduces the number of additions,
as shown in Fig. 5, but, on the other hand, it increases the
number of buffers added to store the intermediate results.
The HLS-ready C implementation of this “Reuse” archi-
tecture is publicly available in Git and used in this work
after easily modifying the Vivado-specific synthesis constraints
to Catapult-HLS-specific constraints. Although the design



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FILIPPAS et al.: LOW-COST ONLINE CONVOLUTION CHECKSUM CHECKER 9

Fig. 10. (a) Area and (b) power overhead cost of the ConvGuard checker,
compared to the reuse architecture [29] for an input image size of 56 × 56.

mentioned in [29] was targeting an FPGA implementation
for testing overclocking possibilities, it was easily ported to
an ASIC implementation with marginal modifications that
kept the original organization of the checker. To enable a
comparison against ConvGuard of the hardware cost, the C
model was successfully synthesized to 1 GHz using a 45-nm
technology library.

The area/power results obtained after synthesizing both
designs for various filter sizes, and assuming an input image
of 56 × 56 pixels, are shown in Fig. 10. The trend for other
image sizes is the same. The cost of both checkers is mostly
affected by the size of the filter, while the size of the input
image only determines the bit-width of the accumulators.

In all cases, it is evident that ConvGuard requires signif-
icantly less area and power. This attribute of ConvGuard is
attributed to the complete lack of buffering resources that fits
well to its low-cost profile. Besides its accumulators, Conv-
Guard does not store any incoming pixels nor any previous
intermediate checksum result. On the contrary, the “reuse”
architecture requires a set of accumulators that handle final
additions (equal in number to ConvGuard) and an additional
set of accumulators for storing intermediate results. This extra
sequential storage is inherent to the organization of the “reuse”
architecture.

Similar conclusions are drawn when considering FPGA
implementations of ConvGuard and the “reuse” architecture.
We implemented two versions of the protected convolution
engine—i.e., the engine and the checker—on a Xilinx Artix-7
chip (XC7A100T) targeting a clock frequency of 100 MHz.
The first version includes ConvGuard as the checker, while
the second uses the “reuse” architecture [29]. To study the
impact of the filter size and the input image size on the final
design, we report the implementation results for input image
sizes of 56 × 56 and 112 × 112 and for filter sizes of 5 × 5
and 11 × 11.

The results obtained after mapping the Catapult-derived
Verilog RTL to the FPGA using Xilinx Vivado 2021.1 are
shown in Table III. The results include the resource uti-
lization of an unprotected engine and the two versions of
protected engines. The convolution engine utilizes as many
DSP blocks as the square of the filter size to enable a fully
unrolled implementation of the datapath. On the contrary,
the number of BRAM blocks that implement the line buffers
of the convolution engine [14] is determined linearly, both
by the size of the input image and the size of the filter.
The addition of the checker in parallel to the convolution
engine increases the resource utilization for the two protected

TABLE III

FPGA RESOURCE UTILIZATION OF AN UNPROTECTED CONVOLUTION
ENGINE AND TWO PROTECTED ENGINES USING THE CONVGUARD

AND REUSE [29] CHECKERS

convolution engines, as shown in Table III. Both checkers need
additional DSP blocks and LUT slices to accommodate their
arithmetic datapaths. “Reuse” also needs an extra half BRAM
to implement its buffers. In all examined cases, it is evident
that the ConvGuard checker leads to implementations with
lower cost than “reuse” that scales favorably with increasing
image and filter sizes.

C. Fault Detection Properties and Comparison With a
State-of-the-Art Checker

In the last set of experiments, the goal is to quantify the
fault detection properties of ConvGuard and compare them
to the state-of-the-art checker analyzed in Section V-B. In this
way, we highlight the additional benefit offered by the reduced
buffering requirements, compared to reducing the number of
additions. The smaller the number of buffers a checker needs,
the smaller the probability to experience a fault inside the
checker itself. Checker faults may lead to false alarms and/or
missed fault detections.

Our experiments are based on injecting bit-flips in random
clock cycles during the time interval needed to complete a
convolution. Faults are injected to random storage elements in
both the convolution engine and the checker. The number of
faults injected in each run is a user parameter. The probability
to experience a bit-flip is proportional to the area of the corre-
sponding storage elements. For instance, the SRAM-based row
buffers of the convolution engine are expected to experience
a bit-flip more often than the accumulators of the checker.
The input pixels and the filter coefficients used in each run
are the ones used for power estimation. At the end of each
convolution, we record the outcome of the fault injection
campaign. The observed behavior may fall into one of four
categories.

1) Detected: A fault occurred in the convolution engine and
the checker detected it.

2) Silent: A fault occurred in the convolution engine and
the checker did not detect it. In this case, we must be
certain that the checker did not experience any faults.
The effect of the fault was masked at the checksum level.

3) False positive (FP): The checker flagged a fault detec-
tion, but no fault occurred in the convolution engine.

4) False negative (FN): A fault occurred in the convolution
engine and the checker did not detect it. In this case,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 11. Fault detection efficiency of the ConvGuard and “reuse” [29]
architectures after injecting a varying number of faults to the same 10k
convolutions of (a) 56 × 56 and (b) 112 × 112 input images using 3 × 3,
5 × 5, and 11 × 11 filters. In the case of one injected fault, it is assumed that
this is injected only into the convolution engine in a random clock cycle.

we must be certain that the checker experienced a fault
that caused its malfunction.

Fig. 11 shows the percentage of faults detected by
ConvGuard and the “reuse” architecture [29] after executing
the same 10k convolutions of 56 × 56 and 112 × 112 input
images and using 3 × 3, 5 × 5, and 11 × 11 filters. In each
case, an increasing number of faults were injected per convo-
lution. In the case of injecting only a single fault, we assume
that the fault is always injected in the convolution engine and
the checker remains error-free. This is the reason why the
fault detection performances of both checkers match (their
performance depends solely on the fault detection properties of
checksum-based checking). In the following cases, the faults
are injected randomly to both the convolution engine and
the checker. The increased number of buffers in the “reuse”
architecture, relative to ConvGuard, reduces its fault detection
efficiency. This difference is mostly the result of FP outcomes.
Even if the convolution engine is error-free, the checker signals
an error. When the number of faults injected is increased,
both approaches converge to a high fault detection rate. The
multiple faults occurring almost certainly cause a difference
between the true and the predicted checksum in both cases.

Increasing the filter size increases the number of accu-
mulators needed in both checkers, thus decreasing their
fault detection capabilities. However, the effect is more pro-
nounced in the “reuse” architecture, due to the buffers needed
by construction to store the intermediate results. On the
other hand, increasing the input image size only marginally
affects the detection capabilities of both checkers since it

TABLE IV

OBSERVED BEHAVIOR AFTER INJECTING EITHER TWO OR FOUR RANDOM
FAULTS IN CONVOLUTIONS OF INCREASING INPUT SIZE

AND A 3 × 3 FILTER

only affects logarithmically the bit-width of the checksum
accumulators.

To quantify the fault detection efficiency of ConvGuard
when increasing the image size, we injected two and four
random faults in 10k convolutions using a 3 × 3 filter. The
same number of convolutions was repeated for different input
image sizes. The results are presented in Table IV. With small
images, the probability of injecting a fault into the checker is
higher, which leads to a measurable amount of false alarms
(FP and FN cases). Instead, when the input image increases,
the area of the line buffers increases, compared to the rest
of the sequential storage. Thus, the line buffers inevitably
experience the majority of the faults. Since the checker is
less likely to experience a fault, it can detect the errors of
the convolution engine more often. As the number of injected
errors increases, the possibility of having a false alarm drops
to almost zero. Overall, due to its low cost and high fault
detection efficiency, ConvGuard can act complementary to
other protection mechanisms, such as parity checking added
to memory blocks [21].

VI. CONCLUSION

ABFT is a generic approach for detecting random hardware
failures by identifying when there is a difference between
the actual and the expected outcome at the checksum level.
Such approaches can be used even for post-silicon design
validation. In this work, we focus on convolution-specific
ABFT implemented directly in hardware.

Our proposal identifies a generic invariance checking con-
dition for convolution and uses it to design simpler online
checksum checkers. To avoid any performance degradation,
the prediction is computed in the same time frame that the
convolution engine produces the true output. The proposed
ConvGuard architecture does not recompute any output pixel;
it only quickly predicts their sum. The simple mathematical
formulation that guides the design of ConvGuard allows it to
adapt to any convolution structure, including arbitrary stride
parameters. Its algorithmic nature simplifies the design process
and allows its easy adoption in both ASIC and FPGA chips.

In addition to reducing the number of additions by pre-
dicting the output checksum implicitly, ConvGuard operates
using minimum buffering. Consequently, it saves considerable
amount of area relative to a current state-of-the-art checker



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FILIPPAS et al.: LOW-COST ONLINE CONVOLUTION CHECKSUM CHECKER 11

architecture [29], and it is less susceptible to false negative or
false positive alarms for precisely the same reason.

REFERENCES

[1] H. An et al., “An ultra-low-power image signal processor for hierarchical
image recognition with deep neural networks,” IEEE J. Solid-State
Circuits, vol. 56, no. 4, pp. 1071–1081, Apr. 2021.

[2] P. Hansen et al., “ISP4ML: The role of image signal processing in
efficient deep learning vision systems,” in Proc. 25th Int. Conf. Pattern
Recognit. (ICPR), Jan. 2021, pp. 2438–2445.

[3] J. Hegarty et al., “Darkroom: Compiling high-level image processing
code into hardware pipelines,” ACM Trans. Graph., vol. 33, no. 4,
pp. 1–11, Jul. 2014.

[4] A. Adams et al., “The Frankencamera: An experimental platform for
computational photography,” Commun. ACM, vol. 55, no. 11, pp. 90–98,
Nov. 2012.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[6] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” IEEE Comput. Intell.
Mag., vol. 13, no. 3, pp. 55–75, Aug. 2018.

[7] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-
time dense monocular SLAM with learned depth prediction,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6243–6252.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[9] N. P. Jouppi et al., “Ten lessons from three generations shaped Google’s
TPUv4i,” in Proc. Int. Symp. Comput. Archit. (ISCA), 2021, pp. 1–14.

[10] K. Patsidis, C. Nicopoulos, G. C. Sirakoulis, and G. Dimitrakopoulos,
“RISC-V2: A scalable RISC-V vector processor,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[11] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara:
A 1-GHz+ scalable and energy-efficient RISC-V vector processor with
multiprecision floating-point support in 22-nm FD-SOI,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 530–543,
Feb. 2020.

[12] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[13] X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in Proc. 54th Annu. Design
Automat. Conf., Jun. 2017, pp. 1–6.

[14] L. Ioannou, A. Al-Dujaili, and S. A. Fahmy, “High throughput spatial
convolution filters on FPGAs,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 28, no. 6, pp. 1392–1402, Jun. 2020.

[15] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., Nov. 2017, pp. 1–12.

[16] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. 55th ACM/ESDA/IEEE Design Automat.
Conf. (DAC), Jun. 2018, pp. 1–6.

[17] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of ISO 26262:
Using machine learning safely in automotive software,” Sep. 2017
arXiv:1709.02435. [Online]. Available: https://arxiv.org/abs/1709.02435

[18] A. Hopkins, “Silicon evolution for the automotive revolution,”
ARM, Cambridge, U.K., White Paper, 2019. [Online]. Available:
https://arxiv.org/abs/1808.01556

[19] R. C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,
pp. 305–316, Sep. 2005.

[20] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, Nov./Dec. 2005.

[21] I. Koren and C. Krishna, Fault-Tolerant Systems. San Mateo, CA, USA:
Morgan Kaufmann, 2020.

[22] P. Whatmough, S. Lee, D. Brooks, and G.-Y. Wei, “DNN engine:
A 28-nm timing-error tolerant sparse deep neural network processor
for IoT applications,” IEEE J. Solid-State Circuits, vol. 53, no. 9,
pp. 2722–2731, Jun. 2018.

[23] S. K. Lee, P. N. Whatmough, D. Brooks, and G.-Y. Wei, “A 16-nm
always-on DNN processor with adaptive clocking and multi-cycle
banked SRAMs,” IEEE J. Solid-State Circuits, vol. 54, no. 7,
pp. 1982–1992, Jul. 2019.

[24] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. C-33, no. 6, pp. 518–528,
Jun. 1984.

[25] S.-J. Wang and N. K. Jha, “Algorithm-based fault tolerance for FFT
networks,” IEEE Trans. Comput., vol. 43, no. 7, pp. 849–854, Jul. 1994.

[26] P. Wu et al., “Towards practical algorithm based fault tolerance in dense
linear algebra,” in Proc. 25th ACM Int. Symp. High-Perform. Parallel
Distrib. Comput., May 2016, pp. 31–42.

[27] J. Chen, X. Liang, and Z. Chen, “Online algorithm-based fault tolerance
for Cholesky decomposition on heterogeneous systems with GPUs,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016,
pp. 993–1002.

[28] K. Zhao et al., “FT-CNN: Algorithm-based fault tolerance for convo-
lutional neural networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 7, pp. 1677–1689, Jul. 2021.

[29] T. Marty, T. Yuki, and S. Derrien, “Safe overclocking for CNN
accelerators through algorithm-level error detection,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4777–4790, Dec. 2020.

[30] S. J. Piestrak and P. Patronik, “Design of fault-secure transposed FIR
filters protected using residue codes,” in Proc. 17th Euromicro Conf.
Digit. Syst. Design, Aug. 2014, pp. 575–582.

[31] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler, “Making
convolutions resilient via algorithm-based error detection techniques,”
IEEE Trans. Dependable Secure Comput., early access, Mar. 2, 2021,
doi: 10.1109/TDSC.2021.3063083.

[32] R. Gonzalez and R. Woods, Digital Image Processing, 3rd ed. London,
U.K.: Pearson, 2007.

[33] R. Ye, F. Liu, and L. Zhang, “3D depthwise convolution: Reducing
model parameters in 3D vision tasks,” in Proc. Can. AI, Adv. Artif.
Intell. Cham, Switzerland: Springer, 2019, pp. 186–199.

[34] I. Bayraktaroglu and A. Orailoglu, “Concurrent test for digital linear
systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits, vol. 20,
no. 9, pp. 1132–1142, Sep. 2001.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–14.

[36] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[37] C. Kong and S. Lucey, “Take it in your stride: Do we need
striding in CNNs?” 2017, arXiv:1712.02502. [Online]. Available:
http://arxiv.org/abs/1712.02502

[38] J. Pan and D. Chen, “Accelerate non-unit stride convolutions with
Winograd algorithms,” in Proc. Asia South Pacific Design Automat.
Conf. (ASPDAC), 2021, pp. 358–364.

[39] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-based accelerators
of deep learning networks for learning and classification: A review,”
IEEE Access, vol. 7, pp. 7823–7859, 2019.

[40] G. Stitt, A. Gupta, M. N. Emas, D. Wilson, and A. Baylis, “Scal-
able window generation for the Intel Broadwell+Arria 10 and high-
bandwidth FPGA systems,” in Proc. Int. Symp. Field-Program. Gate
Arrays, Feb. 2018, pp. 173–182.

Dionysios Filippas received the Diploma degree in
electrical and computer engineering and the M.Sc.
degree in computer engineering from Democritus
University of Thrace, Xanthi, Greece, in 2019 and
2021, respectively, where he is currently working
toward the Ph.D. degree.

His research interests include energy-efficient
machine-learning accelerators, high-level synthesis,
and fault-tolerant systems.

http://dx.doi.org/10.1109/TDSC.2021.3063083


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Nikolaos Margomenos received the Diploma
degree in electrical and computer engineering from
Democritus University of Thrace, Xanthi, Greece,
in 2021.

His research interests include the design of
energy-efficient programmable data-parallel acceler-
ators and high-level synthesis design flows.

Nikolaos Mitianoudis (Senior Member, IEEE)
received the Diploma degree in electronic and
computer engineering from the Aristotle Univer-
sity of Thessaloniki, Thessaloniki, Greece in 1998,
the M.Sc. degree in communications and signal
processing from Imperial College London, London,
U.K., in 2000, and the Ph.D. degree in audio source
separation using independent component analysis
from Queen Mary, University of London, London,
U.K., in 2004.

Between 2003 and 2009, he was a Research
Associate at Imperial College London working on the Data Informa-
tion Fusion-Defense Technology Center project “Applied Multidimensional
Fusion,” sponsored by General Dynamics U.K. and QinetiQ. From 2009 until
2010, he was an Academic Assistant at the International Hellenic University,
Thessaloniki. Since 2010, he has been with the Electrical and Computer
Engineering Department, Democritus University of Thrace, Xanthi, Greece,
where he currently serves as an Associate Professor of Audio and Image
Processing. He also serves as an Associate Editor for IEEE TRANSACTIONS
ON IMAGE PROCESSING (2018–2024) and at MDPI Journal of Imaging. His
research interests include machine learning, deep learning, computer vision,
music information retrieval, and blind source separation/extraction.

Chrysostomos Nicopoulos (Member, IEEE)
received the B.S. and Ph.D. degrees in electrical
engineering with a specialization in computer
engineering from Pennsylvania State University,
State College, PA, USA, in 2003 and 2007,
respectively.

He is currently an Associate Professor with
the Department of Electrical and Computer
Engineering, University of Cyprus, Nicosia, Cyprus.
His current research interests include networks on
chip, computer architecture, multicore/many-core
microprocessor, and computer system design.

Giorgos Dimitrakopoulos received the B.S., M.Sc.,
and Ph.D. degrees in computer engineering from the
University of Patras, Patras, Greece, in 2001, 2003,
and 2007, respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece.
He is interested in the design of digital integrated
circuits, energy-efficient data-parallel accelerators,
functional safety architectures, and the use of
high-level synthesis for agile ASIC and FPGA
design flows.

Dr. Dimitrakopoulos received two Best Paper Awards at the Design Automa-
tion and Test in Europe (DATE) Conference in 2015 and 2019, respectively.
Also, he received the HIPEAC Technology Transfer Award in 2015.


