
302 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

The Mesochronous Dual-Clock FIFO Buffer
Dimitrios Konstantinou, Anastasios Psarras , Chrysostomos Nicopoulos , and Giorgos Dimitrakopoulos

Abstract— To increase system composability and facilitate timing
closure, fully synchronous clocking is replaced by more relaxed clocking
schemes, such as mesochronous clocking. Under this regime, the modules
at the two ends of a mesochronous interface receive the same clock signal,
thus operating under the same clock frequency, but the edges of the
arriving clock signals may exhibit an unknown phase relationship. In such
cases, clock synchronization is needed when sending data across modules.
In this brief, we present a novel mesochronous dual-clock first-input–
first-output (FIFO) buffer that can handle both clock synchronization
and temporary data storage, by synchronizing data implicitly through
the explicit synchronization of only the flow-control signals. The proposed
design can operate correctly even when the transmitter and the receiver
are separated by a long link whose delay cannot fit within the target
operating frequency. In such scenarios, the proposed mesochronous FIFO
can be extended to support multicycle link delays in a modular manner
and with minimal modifications to the baseline architecture. When
compared with the other state-of-the-art dual-clock mesochronous FIFO
designs, the new architecture is demonstrated to yield a substantially
lower cost implementation.

Index Terms— Clock-domain crossing, mesochronous first-
input–first-output (FIFO), source-synchronous communication.

I. INTRODUCTION

Modern systems-on-chip (SoC) implemented in deeply scaled
technologies faces slow wires and process/voltage/temperature (PVT)
variations. These challenges make the synchronous abstraction
increasingly untenable over large chip areas, thereby requiring
immense design effort to achieve timing closure [1], [2]. Partitioning
the SoC into globally asynchronous, locally synchronous domains [3],
[4] partially alleviate the problem, since synchronous operation and
its associated timing constraints are confined inside each domain.
However, in this case, when crossing clock domains, the signals must
be synchronized to the receiving clock domain, in order to avoid
metastability [5], [6]. In addition to delivering synchronized signals
across the clock domain interface, it is also important to ensure that
any synchronized data that cannot be immediately consumed by the
receiving domain are safely stored until it can be serviced. Since data
must both be synchronized and (temporarily) stored, it is imperative
that these two elemental and intertwined operations—synchronization
and buffering—are combined in a cost-effective way that minimizes
any latency and area overhead.

In this brief, we focus on mesochronous clock domains, where
clocks operate under the same frequency, but with a fixed,
arbitrary phase difference. In such cases, using a generic asyn-
chronous dual-clock first-input–first-output (FIFO) [7] for mesochro-
nous clock domain, crossing is possible, but incurs unnecessary
latency overhead [8]. Currently, there are two major approaches
for efficient synchronization and buffering across mesochronous

Manuscript received June 25, 2019; revised August 29, 2019 and
September 23, 2019; accepted October 3, 2019. Date of publication
October 22, 2019; date of current version December 27, 2019. (Corresponding
author: Giorgos Dimitrakopoulos.)

D. Konstantinou, A. Psarras, and G. Dimitrakopoulos are with the Electrical
and Computer Engineering Department, Democritus University of Thrace,
67100 Xanthi, Greece (e-mail: dkonstan@ee.duth.gr; apsarra@ee.duth.gr;
dimitrak@ee.duth.gr).

C. Nicopoulos is with the Electrical and Computer Engineering Department,
University of Cyprus, Nicosia 1678, Cyprus (e-mail: nicopoulos@ucy.ac.cy).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2946348

Fig. 1. (a) Three-flop synchronizer used for mesochronous clock-domain
crossing and (b) example of its operation. The spread between the write and
read pointer free-running counters guarantees that data_tx is always read
out after a safe time period has elapsed since it was written.

interfaces: 1) in a loosely coupled implementation [8], synchroniza-
tion and buffering occur separately while 2) in a tightly coupled
implementation [9]–[11], they are combined and fused into a single
structure. While the former approach allows for maximum flexibility
in terms of system composition and can readily support multicycle
link delays, it incurs large area overhead and exhibits significant
resource underutilization. On the other hand, the latter approaches
maximize resource utilization and minimize the area overhead, but
they operate only under single-cycle timing constraints, or require
phase detectors and cannot be generalized to links with multicycle
delays.

In this article, the ultimate objective is to combine the bene-
fits of both loosely and tightly coupled approaches. Specifically,
a novel buffering structure that integrates mesochronous synchro-
nization is proposed, which successfully combines area efficiency,
high performance, and support for multicycle link delays. The new
mesochronous dual-clock FIFO architecture is the first (to the best of
our knowledge) to achieve data synchronization implicitly, through
the explicit synchronization of only the flow-control signals. This
radical new approach is instrumental in simplifying the overall design,
since it obviates the need to synchronize physically the—typically
wide—data buses. Due to its optimized organization, the proposed
synchronizer provides three key benefits: 1) it is the first architec-
ture to achieve lossless operation under any buffering depth ≥ 1;
2) it imposes minimal buffering requirements for the full-throughput
operation; and 3) it can be seamlessly extended to support multicycle
links without any further restrictions. Extensive and detailed hardware
evaluation validates the efficacy and efficiency of the new design. The
proposed architecture is demonstrated to outperform the two most
relevant state-of-the-art existing solutions in all salient design metrics.

II. MESOCHRONOUS SYNCHRONIZATION AND BUFFERING

Transferring data safely across two mesochronous clock
domains can be performed with various techniques. The
most scalable approach relies on the “n-flop” mesochronous
synchronizer [5], [12], [13], as shown in Fig. 1(a). The n-flop
synchronizer consists of n registers placed in parallel in the
transmitter domain (n = 3 in Fig. 1) and two free-running counters
that are monotonically incremented in every cycle. The two counters
are placed on opposite domains and control the position among
the n flops where the synchronizing signal is stored and read out.
A reset synchronization structure initializes the counters to their
starting values.

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6151-9242
https://orcid.org/0000-0001-6389-6068
https://orcid.org/0000-0003-3688-7865

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 303

Fig. 2. Asynchronous reset synchronization structure used to initialize the
counters of the n-flop synchronizer.

Metastability-free operation relies on the fact that the signal is
not read out by the receiver unless a safe time period has elapsed,
since the transmitter has written to that register. This is guaranteed by
imposing a so-called spread between the values of the free-running
counters. As highlighted in the transfer of word “B” in the running
example of Fig. 1(b), if a register is written at time t by the transmitter
clock, it will be captured by the receiver registers at time t + T +φc,
where T is the clock period and φc is the TX/RX clock phase skew.
In most phase-skew scenarios, n = 2 flops suffice to provide this
guarantee [14]. However, as indicated in [5], if the two clocks are
almost in phase (i.e., φc ≈ 0 or φc ≈ T), then a 2-flop synchronizer
cannot guarantee that the output data will remain stable throughout
a whole receiver clock cycle. Therefore, for safe operation under
any skew phase, and without using a phase detector as done in [11]
and [15], a 3-flop synchronizer is required.

A 3-flop synchronizer suffices when a fully deterministic reset
process as the one presented in [12] is employed. In this case,
during reset, the clocks are disabled and reenabled only after reset is
deasserted and all registers received their starting values. Although
this reset procedure sounds appealing due to its fully deterministic
behavior, in practice, it requires a systemwide coordination of clock
and reset signals that minimize flexibility in system composition.

To overcome this deficit, the initialization process of the state-
of-the-art mesochronous synchronizers [8] is performed with an
asynchronous reset signal that is synchronized independently to
both the sender and receiver domains. This synchronization of the
asynchronous reset signal to both domains is performed with the
use of dual brute-force synchronizer structures, as shown in Fig. 2.
Depending on the reliability requirements, the brute-force synchro-
nizers can be implemented with more in-series flip-flops. In any
case, it is possible for any of the two counter reset signals to enter
metastability and settle to their deasserted value with one cycle delay.
In [8], it was shown that to account for this possible metastability
during the (write and read) counters’ initialization phase and to ensure
that a minimum spread of at least one is achieved after reset, we need
a 4-flop synchronizer to ensure correct operation, irrespective of the
phase difference between the two clocks.

Due to the free-running property of the n-flop synchronizer’s
write/read pointer counters, synchronized data must be read out in
each cycle by the receiver. In reality, however, it is possible that data
cannot be consumed immediately [16], [17]. In order to temporarily
store synchronized data, Starsync [8] places a synchronous FIFO
buffer right after the data synchronizer, as shown in Fig. 3(a).
A push/full flow control is employed on the mesochronous inter-
face, so that the transmitter stops sending data when the receiver’s
buffers are full. The backward full signal indicates when the
buffer is full; the forward transmitter-driven push signal indicates
whether the incoming data are valid. Both signals are synchronized
when crossing the mesochronous interface using separate single-bit
4-flop synchronizers, as required to cover the worst case scenario for
asynchronous reset initialization.

A different organization is proposed in [9], which implements
buffering within the synchronizer, as shown in Fig. 3(b). In this tightly
coupled implementation, no extra buffering is employed; instead,
the 3-flop synchronizer in Fig. 1(a) also acts as a buffer by relaxing
the counters’ free-running characteristic. Whenever synchronized data

Fig. 3. (a) Loosely coupled [8] and (b) tightly coupled [9] mesochronous
synchronization and buffering architectures.

cannot be consumed immediately in the receiver due to a downstream
stall, the write and read counters stop and the transmitter is notified
by a stall signal to stop sending further data.

The tightly coupled organization reduces the area budget, since
no extra registers are required to implement the FIFO buffer, other
than the ones required by the modified 3-flop synchronizer. However,
in order to stop the free-running counters effectively, the stall signal
must reach the transmitter within the same clock cycle. This require-
ment imposes very strict timing constraints to the transmitter–receiver
link, thereby limiting the maximum link length that can be supported.
In order to somewhat relax the timing constraints, an alternative
“hybrid” version of the tightly coupled organization was proposed
[10]. In both cases, 3-flop synchronizers are enough, since in [9]
and [10], the clocks are assumed to be deasserted during reset, similar
to [12]. Instead, if reset is done asynchronously, as in Starsync [8],
a 4-flop synchronizer will be needed.

Overall, the sizing of the synchronizer structures in both loosely
and tightly coupled architectures is not an architectural feature, but
just a property of the employed reset mechanism. Therefore, even
though the two architectures were proposed with different register
requirements, in reality, they need the same n-flop synchronizers,
as long as they are being reset in the same way.

III. PROPOSED MESOCHRONOUS FIFO

The proposed mesochronous FIFO architecture combines the ben-
efits of the loosely coupled [8] and tightly coupled approaches [9],
[10], while avoiding their weaknesses. The new design couples
synchronization and buffering in a cost-efficient implementation
that fully supports multicycle link delays. A completely different
operating approach is adopted, whereby the data are synchronized
implicitly through the explicit synchronization of flow-control signals.

A. Architecture and Operation

Fig. 4(a) shows the proposed mesochronous FIFO. Data that
need to be synchronized are stored in a memory placed in
the transmitter domain. Two monotonically increasing counters

304 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Fig. 4. (a) Proposed mesochronous FIFO, which implicitly synchronizes data through the explicit synchronization of the flow-control push/pop signals.
(b) Short cycle-by-cycle example of the operation of the proposed design.

index the memory positions, where data are stored and accessed.
The transmitter-synchronous tail pointer points to the write posi-
tion in memory where a new data word is stored, while the
receiver-synchronous head pointer points to the position from where
a word will be read out. A pair of opposite-direction single-bit 4-flop
synchronizers are used to sync enqueue (write) and dequeue (con-
sume) events between the two sides. The 4-flop synchronizers are
used to account for the worst case scenario that can occur with the
asynchronous reset of the read and write pointers, as described in [8].

When the transmitter sends a data word that needs to be synchro-
nized, it writes the data into the memory position pointed by the tail
pointer. At the same time, the tail pointer is increased, and the push
signal that is fed to the forward “tx2rx” mesochronous synchronizer
[see Fig. 4(a)] is asserted. When the enqueue event is synchronized
across the interface, the receiver can safely read out the data from the
memory position pointed by the head pointer. This operation is shown
in the short example of Fig. 4(b), which depicts the transfer of three
data words (“A,” “B,” and “C”) from TX to RX. Once the receiver
actually consumes the data (e.g., reads it and sends it downstream),
the pop signal is asserted, and the head pointer is incremented to
point to the position where the next data word is found. Note that the
receiver does not try to read data from the updated head pointer posi-
tion, unless a new push event has been synchronized, indicating that
new data exist and are safe to be read out. In order to not lose track
of multiple enqueue events, the receiver employs a “status” counter
that counts the number of synchronized data items currently in the
queue. Whenever a new data word is received, as indicated by an
incoming enqueue signal from the “tx2rx” synchronizer in Fig. 4(a),
the counter is increased; when a data word is consumed, the counter
is decreased to reflect the change in the queue’s state. In this way,
two key objectives are achieved: 1) data are implicitly synchronized
through the explicit synchronization of the enqueue events and 2) the
FIFO order is preserved in the buffer.

The next step is to synchronize the queue’s state to the transmitter
domain and guarantee that the queue does not overflow. To achieve
this, the transmitter also uses a status counter, as shown in Fig. 4(a),
to keep its own version of the number of items currently stored in
the queue. The counter is incremented, or decremented, whenever
an item is enqueued, or dequeued, from the queue, respectively.
Since dequeue (pop) events are receiver-synchronous, they have to be
synchronized to the transmitter domain through a separate backward
synchronizer. On a dequeue, the receiver asserts the pop signal of the
“rx2tx” synchronizer. Once the signal is synchronized, the transmitter
decreases its status counter, effectively remaining in sync with the
downstream buffer’s state.

Similar to [8], the forward latency of synchronizing and enqueuing
a new data item is between one and three cycles, depending on

the spread between the read and write pointers after reset. For safe
operation under any phase difference, the initial spread between the
read and write pointers at each synchronizer is two. When the reset
of the read pointer of the push synchronizer is delayed (due to
metastability), the forward latency is increased by one cycle. On the
contrary, if the reset of the write pointer is delayed, the forward
latency is decreased. In the case that the reset signal is not delayed,
or delayed on both sides, the forward latency remains unchanged. The
backward latency, i.e., the number of cycles needed to synchronize
the pop events, is also between one and three cycles. However, worst
case forward and backward latencies cannot occur simultaneously.
The read pointer of the push synchronizer is driven by the same reset
signal (the rx-side-synchronized version of the asynchronous reset)
with the write pointer of the pop synchronizer. The same happens
with the write and read pointers that are driven by the reset signal
synchronized to the tx side. Therefore, once one side experiences a
latency of three cycles (delayed reset of the read pointer), the other
side will experience a latency of one cycle (delayed reset of the write
pointer). Overall, the sum of the forward and backward latencies is
constant at four cycles.

B. Support for Multicycle Source-Synchronous Links

The baseline mesochronous FIFO architecture in Fig. 4(a) assumes
that the transmitter is placed within close physical proximity to
the receiver, and thus, no timing problems will be introduced due
to wire delays between them. When this assumption cannot hold,
e.g., when the transmitter and the receiver are separated by a long
physical link whose delay cannot fit within the target operating
frequency, the proposed mesochronous FIFO can be extended to
support multicycle link delays in a modular manner and with minimal
modifications to the baseline architecture.

The reorganized multicycle architecture is shown in Fig. 5,
assuming RF forward and RB backward register stages. We imple-
ment the multicycle link by inserting as many register stages
as required to cover the desired timing constraint. Both forward
(data, push) and backward (pop) signals are captured by registers
clocked by the transmitter clock. A source-synchronous clock (strobe)
is sent out by the transmitter to clock the registers on each
path.

Extending the baseline (single-cycle) architecture to support mul-
ticycle delays requires a careful selection of the split point, i.e., the
point where the multicycle delay path will be inserted within the FIFO
architecture, and the consequent reorganization of its internal logic,
as required by the selected split-point placement. Although there are
multiple alternatives that can achieve correct FIFO functionality, only
few of them can achieve minimum implementation cost under optimal
performance. One of the straightforward choices is the placement

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 305

Fig. 5. Reorganization of the proposed mesochronous FIFO when the length of the link between the transmitter and the receiver is too long to fit within a
single cycle. In such cases, the link is split into multiple register stages, for both forward and backward data and flow-control signals.

of the memory and the head pointer on the receiver side, so that,
whenever a word is consumed, the next data item can be retrieved
immediately in the following cycle. If the memory and head pointer
were placed before the multicycle link, then the next data item would
reach the receiver with an (RB + RF)-cycle delay: RB cycles for the
pop event to reach the head pointer and increment it and RF cycles
for the next data word to reach the receiver.

Another critical, but less straightforward, design decision is the
placement of logic that produces the empty and full states of the
FIFO. We choose to place the RX and TX status counters—that
produce the empty and full states of the FIFO, respectively—on the
receiver and transmitter sides, respectively. This choice is the critical
difference of our implementation, as compared with the multicycle
link implementation of the loosely coupled StarSync architecture [8],
which places the full-state calculation logic on the receiver side and
then transfers this state to the transmitter. As a result, in StarSync [8],
the calculation of the full state must be modified to account for the
RF + RB data words that may arrive by the time the full signal has
reached the transmitter: RF that might already be in-flight on the
forward link and RB more that may be sent in the time window
between the assertion of the full signal and its reception by the
transmitter [7], [18]. In addition to introducing buffer underutilization
due to early throttling (before the FIFO has actually become full),
this choice also incurs increased costs by setting a minimum buffering
requirement for lossless operation. Instead, the proposed approach of
transmitting and synchronizing push and pop events allows the state
to be calculated locally on each side, without considering possible
in-flight data. This leads to optimal buffer utilization; even with an
FIFO depth of a single slot, lossless transmission is still guaranteed.

IV. ANALYSIS AND EXPERIMENTAL RESULTS

In this section, we evaluate the proposed mesochronous FIFO and
compare it against the two state-of-the-art alternatives that combine
synchronization and data buffering [8], [9], as described in Section II.
All designs are implemented in SystemVerilog and their hardware
costs are evaluated after synthesizing the hardware models in a 45-nm
standard-cell library at 0.8 V and performing placement-and-routing
of the resulting designs using the Cadence backend flow.

First, we study the hardware implementation efficiency of a
mesochronous interface where the transmitter and the receiver are
placed close to each other, separated by a link with a delay that
can fit in a single clock cycle. In all designs under comparison,
we assume that the read and write pointers of the synchronizers
are initialized using the generic asynchronous reset synchronizers
proposed in Starsync [8] and highlighted in Fig. 2. Under this
scenario, every n-flop synchronizer should consist of n = 4 flops. The
state-of-the-art mesochronous synchronizers and buffers [8], [9] use
4-flop synchronizers directly on the data lines. Therefore, each stage

of the synchronizer involves registers equal to the data width. On the
contrary, the proposed design uses single-bit 4-flop synchronizers that
are used to synchronize only the push and pop control signals.

For the design of [9], the wide 4-flop synchronizer is enough to
perform synchronization and buffering. However, for Starsync [8]
and the proposed design, additional data registers are required to
implement the FIFO storage. In both cases, the minimum FIFO depth
required to deliver full-throughput operation under any data-burst
length is determined by the round-trip time (RTT). Assuming that the
transmitter pushes a data word at time t , the receiver can consume
it—and, thus, free its corresponding memory position—once the push
event has been synchronized at time t+FwdLatency. However,
the transmitter will be notified only after the pop event has been
synchronized on its side, at time t+FwdLatency+BwdLatency.
The sum of the forward and the backward latency is determined by the
initial spreading of the write and read free-running counters of each
n-flop synchronizer, and it is always equal to four cycles, as previ-
ously discussed for the proposed design. The worst case latency of
three cycles cannot occur in both forward and backward synchroniz-
ers, as long as the pointers of each synchronizer receive the same local
synchronized version of the asynchronous global reset. Therefore, for
maximum throughput, under asynchronous reset, StarSync [8] and the
proposed design require 4-slot FIFOs.

The top part of Table I reports the area and power of each design
for 4-slot deep structures obtained at a target frequency of 1.5 GHz
and assuming a data width of 64 bits. Even though the proposed
design is architected to operate under both single- and multicycle
links, it requires only marginally more area than the tightly coupled
design of [9] that is tailored only for single-cycle links. Despite this
small area overhead, the proposed design is as power-efficient as
the design of [9] for high data traffic rates and significantly more
power-efficient at lower data traffic rates. This attribute is revealed
by the power consumption reported in Table I for three different data
injection traffic rates for all designs under comparison. At low (10%)
and medium (50%) traffic, the proposed design requires around 58%
and 20%, respectively, less power than the design in [9]. At maximum
traffic (100%), the power of both designs is almost identical, since
they both synchronize valid data on every cycle.

In the absence of an explicit stall signal from the receiver,
the Tight [9] architecture exhibits switching activity, even when it
is idle (i.e., when it does not have any valid data to send to the
receiver). This is the reason why its power consumption does not drop
significantly at 10% injection traffic rate. Of course, on an output
stall, all synchronizers under comparison exhibit zero output data
switching activity.

As expected, the increased buffer requirement of the loosely
coupled approach [8] is much more prominent than the tightly
coupled approach [9], and it effectively doubles the area

306 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

TABLE I

HARDWARE IMPLEMENTATION RESULTS OF THE THREE SYNCHRONIZERS
FOR ZERO-CYCLE LINK DELAY AT 45-nm TECHNOLOGY AND 0.8 V

Fig. 6. Area occupied by the synchronizers as the delay of the link increases.
In this comparison, the tightly coupled approach [9] is not included, because
it does not support multicycle link delays.

requirements. Consequently, the extra FIFO data buffer and the
free-running synchronizer that accommodates entire data words
(instead of merely single-bit signals, as in the proposed design)
significantly increase the area and power consumption.

For completeness, the bottom part of Table I compares the same
designs using 3-flop synchronizers and FIFO buffers, as originally
proposed in [9], which assumes that clocks can be fully disabled
during reset, as proposed in [12]. When using 3-flop synchronizers,
the proposed design enjoys the scalability of Starsync [8] with the
area requirements of the restricted tightly coupled design [9]. Again,
power consumption follows the same trend: the proposed design
offers significant power savings at lower throughput, which diminish
at maximum-throughput operation. Finally, note that the proposed
design enables lossless operation even with a shallower FIFO (fewer
than three slots), but at a lower throughput. This tradeoff is not an
option for the other state-of-the-art architectures.

The last column of Table I depicts the maximum frequency that
can be achieved by each design. Tight [9] is marginally faster than the
proposed design and significantly faster than Starsync [8]. However,
this extra speed benefit comes at a high cost: the lack of flexibility
that inhibits the design of [9] from being integrated into the frequently
encountered multicycle clock-domain crossing interfaces. Thus, for
the case of multicycle links, only Starsync [8] and the proposed
design are compared. Their area requirements pertaining to multicycle
link delays are highlighted in Fig. 6.

Due to its loosely coupled nature and because it employs a 4-flop
synchronizer directly on the input data, Starsync [8] always needs
four datawide registers for the synchronizer outside of the FIFO
buffer. The 4-flop synchronizer cannot be merged with the subse-
quent FIFO structure. Instead, the proposed architecture removes this
overhead by avoiding the direct synchronization of data, and the only
datawide storage needed is the data FIFO/RAM, the depth of which is
decided by the RTT of the mesochronous link. Since Starsync and the
proposed architecture experience the same RTT and, hence, employ
FIFO queues of the same depth, it means that Starsync will always
pay the area/power cost of four more datawide registers. As shown
in Fig. 6, for a one-cycle link delay, Starsync occupies 67% more
area. Even though the gap remains constant over longer link delays,

it is still quite high at up to 30%. The additional area overhead is
considerable even for a five-cycle link delay.

V. CONCLUSION

Irrespective of the physical proximity of the sender and the receiver
in a mesochronous clock interface, the proposed low-cost dual-clock
FIFO combines mesochronous clock synchronization and buffering
in a scalable manner. Data are safely transferred on the receiver side
of a mesochronous interface without being explicitly synchronized.
Synchronization involves only the single-bit push/pop flow-control
signals. This implicit synchronization of data saves considerable
amount of area/power, especially in the case of multicycle links,
without introducing additional latency, or reducing throughput.

REFERENCES

[1] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing
systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12,
no. 8, pp. 857–873, Aug. 2004.

[2] A. M. S. Abdelhadi and M. R. Greenstreet, “Interleaved architectures
for high-throughput synthesizable synchronization FIFOs,” in Proc. 23rd
IEEE Int. Symp. Asynchronous Circuits Syst. (ASYNC), May 2017,
pp. 41–48.

[3] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxonomy
of GALS design styles,” IEEE Des. Test Comput., vol. 24, no. 5,
pp. 418–428, Sep./Oct. 2007.

[4] J. Ax, N. Kucza, M. Vohrmann, T. Jungeblut, M. Porrmann, and
U. Rückert, “Comparing synchronous, mesochronous and asynchronous
NoCs for GALS based MPSoCs,” in Proc. IEEE MCSoC, Sep. 2017,
pp. 45–51.

[5] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[6] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Des.
Test Comput., vol. 28, no. 5, pp. 23–35, Sep./Oct. 2011.

[7] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas,
“A scalable dual-clock FIFO for data transfers between arbitrary and
haltable clock domains,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 15, no. 10, pp. 1125–1134, Oct. 2007.

[8] D. Verbitsky, R. R. Dobkin, R. Ginosar, and S. Beer, “StarSync:
An extendable standard-cell mesochronous synchronizer,” Integration,
vol. 47, no. 2, pp. 250–260, Mar. 2014.

[9] D. Ludovici, A. Strano, D. Bertozzi, L. Benini, and G. N. Gaydadjiev,
“Comparing tightly and loosely coupled mesochronous synchronizers in
a NoC switch architecture,” in Proc. NOCS, May 2009, pp. 244–249.

[10] D. Ludovici, A. Stranoy, G. N. Gaydadjievx, L. Beniniyy, and
D. Bertozziy, “Design space exploration of a mesochronous link
for cost-effective and flexible GALS NOCs,” in Proc. IEEE DATE,
Mar. 2010, pp. 679–684.

[11] S. Saponara, F. Vitullo, R. Locatelli, P. Teninge, M. Coppola,
and L. Fanucci, “LIME: A low-latency and low-complexity on-chip
mesochronous link with integrated flow control,” in Proc. 11th EUROMI-
CRO Conf. Digit. Syst. Design Archit., Methods Tools, Sep. 2008,
pp. 32–35.

[12] A. Edman and C. Svensson, “Timing closure through a globally syn-
chronous, timing partitioned design methodology,” in Proc. 41st Design
Autom. Conf., Jul. 2004, pp. 71–74.

[13] M. Ghoneima, Y. Ismail, M. Khellah, and V. De, “Variation-tolerant and
low-power source-synchronous multicycle on-chip interconnect scheme,”
VLSI Des., vol. 2007, Mar. 2007, Art. no. 95402.

[14] I. Loi, F. Angiolini, and L. Benini, “Developing mesochronous synchro-
nizers to enable 3D NoCs,” in Proc. Design, Autom. Test Eur., Mar. 2008,
pp. 1414–1419.

[15] F. Vitullo et al., “Low-complexity link microarchitecture for mesochro-
nous communication in networks-on-chip,” IEEE Trans. Comput.,
vol. 57, no. 9, pp. 1196–1201, Sep. 2008.

[16] M. Paschou, A. Psarras, C. Nicopoulos, and G. Dimitrakopoulos,
“CrossOver: Clock domain crossing under virtual-channel flow control,”
in Proc. Design, Autom. Test Eur. (DATE), Mar. 2016, pp. 1183–1188.

[17] A. Psarras, M. Paschou, C. Nicopoulos, and G. Dimitrakopoulos,
“A dual-clock multiple-queue shared buffer,” IEEE Trans. Comput.,
vol. 66, no. 99, pp. 1809–1815, Oct. 2017.

[18] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, Microarchitecture of
Network-on-Chip Routers: A Designer’s Perspective. Cham, Switzer-
land: Springer, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

