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Abstract—In this paper, a new leading-zero counter (or detector)
is presented. New boolean relations for the bits of the leading-zero
count are derived that allow their computation to be performed
using standard carry-lookahead techniques. Using the proposed
approach various design choices can be explored and different
circuit topologies can be derived for the design of the leading-zero
counting unit. The new circuits can be efficiently implemented
either in static or in dynamic logic and require significantly less
energy per operation compared to the already known archi-
tectures. The integration of the proposed leading-zero counter
with the leading-zero anticipation logic is analyzed and the most
efficient combination is identified. Finally, a simple yet efficient
technique for handling the error of the leading-zero anticipation
logic is also presented. The energy-delay behavior of the proposed
circuits has been investigated using static and dynamic CMOS
implementations in a 130-nm CMOS technology.

Index Terms—Floating-point unit, leading-zero anticipation
(LZA), leading-zero counter (LZC), microprocessor, normaliza-
tion.

I. INTRODUCTION

F LOATING-POINT units are a dominant part of modern
microprocessors and both their delay and energy con-

sumption should be aggressively optimized in order to get an
overall efficient design. Several high-speed floating-point units
have been recently presented in open literature [1]–[5]. One
of the main operations of floating-point datapaths is normal-
ization. During normalization the outcome of a floating-point
operation is brought to its normalized form, i.e., ,

, according to the IEEE-754 standard [6]. Normal-
ization involves the use of a leading-zero counting (LZC), or
detection unit, and a normalization shifter, while in almost all
cases, leading-zero anticipation (LZA) logic is also employed
to speedup the computation.

The problem of normalizing the result can be solved in two
ways. The first one involves counting the number of leading
zeros of the result and then shifting the result to the left ac-
cording to the outcome of the LZC unit. The derived leading-
zero count is also required in order to correctly update the ex-
ponent part of the result. This method is slow and is rarely pre-
ferred. The second way is to try to predict in parallel with the
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true operation (addition/subtraction) a pseudo result that will
have almost equal number of leading zeros as the true result.
In this way, both the true operation and leading-zero counting
on the pseudo result can occur simultaneously. The predicted
leading zero count is given to a shifter in order to normalize the
true result.

The prediction of the pseudo result is performed by the LZA
logic and its design has attracted a lot of interest in the past
few years [7]–[11]. A clear and thorough overview of the most
efficient solutions can be found in [11]. LZA logic also handles
the case of leading ones when the result of the true operation is
negative. Several methods have been presented that try to handle
leading zeros as well as leading ones in a unified manner [8], [9],
[11], [12]. Up to now, mostly due to delay reasons, distinct units
are employed to handle separately leading zeros and leading
ones [2], [10]. In other cases, duplicate adders and LZC units
are used to compute both the negative and the positive version
of the same result, e.g., and , and the final outcome
is selected using the actual sign of the result [4]. The predicted
leading-zero count is not always exact and may differ from that
of the true result by one position. This error of the LZA logic
can be handled in several ways [11].

Counting the leading zeros of a word is also useful to many
other cases besides floating-point datapaths. Almost all in-
struction sets of contemporary microprocessors include a count
leading zeros (CLZ) instruction for fixed-point operands. Also,
several hardware-based function evaluation algorithms require
the inclusion of a LZC unit to speed up the computation; see for
example [13]. The same holds for some variable-length-code
decoding architectures used in data compression [14].

In this paper, the design of a new and energy-efficient leading-
zero counting and anticipation logic is discussed. In Section II,
we briefly describe the functionality and the implementation of
existing LZC architectures. Then, in Section III, following a
mathematical approach, we derive new boolean relations that
describe the bits of the leading-zero count. The form of the de-
rived equations shows that the leading-zero count can be effi-
ciently computed using standard carry-lookahead techniques.
Based on this observation, we propose two organizations for the
new LZC unit that are presented in Section IV. In Section V,
the integration of the proposed LZC logic to the already known
LZA architectures is explored. We describe the LZA approaches
used in state-of-the-art floating-point units and the techniques
involved for their implementation according to the chosen LZC
unit. Our goal is to clarify which part of the prediction circuit
that consists of the LZA logic and the LZC unit, is more critical
in terms of energy and delay for the performance of the whole
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circuit. The combination of the LZA logic with the new LZC
unit leads to new and efficient designs. Additionally, we pro-
pose a simple way to handle the one bit prediction error of the
LZA logic. The benefits of the new LZA error handling method
are analyzed and compared to previously known techniques.
The efficiency of the proposed circuits has been validated using
static and dynamic CMOS implementations in a standard per-
formance 130-nm technology. The experimental methodology
followed and the derived results are presented in Section VI. Fi-
nally, conclusions are drawn in Section VII.

II. REVIEW OF LZC ARCHITECTURES

Leading-zero counting is the procedure of encoding in bi-
nary representation the number of consecutive zeros that ap-
pear in a word before the first more significant bit that is equal
to one. The latter is called leading digit. The opposite holds
for the case of leading ones. The LZC unit assumes bits as
input , where is the most-signif-
icant bit (MSB), and produces the bits of the leading-zero
count and a flag that denotes the all-zero case for the input

.
The first method for determining the leading-zero count of a

word is based on a two-step encoding procedure [11]. At first,
the position of the leading digit of the input operand is marked
and the remaining bits are set to zeros (one-hot representation).
For example, for the input 00110100 the position of the leading
digit is determined by the codeword 00100000. To derive the
one-hot representation, an intermediate string is at first pro-
duced. The bits of that follow the leading digit are set to one,
while the other more-significant bits remain to zero. For the
same input, is equal to 00111111. The th bit of denoted
as , , is defined as follows:

(1)

where denotes the logical OR operation. Each bit reveals
the existence of at least one bit equal to 1 between the MSB and
the th bit position. The one-hot representation of the leading
digit ( word) is determined by detecting the case (0,1) for two
consecutive bits of . Hence

for (2)

and , where and denote the logical AND and
complement operations, respectively. The circuit that computes
the word is called a priority encoder [15]. The word is then
given to an encoder that translates the number of leading zeros to
its weighted binary representation [11]. For the case of an 8-bit
input operand the number of leading zeros, bits, are given by
(3)–(5)

(3)

(4)

(5)

The all-zero flag is set to showing that no bit equal
to one, exists in . Up to now, this approach is mostly pre-
ferred in dynamic CMOS floating-point-unit implementations.

Fig. 1. 16-bit LZC unit following the architecture presented in [16].

The leading-zero count is computed in few logic stages by em-
ploying wide dynamic OR gates for the computation of both the

and the bits. In the rest of this paper, we will refer to this
LZC architecture as the encoder-based LZC unit.

The second method for computing the leading-zero count is
based on an algorithmic approach and it was introduced by Ok-
lobdzija in [16]. As it was shown in [17], the same approach
has also been used in [18]. At first, the input is partitioned in

two-bit groups of adjacent bits. For each group, a 2-bit
leading-zero count is generated. The most significant of the two
bits also acts as an all-zero indicator for the bits of the group.
At the next level, neighbor groups are combined and either the
leading-zero count of the left or the right group is selected using
a set of multiplexers. The selection is performed based on the
value of the most-significant bit of the left group. Additionally,
the two all-zero indicators are combined and a new all-zero flag
is produced, which indicates when the bits of the new double
size group are all equal to zero. This procedure continues recur-
sively for levels. The circuit is modular and is the fastest
solution up-to-now for static CMOS implementations. The im-
plementation of the 16-bit LZC unit is shown in Fig. 1.

The last method for computing the leading-zero count was
presented by Bruguera and Lang in [19]. The algorithm recur-
sively calculates the th bit of the leading-zero count based on
the precomputed more significant bit . Assume, for ex-
ample, the case of an 8-bit input operand . At first, the OR of
the high-order bits is computed. This signal will be equal
to zero when are all zero. Hence, this signal in-
verted indicates that there are at least four leading zeros in ,
and thus . At the next step, the algorithm uses the value
of to determine the next bit of the leading-zero count.
In the case that , it means that we should search for
more leading-zeros to the bits . In the opposite case,

, less than four leading zeros exist and they are placed
on the upper part of the word . Therefore, in the fol-
lowing, the OR of the bits , , and , is computed,
respectively, to determine whether should be asserted. The
value of is computed via a multiplexer that selects the OR

of either , or , according to the value of the more
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significant bit . Since the OR of the smaller group of bits is
computed earlier than , the computation of bits and is
overlapped in time. In the next levels, the algorithm continues
using the same principle. The four possible values of de-
termine, using a tree of multiplexers, if an extra leading zero
exists in bits , , , or .

According to the design of [19], the more significant bits
of the leading-zero count are computed earlier than the cor-
responding less significant bits. This approach was followed
since the more significant bits are used in the first stages of
the shifter that perform the coarse normalizing steps. The less
significant bits can be delayed since they are not used until the
last shifting stages of the normalization shifter. This technique
may be beneficial in some cases, however it cannot be applied
when the leading-zero counter and the normalization shifter be-
long to different pipeline stages. Also, producing the bits of
the leading-zero count with a certain delay difference between
them, increases the delay of the exponent update logic that sub-
tracts the leading-zero count from the precomputed exponent
value. The adoption of this technique depends on the specific
design choices made for the complete floating-point unit such
as the number of pipeline stages and the clock period. Also, de-
laying the computation of the bits of the leading-zero count can
be also applied to all other LZC circuits by properly sizing the
gates of the circuit. The extra time slack provided to the less sig-
nificant bits can be used for reducing the power dissipation of
the circuit.

The last two methods assume that, when the input operand is
equal to zero, the flag is asserted and the bits are treated
as don’t care values. Since any redundant normalization
shift does not change the result. This approach is also followed
by the proposed method. The implementation details will be
clarified in the following sections.

III. PROPOSED LZC ALGORITHM

In this section, the proposed LZC unit will be presented. Fol-
lowing a mathematical approach, we simplify the boolean re-
lations that describe the bits of the leading-zero count. The
proposed method will be presented using an example of an 8-bit
LZC unit. Using (2) in (3)–(5), we get

(6)

(7)

(8)

Since the string is monotonically increasing, i.e., it has the
form , then a pair of bits with
can never take the value (1,0). This fact leads to two significant
properties of the bits of . For , we have
and . Using these properties, the equations that
describe the bits can be further simplified. For example, the
term of (6) can be written as
since . Then, the term in the parentheses is reduced
to that is equal to , due to the second property of the

bits. Such modifications can be recursively applied to the rest
bits of the leading-zero count, leading to the following relations:

(9)

(10)

(11)

These relations have also been presented in [11] without pro-
viding any proof for their derivation or any further optimization.
According to (9)–(11), when the input is equal to zero, the bits
are also set to zero, indicating that no normalization is required.
However, as long as the flag is asserted, we can map the
bits to any other value. Therefore, we chose to set each bit
to 1 when . In this way, (9)–(11) can be written as
follows:

(12)

(13)

(14)

We can replace redundant terms of the form ,
with their equivalent terms . Based on the first property
of the bits, these terms are further simplified to . After ap-
plying such simplifications, the bits are given by (15)–(17)

(15)

(16)

(17)

We are interested in computing the bits of the leading-zero count
directly from the input operand . Therefore, we express each
bit of (15)–(17) as a function of the input bits following
(1). Inverting the bits and performing some simple boolean al-
gebra manipulations, we derive the final equations that describe
the bits of the leading-zero count in the case of an 8-bit input
operand

(18)

(19)

(20)

The bits are all equal to one when . This is the reason
why the least significant bit of the input does not participate
in any relation concerning the bits of the leading-zero count.

is only used, via , for the computation of the flag.
The least-significant bit determines whether the leading-

zero count is an odd or even number. We would like to exploit
this simple property. Therefore, a new single output operator

is defined that has the same form as the equation describing
bit

(21)

When is asserted it means that the leading-zero count of
the input string is an even number. The least-significant bit

is unused. The reason is that when is equal to zero, we
are allowed to treat the bits as don’t care values. The bits
are computed by the application of the operator to different
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Fig. 2. Example of the new method for determining the leading-zero count of
an 8-bit input operand.

groups of bits of the input operand . For the 8-bit leading-zero
count, we have that

An example of the application of the proposed method to the
input operand 00000101 is shown in Fig. 2. By applying
to all the bits of the input operand, we determine whether its
leading-zero count is an even number. This is false and so
is set equal to 1. This operation requires several logic stages
to complete. Thus, in parallel, we perform a bitwise OR op-
eration between the neighbor bits of the input operand and a
new half-size string is derived. Again, using , we determine
for the new string 0011 whether its leading-zero count is even.
Since, 0011 has an even number of leading zeros, bit is set
equal to 0. In this case, assumes half inputs compared to
the computation of allowing the computation of and
to finish almost simultaneously. While, and are evalu-
ated, we can OR the adjacent bits of the intermediate string 0011
and apply the operator to the new word 01 which gives that

. Thus, in parallel to the computation of and ,
we can also derive the bit of the leading-zero count. Also,
at the same time the computation of the binary OR tree is also
completed and its final output determines the all-zero flag
of the LZC unit. The output of the new LZC unit is equal to

that correctly encodes the five leading-zeros
of the example input. In Fig. 2, the least significant bits of all
intermediate words produced by the binary OR tree are shaded.
The reason is that according to the definition of the operator
they are not used for the derivation of the bits. They partici-
pate only in the computation of the flag.

For the design of arbitrary wordlength LZC units, we do not
need to derive general expressions that describe the bits of the
leading-zero count. A general -bit LZC unit can be designed
as a simplified version of the corresponding -bit LZC unit,
where . For example, an 11-bit LZC unit can be
easily derived by the corresponding 16-bit design. In this case,
we need to form a 16-bit word that will have the same number
of leading zeros with the corresponding 11-bit input. To achieve
this, we generate a 16-bit word where the 11 bits of the input
are put to the more significant bit positions and the five least
significant bits are set to zero. We can derive the corresponding

Fig. 3. Single-output carry-lookahead tree that computes Z in the case of an
8-bit input operand.

11-bit LZC circuit by propagating the five least significant zeros
to the equivalent 16-bit LZC unit and removing the gates that
evaluate to a constant value. This approach produces simplified
circuits with reduced delay.

IV. LZC UNIT ORGANIZATION

In the following, we will present two methods for the or-
ganization of the proposed LZC unit and we will analyze in
detail their implementation in both static and dynamic CMOS
logic. It can be easily observed that the relation (21) of the

operator resembles the well know carry-lookahead equa-
tion , where in place of
the bits and we use the bits of the string . Each bit of
the leading-zero count is computed independently using a sep-
arate single-output carry lookahead tree. The structure of such
a tree that computes the least significant bit of the leading-zero
count in the case of an 8-bit input operand is shown in Fig. 3.
The basic block of the carry-lookahead tree is the well-known
carry merge (CM) cell. Please notice that the right part of the
design that combines the less significant bits requires a simpli-
fied form of the CM cell, which is composed only of an AND-OR

gate.
Besides that is computed directly from the input bits, the

carry-lookahead trees that compute the remaining bits of the
leading-zero count, assume as input the OR function of specific
groups of the input bits according to the algorithm described in
Fig. 2. Therefore, a complete binary tree of OR gates is required.
The intermediate results produced at each level of the binary
OR tree are given as input to the corresponding carry-lookahead
trees that compute the bits of the leading-zero count. Moreover,
the final output of the binary OR tree represents the all-zero flag

that is also required by the leading-zero counter. In our de-
sign, independent carry-lookahead trees are required to
compute the bits of the leading-zero count of an -bit input
operand. Each tree combines a different number of bits. is
computed directly from the bits of the input operand since

does not participate in the computation, while assumes as
input the pairs

. In the general case, the computation of the bit of the
leading-zero count is performed using a carry-lookahead tree of
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Fig. 4. Proposed 16-bit LZC unit.

inputs. A complete implementation of a 16-bit LZC
unit is shown in Fig. 4.

Based on the properties of the carry propagate signals that are
produced at each level of the circuit shown in Fig. 4, an alter-
native implementation can be derived. As shown in Fig. 4, gate
Q1 of the carry-lookahead tree that is used for the computation
of bit , computes the term

using as a carry-propagate bit. This signal comes
from the output of AND gate G2. Also, the output of gate Q2 of
the carry-lookahead tree that computes bit , is equal to

In this case, the term is used as a carry-propa-
gate bit and is computed by the inverter G1. In both cases,
we observe that we can use the output of gate G3, i.e.,

, of the binary OR tree instead of
the outputs of gates G1 and G2 without altering the result
of gates Q1 and Q2. For example, for gate Q2, if we use

as the carry propagate bit, we get

which is equal to the original equation describing the output of
gate Q2. Thus, the terms produced at the intermediate nodes of
the binary OR tree can be reused and act as shared carry prop-
agate signals for the carry trees that generate the bits of the
leading-zero count. The same property holds for all levels of
the carry logic and the rest terms produced by the binary OR

tree. The circuit that follows the shared-carry-propagate archi-
tecture is shown in Fig. 5.

The two proposed solutions for the LZC unit are equally
modular and regular and represent the two extremes of the
design space. The straightforward computation of the bits of

Fig. 5. Second variant of the proposed 16-bit LZC using the shared carry-prop-
agate approach.

the leading-zero count (see Fig. 4) has a shorter critical path
and the fanout of each gate is limited to 2. On the contrary,
the shared-carry propagate approach has the smaller number
of gates but the internal nodes of the circuit are more loaded
due to the larger fan-out of the shared carry-propagate signals.
This difference in the load of the internal nodes is in favor of
the straightforward implementation, which is expected to be
slightly faster than the second variant of the proposed LZC
unit (see Fig. 5). However, the reduced number of gates of
the shared-carry propagate approach will give more energy
efficient solutions when the circuit is sized for larger delays.

The second variant of the proposed LZC unit is a simplified
form of the circuit presented by Oklobdzija in [16], while the
first variant of the proposed designs (see Fig. 4) follows a com-
pletely new circuit topology. The new designs have simplified
critical paths due to the carry-lookahead approach used for the
computation of the bits of the leading-zero count and also lead
to more energy efficient solutions. The energy and delay reduc-
tions achieved by both the proposed solutions compared to pre-
viously known LZC units will be quantified by the experimental
data given in Section VI.

The form of the equations describing the bits of the leading-
zero count imposes some difficulties in the case of dynamic
CMOS implementations of the proposed circuits. The difficulty
stems from the fact that certain AND-OR gates of the circuit (as
Gate Q2 shown in Fig. 4) need to combine signals of different
polarity in order to compute a relation of the form .
Assuming a totally single-rail implementation and that each dy-
namic stage is followed by one stage of static logic, the signals

and will be low in the precharge phase and possibly be high
in the evaluate phase. On the contrary, we cannot guarantee that

will not perform a High-to-Low transition during the evaluate
phase thus possibly deteriorating the output of the dynamic gate.
Therefore, the new circuits should be designed appropriately to
overcome this monotonicity problem.
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Fig. 6. Example of the hybrid dual and single rail implementation of the proposed LZC units.

One straightforward approach is to use dual-rail dynamic
logic. In that case, both the true and the complement versions
of all signals are available in dynamic-logic compatible form.
Nevertheless, the adoption of dual-rail dynamic logic duplicates
the gates of the circuit and increases significantly its power
consumption. Another approach that allows us to keep the
design in full single-rail form, but requires some tricky and less
robust circuit techniques, is to directly cascade dynamic gates
and delay the clock to the latter gate in order to ensure that the
inputs are monotonic during evaluation [15].

The approach we adopted relies on a hybrid technique where
dual-rail dynamic logic is used only in specific parts of the cir-
cuit, while the majority of the gates produces single rail outputs.
The derivation of this technique is based on a simple observa-
tion. In both circuits of Figs. 4 and 5, we can see that the AND-OR

gates that compute relations of the form , receive in
all cases the inverted input either from the input bits or the
output of the OR gates of the binary OR tree. Therefore, the only
part of the circuit that should provide stable dual-rail signals is
either the input of the circuit, or the gates of the binary OR tree.
The gates of the binary OR tree are duplicated and compute both
the true and the complement versions of their outputs giving the
dynamic-compatible signals to the corresponding gates of the
carry-lookahead trees. The rest gates of the circuit that com-
pute the bits of the leading-zero count in a carry-lookahead
fashion are implemented as single-rail dynamic gates without
causing any monotonicity problems. Such techniques are not
uncommon to the high-speed microprocessor design commu-

nity, where both single and dual-rail dynamic signals are used
for improving the speed of the design [20].

The proposed designs consist of alternating dynamic and
static carry-merge stages. Also, the precharge and evaluate
phases of the dynamic stages are orchestrated by overlapped
clocks following the design principles described in [21], in
order to minimize any timing overhead and improve skew
tolerance. An example of the functionality of the mixed single
and dual-rail dynamic CMOS implementations is shown in
Fig. 6. In the rest of this paper, this approach for designing
the proposed LZC units in dynamic CMOS, will be denoted
as single-rail technique in order to clearly differentiate from
the full dual-rail approach that we also investigated in the
experimental results.

V. LZA LOGIC

In this section, we review several LZA architectures and we
present how the proposed LZC unit can be integrated with the
LZA logic. Together with the experimental results presented in
Section VI, we aim to identify which one of the LZA techniques
can be more efficiently used along with the proposed LZC unit.
Moreover, we investigate which part of the prediction circuit
among the LZA logic and the LZC unit, is more critical in terms
of delay and energy for the performance of the whole circuit. Fi-
nally, a new method for handling the error of LZA logic is intro-
duced that further reduces the complexity of the normalization
circuit.
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LZA logic tries to produce from the input operands and
a prediction string of bits that will have almost the same

number of leading zeros or ones as the outcome of the true op-
eration. Leading zeros occur when the result is positive, and
leading ones occur when the result is negative. Each bit of the
prediction string is equal to the value of an indicator that is
computed using the carry propagate , carry gen-
erate , and carry kill functions of the
input bits and . Many algorithms have been presented so
far for the design of the LZA logic. Their difference lies in the
boolean relations that describe the function of the indicator .
These techniques can be roughly separated in two categories.
The first category contains the circuits that detect the case of ei-
ther leading zeros or ones using a single set of indicators. The
second category separates the case of leading zeros from the
case of leading ones and uses two distinct sets of indicators. For
both LZA architectures, the prediction string is given to a single
or two separate LZC units, respectively, in order to encode the
number of leading zeros or ones. Any of the already described
LZC units can be used for the encoding.

In the first class of LZA logic two techniques have been pro-
posed [8], [12], that both have almost the same complexity. The
most widely used is the one presented in [8]. In this case, the
indicator predicts the position of the leading digit using in-
formation from both the left and the right neighbor
bits irrespective of the sign of the true result. The definition of
the indicator is given in (22)

(22)

and . If the indicator of the th bit posi-
tion is asserted and no other more significant indicator is also
asserted then the leading digit is either in position or in .
The prediction string produced by the indicators of (22) does
not need any further processing and can be given directly to a
LZC unit that will encode in weighted binary representation the
number of leading zeros.

In the second class of LZA logic that employs two sepa-
rate prediction units, the indicators are simpler since they do
not need to detect both leading zeros and leading ones. The
method presented in [11] predicts the leading zeros and ones
using two separate units. The outputs of the two units are com-
bined to produce a single prediction string. Each unit has its
own set of indicators. For the case of leading zeros the indicator

is used. In the opposite case, leading ones are
detected using the indicator . The indicators
in each unit are ORed from left to right to create two monotonic
strings of zeros followed by ones, e.g., . The th
bit of each monotonic string equals the OR of all the bits from the
most-significant position down to position , like (1). Then, the
two monotonic strings are bitwise ANDed to create a single pre-
diction string whose left-most one (more significant) predicts
the position of the leading digit. Again, in the case of a miss
prediction, the leading digit of the true result may be in the fol-
lowing less significant bit position. Monotonic strings have also
been used in [9] for the design of an finite-state machine based
LZA logic. However, the design of [11] is preferred because of

its higher speed and lower implementation cost. Encoding the
number of leading zeros of the derived prediction string is better
facilitated by the last part of the encoder-based LZC unit since
the prediction string is already in monotonic form.

For this LZA architecture [11], an alternative LZC unit has
been proposed in [10]. This circuit follows a hybrid structure
where monotonic strings of bits are generated in groups of 6 bits,
instead of the whole word, while the final encoding is selected
by appropriately combining the output of each group. The or-
ganization of the LZC unit followed in [10] resembles a high-
radix implementation of the circuit presented by Oklobdzija in
[16]. Instead of combining groups of 2 bits, the final result is de-
rived by examining 6-bit groups of the pseudo-result computed
by the LZA logic and the selection between the groups is per-
formed using 6-to-1 multiplexers. One encoding is derived for
each one of the two LZA prediction units. The correct encoding
(leading zeros or leading ones) is selected using the sign of the
true result that is computed separately from the input operands.
This method is efficient in the case of dynamic-CMOS imple-
mentations.

If we want to integrate the two-prediction-unit LZA logic
with the proposed LZC unit, then the weighted binary repre-
sentation of the leading-zero count can be computed directly
from the indicators and . In the original version of the
LZA logic with two separate units, the indicators of each unit
were first ORed and two monotonically increasing strings of
the form were generated. These strings have ex-
actly the same form as the definition of the string given in
(1). The only difference is that in place of the bits of the input
the leading-zero-indicator bits appear. We have shown that de-
parting from the monotonic string , a simplified form of re-
lationships can be derived that compute the leading-zero count
directly from the input bits. Therefore, the generation of a mono-
tonic string from the indicators either or is redundant. The
leading-zero count can be directly computed from and ,
respectively. For the case of split LZA prediction, our approach
is similar to the method followed in [10] using a different LZC
unit organization.

Feeding the indicators and to the proposed LZC units
two distinct weighted binary representations are produced. The
first encodes the predicted number of leading zeros and the other
the predicted number of leading ones. Which one of the two
binary representations contains the correct normalization infor-
mation can be selected in two ways. The first one is based on the
sign of the true result. If the result is positive then the encoding
of the leading-zero indicators is selected. In the opposite case the
encoding of the leading-one indicators contains the information
that is needed for the normalization of the result. This method
was followed in [10], where the actual sign is computed by a
separate circuit that runs in parallel to the leading-zero counting
procedure. However, in case that an end-around-carry adder is
used, the output carry, which is used for determining whether
to recomplement the output of the adder, could also be used to
select the proper LZA count.

The second way to get the valid number of leading zeros or
ones is to compare the outputs of the two LZC units and select
the maximum. This approach is directly derived by the func-
tionality of the LZA logic with two separate prediction units
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presented in [11]. Recall that the last step of the original algo-
rithm is to perform a bitwise AND between the two monotoni-
cally increasing strings derived by each unit. After this step the
result is equal to the string that has the smallest number of con-
secutive ones to its least significant part, i.e., larger number of
leading zeros. In our case, we do not have two monotonic strings
but the corresponding encodings of the number of leading zeros.
Therefore, selecting the maximum weighted binary representa-
tion of the two possible leading-zero counts is equivalent to the
bitwise-AND operation performed by the original method. Se-
lecting the maximum between the two representations has more
delay than selecting the correct representation using the sign of
the true result. However, depending on the design constraints,
in some cases it may be beneficial to use the comparison-based
approach.

When the selection of the correct representation of the
number of leading zeros is based on the sign of the true result,
we could use simpler indicators than and [18]. The
indicators and assume
that always the smaller operand has been subtracted from the
larger one and the result of the true operation is always positive.
Indicators detect the case of leading zeros, while
detect the case of leading ones. Therefore, we can use the split
LZA architecture using two LZC units driven by and ,
respectively. The correct encoding is selected by the sign of the
true result.

So far, we have described several alternatives the designer
has for the design of the LZA logic and the corresponding LZC
unit. Which combination of the LZA logic and the LZC unit
gives the more efficient implementation will be derived by the
energy-delay comparisons presented in Section VI. We expect
the proposed LZC unit to offer significant savings in terms of
energy per operation to the whole prediction circuit, without
increasing the delay. Also, using the simulation data, we will
clarify whether the architectures with two separate prediction
units, offer any benefit compared to the LZA logic that employs
the combined indicator of (22).

A. LZA Error Handling

In certain cases, the prediction of the position of the leading
digit may differ from that of the true result by one. Then, the
result is not correctly normalized and an additional shift left
by one position should take place. The exponent should be also
decreased by one. Many methods have been proposed so far to
handle the one-bit error of the LZA logic.

The first one (LZE I) involves checking the most-significant
bit of the output of the normalization shifter. In case that it is
equal to zero, it means that the result is not normalized and
an additional shift is required. More bits from the intermediate
levels of the shifter can be checked to reduce the delay overhead
in the last shifting stage. Although this technique is conceptually
simple it imposes a significant delay overhead to the normaliza-
tion shifter. In some cases, like [22], this delay overhead causes
the designers to move the correction shift to the next pipeline
stage following the normalization shift, so as not to increase the
clock cycle.

The second approach (LZE II) combines the information pro-
duced by the LZA logic with signals from the adder that pro-

duces the true unnormalized result. In some cases the output of
the adder is ANDed with the one-hot encoding of the anticipated
leading digit. If all the bits of the derived word are equal to zero
then the predicted position of the leading digit is not correct.
Hence, an all-zero detector is used to detect the miss-prediction
in parallel to the shifter. This approach is used in [23]. In other
cases, the carries at each bit of the adder are used together with
the one-hot representation of the leading digit that is produced
by the LZA logic to generate an error indication signal [12]. If
at least one of the error indicators is asserted then the predicted
leading-zero count is off by one. The error is detected using a bi-
nary OR tree that runs in parallel to the normalization shifter. In
both cases, when an error is detected, the normalization should
perform an additional shifting operation to correct the error.

Both variants of LZE II rely on the generation of -bit one-hot
string, where the only 1 denotes the predicted position of the
leading digit. This property limits the designer’s choices con-
cerning the LZC unit that could be used for encoding the number
of leading zeros of the pseudo result that was generated by the
LZA logic. For example, if an LZC unit like the proposed one
is used, or the one presented in [16], then the output of the
LZA logic would be the bits of the weighted binary rep-
resentation of the number of leading zeros of the pseudo re-
sult. This representation can be directly used by the normaliza-
tion shifter and the exponent update logic without any further
processing. However, since LZE II requires the position of the
leading digit to be encoded in one-hot form an extra -to-
decoder is needed to perform the needed transformation. In this
case, the extra decoder increases significantly the delay and
the energy per operation of the error detection logic. There-
fore, the only LZC unit that could be used, should be similar to
the encoder-based LZC unit, described in Section II, where the
one-hot representation of the leading digit is already produced
as an intermediate result of the encoding procedure.

The last approach (LZE III) generates an error indication
signal in parallel with the adder and the LZA logic [7], [24]. This
approach uses the indicators of the LZA logic to detect specific
patterns of the input bits that cause the error. The circuits that
implement this form of pattern detection have significant delay
and energy cost, compared to LZE I and II.

We propose a new LZA error detection and correction method
that is as simple as the LZE II techniques without imposing
any limitations on the selection of the LZC unit. The structure
of the proposed error handling method is shown in Fig. 7. The
only circuit added is a single-output carry tree that computes
the least significant bit (LSB) of the leading-zero count of the
true unnormalized result. This circuit is equivalent to the one
shown in Fig. 3. The circuit runs in parallel with the shifter and
together with the value of the LSB of leading-zero count that is
predicted by the LZA logic, controls the last shifting stage of the
normalization shifter. When the LSB of the leading-zero count
of the true result, denoted as , is different from the LSB of the
predicted leading-zero count, denoted as , then an error has
occurred.

If the LZA was exact, the last stage of the normalization
shifter would perform either no shift or a left shift by one po-
sition. As described in Section V, we assume that in the case
of an error, the predicted leading-zero count is smaller than the
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Fig. 7. Proposed method for detecting and correcting the 1-bit error of the LZA
logic.

leading-zero count of the true result by 1. Therefore, to correct
the one position error, we would either add one extra shift stage
or we could transform the last stage of the normalization shifter
to perform a left shift by zero, one, or two positions, according to
the output of the decision logic. We chose the second approach
since it leads to a faster circuit. When is equal to (0,0)
or (1,1) no error occurs. In the first case, the result is already
normalized, while in the second case a left shift by one position
is required. On the contrary, when is equal to (0,1) or
(1,0) an error has occurred and a left shift by 2 or 1 position,
respectively, is required to correct it.

VI. ENERGY-DELAY COMPARISONS

The proposed architectures have been evaluated using CMOS
implementations in UMC 130-nm standard performance CMOS
technology [25]. All measurements were performed for the typ-
ical process corner at a temperature of 70 C, assuming a nom-
inal supply voltage of 1.2 V (1 FO4 62 ps). In order to ex-
plore the energy-delay space for each design, we performed
gate sizing for several delay targets, beginning from the cir-
cuit’s minimum achievable delay. Optimization is performed
using an in-house tool developed around the geometric pro-
gramming solver of [26] and following the gate sizing method-
ology presented in [27]. For the derived gate sizes, the energy
and the delay of each circuit have been measured in HSpice.
During optimization and measurements we assumed that the
outputs of the circuit are loaded with a capacitance of 100 fF
that roughly corresponds to the capacitance of a 350- m metal-2
wire in our technology. Interstage wiring loads, both capac-
itance and resistance, have also been taken into account, as-
suming for the design a bit slice of 16 metal-1 tracks as the one
used in state-of-the-art microprocessors [23]. To get reasonable
delays, all compared designs have been optimized assuming that
the maximum allowable input capacitance of each circuit is less
than 25 fF which corresponds to a ratio of 4 for the circuit’s
output capacitance to input capacitance.

A. LZC Units

At first, the proposed 64-bit LZC units were compared to
the most efficient architecture [16] for static CMOS implemen-
tations. The energy-delay behavior of the circuits is shown in
Fig. 8(a). It can be observed that the proposed methodology

leads to circuits that are slightly faster than the design of [16],
having a smaller (by 4%) minimum achievable delay. The
main benefit of the proposed designs compared to previous
approaches is their energy efficiency. For equal delay measure-
ments, the energy savings range from 10% to 49%. This result
stems from the reduced number of gates required to compute
the leading-zero count and the simpler gates that appear on the
critical path. The shared-carry propagate approach (see Fig. 5)
requires more energy than the straightforward implementation
of the proposed LZC unit (see Fig. 4) for delays smaller than
8.5 FO4. This behavior is explained by the fact that the second
variant of the proposed LZC unit has more gates on the critical
path and larger fanout of the internal nodes of the circuit
compared to the straightforward implementation. Therefore,
the derived design has increased gate sizes that also increase
the energy requirements of the circuit. For delay targets greater
than 8.5 FO4, the shared-carry propagate approach gives the
most energy efficient circuit because it requires the smallest
number of gates. Nevertheless, for all delay targets the proposed
designs, either the first or the second variant, offer the most
energy efficient implementation compared to the design of [16].

Our experiments showed that the minimum achievable delay
of the encoder-based LZC unit and the design of [19] in static
CMOS implementations is almost twice the delay of the LZC
units under comparison (around 11 FO4 for the encoder-based
LZC unit and the design of [19]). Therefore, simulation results
for the encoder-based LZC unit and the design of [19] have not
been included in static CMOS, since no valid comparisons can
be made. Due to the structure of the design of [19] the bits of the
leading-zero count are computed with a certain delay difference.
Although the critical path is above 11 FO4 the more significant
bits are computed earlier with a delay of 8.5 FO4, which still
is 22% worse than the proposed design. At this minimum delay
point the energy of the circuit is well above the proposed LZC
units, which if sized for a delay target of 8.5 FO4 require less
than 2 pJ of energy per operation.

Similar conclusions can be derived if we consider the dy-
namic CMOS implementations of the proposed LZC unit and
the already known architectures. We implemented a 64-bit en-
coder-based LZC unit using 8-bit-wide dynamic OR gates in
each stage. Also, we included in the comparisons the LZC unit
presented in [10] assuming a radix-8 implementation. We chose
a radix-8 circuit since it gives a faster solution in our technology
compared to the radix-6 design originally proposed in [10]. The
energy-delay characteristics of those two dynamic LZC units
are shown in Fig. 8(b). The straightforward implementation of
the proposed circuit (see Fig. 4) has been also implemented
in dynamic logic following the circuit techniques described in
Section IV. We have included in the experiments a full dual-rail
implementation of the proposed LZC in order to quantify the
savings earned by the single-rail technique.

The energy-delay diagram of Fig. 8(b) reveals that the pro-
posed approach leads to significantly faster and more energy ef-
ficient solutions. The proposed single-rail implementation of the
LZC unit is 12% and 40% faster than the circuits proposed in
[10] and the encoder-based implementation, respectively. Also,
in all cases the proposed dynamic LZC unit requires the least
energy per operation. The reductions achieved by the proposed
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Fig. 8. Energy-delay curves for (a) the two variants of the proposed 64-bit LZC units and the circuit proposed by Oklobdzija in [16] and (b) the dynamic CMOS
implementations of proposed counters as well as the encoder-based LZC unit and the design of [10].

single rail implementation reach 55% compared to the most ef-
ficient so far design in dynamic CMOS [10]. The corresponding
energy reductions compared to the encoder-based LZC unit ex-
ceed 80%. The energy savings mostly come from the simple
structure of the proposed LZC unit and the reduced number of
gates on the critical path that leads to both faster solutions and
reduced gate sizes. Finally, from Fig. 8(b) it is evident that the
single-rail implementation of the proposed LZC unit saves more
than 45% of energy compared to the corresponding dual-rail im-
plementation. The single-rail form of the second variant of the
proposed LZC unit is slower than the straightforward implemen-
tation, but gives the most energy efficient designs for delay tar-
gets larger than 5 FO4.

B. LZA Circuits

The minimum delay 6.6 FO4 achieved in static CMOS by
the new LZC unit (see Fig. 4) leaves a lot of room for the in-
sertion of any form of LZA logic. The available delay slack is
determined by the speed of the adder that computes the true re-
sult. In our technology a 64-bit static CMOS radix-2 Ling adder
[28] following the Kogge-Stone architecture [29] has a min-
imum delay of 9.3 FO4 requiring at this point 25 pJ per addition.
At first, we are interested in quantifying the overhead imposed
by the combined-indicator LZA logic to the whole prediction
circuit.1 Thus, two circuits are implemented. In the first case,
the combined indicators drive the proposed LZC unit while in
the second case they drive the LZC unit proposed by Oklobdzija
in [16]. The energy-delay behavior of both circuits is shown in
Fig. 9(a). From Fig. 9(a), it can be derived that for all delay
targets the prediction circuit that uses the proposed LZC unit
requires the smallest energy compared to the prediction circuit
that uses the LZC unit proposed in [16]. For small delays, the
energy savings are more than 40%. For larger delay targets it is

1The term prediction circuit denotes the pair of the LZA logic and the LZC
unit that predicts the position of the leading digit, as shown in Fig. 7.

better to employ the shared-carry propagate approach reducing
further the energy of the prediction circuit.

Using the simulation data gathered for both circuits, we are
interested in investigating which part of the prediction circuit,
either the LZA logic or the LZC unit, is more critical in terms
of energy and delay. For all cases of Fig. 9(a), including both
circuits under comparison, the simulations show that the critical
path is unevenly distributed between the LZA logic and the LZC
unit. The LZA logic is responsible for roughly the 1/3 of the
delay of the critical path, while the LZC unit contributes to the
2/3 of the total delay. Therefore, as far as delay is concerned,
the more critical part of the prediction circuit that needs to be
better optimized is the LZC unit and not the LZA logic. The
same distribution roughly holds for energy also. The LZC unit is
responsible for more than 60% of the total energy per operation
required by the prediction circuit. Therefore, the optimization
of the LZC unit is more important than the optimization of the
combined-indicator LZA logic. This result is better shown using
the diagram of Fig. 9(b). In Fig. 9(b), we present the energy
breakdown of both circuits compared in Fig. 9(a), when they
are both optimized for a delay target of 10 FO4 under the same
input and output capacitance configuration used in deriving the
energy-delay curves of Fig. 9(a). In each case the combined-
indicator LZA logic is only responsible for roughly the 32%
of the energy required per operation. The proposed LZC unit
offers a 39% reduction in the energy of the LZC part of the
circuit. Also, the simpler LZC circuit has as a consequence the
reduction of the energy of the LZA part by 23%, since, for the
same delay target, it reduces the capacitance driven by the LZA
logic, leading to smaller gate sizes.

In the following, we analyze the case of split LZA archi-
tectures and compare them to the prediction circuit that uses
a combined-indicator LZA logic in static CMOS. In all cases
we use the proposed LZC units since they require significantly
less energy per operation compared to the best previous imple-
mentation [16]. The split prediction circuits of [10] and [11] are
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Fig. 9. (a) Energy-delay curves for the static CMOS implementation of the prediction circuit that uses the combined-indicator LZA logic along with the proposed
LZC unit and the design of Oklobdzija [16], respectively. (b) The energy breakdown of the prediction circuits using different LZC units and sized for a delay of
10 FO4.

Fig. 10. (a) Energy-delay curves for the static CMOS implementation of the prediction circuit using the combined-indicator LZA logic and the split LZA tech-
nique. In both cases the proposed LZC units are used. (b) The energy breakdown of the prediction circuits that use the combined-indicator LZA logic and the split
LZA logic, respectively, along with the proposed LZC units, when sized for a delay of 10 FO4.

more suitable for dynamic CMOS implementations taking ad-
vantage of the efficient implementation of wide OR functions,
while they do not fit well with static CMOS. Therefore, they
are not included in this set of experiments. We implemented
the prediction circuit that uses two sets of indicators, as de-
scribed in Section V. We examined the case of the indicators

(Split LZA) since they lead to more efficient circuits
compared to the more complex indicators . For the im-
plementation of the split-LZA prediction circuits, we assumed
that the correct number of leading zeros is selected according
to the value of the true sign of the addition using 2-to-1 mul-
tiplexers. The sign is computed by a separate carry lookahead
tree, whose energy and delay overhead has been also included
in the designs. The energy-delay diagrams derived are shown in
Fig. 10(a), where we have also included the prediction circuit

that uses the combined-indicator LZA logic and the proposed
LZC unit.

From Fig. 10(a), we can see that the split architectures are
faster only by 3% but they require 18% more energy on average
than the prediction circuit with the combined-indicator LZA
logic. Fig. 10(b) depicts the energy breakdown of the prediction
circuits that use the combined-indicator LZA logic and the split
LZA logic, respectively, utilizing in both cases the proposed
LZC units. Both circuits are optimized for a delay of 10 FO4.
We can see that the energy of the LZA logic of the split-LZA
prediction unit is more than the energy of the combined-indi-
cators LZA logic. This happens because the indicators and

that share the carry bits G, P, K, have increased output load
since they drive two separate LZC units. The G, P, and K bits
are also used by the carry tree that computes the sign of the
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Fig. 11. (a) Energy-delay curves for the dynamic CMOS implementation of the prediction circuits using the combined-indicator LZA logic and the proposed
single-rail LZC unit, along with the prediction circuit of [10] using split LZA technique. (b) The same predictions circuits using in all cases the proposed single-rail
LZC unit.

true result. The energy of the two LZC units is almost equal to
the energy of the single LZC unit required in the combined-in-
dicators approach. The energy of the two LZC units does not
increase, since, after delay optimization, they get less input ca-
pacitance compared to the LZC unit with the combined indi-
cator. The capacitance removed from the two LZC units goes to
the carry tree that computes the sign of the true result, so that
all paths have almost equal delay. Therefore, the energy over-
head imposed by the split LZA architecture and the needed sign
detection logic is significant compared to the combined-indica-
tors LZA logic. Again, the LZA architecture is responsible for
roughly the one-third of the total energy of the prediction cir-
cuit. Concluding with the static CMOS prediction circuits, we
can say that, when using the proposed LZC unit that gives the
most energy efficient designs, there is no meaning to use the
split LZA architectures since in all cases they give less efficient
circuits compared to the combined-indicator LZA approach.

The same conclusion can be derived for the case of dynamic
CMOS implementations of the prediction circuit. For this case,
we performed two sets of experiments. At first, we compared the
prediction circuit that uses the combined-indicator LZA logic
and the single-rail implementation of the proposed LZC unit,
with the most efficient previous architecture of [10]. The com-
bined-indicator LZA logic is implemented in full dual-rail dy-
namic CMOS which then drives the proposed single-rail LZC
unit. For the design of [10], we implemented the simpler split
LZA approach.2 The obtained energy-delay curves are shown
in Fig. 11(a). In all cases, the prediction circuit with the com-
bined-indicators LZA logic and the proposed LZC unit provides
the most efficient designs. For small delays, which is the area
of interest in dynamic CMOS, the energy savings are signifi-
cant and over 55%. In the second set of experiments, we want

2In [10], the indicators (f ; f ) were used for the design of the prediction
circuit, which offer less efficient designs compared to the simpler indicators
(fs ; fs ) that are implemented in this paper and compared to the proposed
solutions.

to determine, which LZA architecture offers the most efficient
implementations in dynamic CMOS implementations. There-
fore, we investigated two prediction circuits each one using a
different LZA technique, i.e., Split LZA and the combined-in-
dicators LZA logic. In both cases the number of leading zeros is
encoded using the proposed single-rail LZC unit. The results de-
rived are shown in Fig. 11(b). Clearly, the most efficient predic-
tion circuit remains the combined-indicators LZA logic when
using the proposed LZC unit.

C. LZA Error Handling Methods

A set of experiments have also been performed in order to
quantify the energy and the delay requirements of the proposed
and the previous LZA error handling methods. As a baseline
of our comparisons we assume the energy and the delay of a
standalone shifter, which is composed of stages of 2-to-1
multiplexers. All error handling methods should try to keep to
minimum the delay and the energy overhead they add to the
normalization shifter. Using the same parameters as in all other
circuits under comparison, it is derived that the minimum delay
achieved by the shifter equals 9.5 FO4. At this delay point the
energy of the circuit is roughly equal to 32 pJ.

At first, we designed the technique LZE I. Examining the
MSB of the output of the shifter and controlling the extra
shifting stage according to its value, imposes a significant delay
overhead. Although the signal is appropriately buffered, the
delay overhead is over 18%. The extra delay is caused because
of the large fan-out imposed by the select line. The energy of
the normalization shifter used in LZE I is 27 pJ. However, due
to the large delay difference no valid conclusions can be made.
Sizing the normalization shifter for a delay equal to the shifter
of LZE I reduces its energy to 18 pJ.

LZE II and the proposed error handling method have almost
the same performance in terms of energy and delay. Their min-
imum achievable delay is equal to 9.9 FO4, which is only 4%
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worse than the standalone normalization shifter. Also, the en-
ergy overhead is around 20% for both methods. For the case
of LZE II, we included only the overhead imposed by AND

gates used to detect if the position of the predicted leading digit
matches the leading digit of the true unnormalized result and
the binary OR tree used to detect the presence of a bit equal
to 1. We did not include any of the overhead imposed by the
encoder-based LZC unit or the extra circuits that may be used
to produce a monotonic string that denotes the position of the
leading digit. If we at least include the overhead added by the en-
coder-based LZC unit that is required to produce the monotonic
prediction string used by LZE II, we can safely conclude that the
proposed method imposes significantly less energy overhead to
the normalization shifter, while keeping the delay penalty to a
minimum.

VII. CONCLUSION

Two new LZC circuits have been presented in this paper.
Their design is based on a newly developed mathematical
framework describing the bits of the leading-zero count, while
their computation is reduced to well-known carry-lookahead
techniques in a unified manner. Significant energy reductions
are achieved by the proposed designs compared to the most
efficient previous implementations both in static and dynamic
CMOS logic. Based on the new LZC units, simplified pre-
diction circuits are derived that outperform already reported
architectures. From the presented analysis, the most efficient
combination of LZA logic and LZC unit is derived for the
design of the whole prediction circuit. Also, a novel technique
for handling the possible error of LZA logic was described that
imposes the minimum overhead to the normalization shifter
without introducing any further limitation.
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