
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007 711

Transactions Briefs

Sorter Based Permutation Units for
Media-Enhanced Microprocessors

Giorgos Dimitrakopoulos, Christos Mavrokefalidis,
Kostas Galanopoulos, and Dimitris Nikolos

Abstract—Single or multibit subword permutations are useful in many
multimedia and cryptographic applications. Several specialized instruc-
tions have been proposed to handle the required data rearrangements. In
this paper, we examine the hardware implementation of the powerful per-
mutation instruction group (GRP). The design of the proposed permutation
unit is based on the functionality of sorting networks. Two variants of the
sorter-based GRP unit are introduced and analyzed and their energy-delay
behavior is investigated using static CMOS implementations in a 130-nm
CMOS technology.

Index Terms—Cryptography, data-rearrangement instructions, multi-
media processors, permutation units, sorting networks.

I. INTRODUCTION

Multimedia applications constitute a large and increasing percentage
of general purpose computing workload [1], [2]. One of the main char-
acteristics of multimedia applications is that they deal with low pre-
cision data that exhibit high levels of data parallelism. In most cases,
multimedia data are packed into subwords of 1 or 2 bytes that are pro-
cessed in parallel in word oriented processors according to the single
instruction multiple data (SIMD) paradigm [3], [4]. New instructions
have been introduced to the instruction set of modern microprocessors,
in order to efficiently handle subword operations and enhance the per-
formance of software implemented multimedia algorithms. In order to
fully exploit the subword parallel operations, the subwords need to be
efficiently rearranged inside the registers in order to enhance the com-
putation. Efficient handling of permutations is also needed for the soft-
ware implementation of cryptographic algorithms in order to achieve
the required throughput. The selection of efficient permutation instruc-
tions and the design of fast permutation units have recently attracted a
lot of interest [5]–[9].

Several instructions have been proposed for speeding up the exe-
cution of arbitrary bit permutations [5]. Among them, instruction GRP
needs log

2
n instructions to generate an arbitrary permutation of n bits,

assuming that at most n control bits are available for each operation.
GRP has a versatile use and achieves greater speedup when used in
cryptographic algorithms [5], [9]. GRP RD; RS ; RC takes two source
operands, the data and the control bits stored in RS and in RC , respec-
tively, and generates one result that is stored in the destination register
RD . The instruction divides the bits of RS in two groups based on the
control bits of RC . If a control bit is 1, then the corresponding data bit
of RS is put in the first group. Otherwise, the bit of RS is put in the
second group. In the result, the relative position of the bits in each group
remains unchanged. An example of the execution of GRP is shown in

Manuscript received May 9, 2006; revised November 22, 2006. This work
was supported by the European Social Fund (ESF), Operational Program for
Educational and Vocational Training II (EPEAEK II), and particularly the pro-
gram PYTHAGORAS.

The authors are with the Technology and Computer Architecture Laboratory,
Computer Engineering and Informatics Department, University of Patras, Patras
26500, Greece (e-mail: dimitrak@ceid.upatras.gr).

Digital Object Identifier 10.1109/TVLSI.2007.898750

Fig. 1. Example of the execution of GRP.

Fig. 2. 8-bit sorter designed using (a) a bitonic and (b) a merge-sorting network.

Fig. 1. Hardware implementations of GRP have already been presented
in [10] and [11].

In this paper, new hardware implementations of the GRP instruction
are introduced. In Section II, we present the main idea behind our work,
showing that the proposed permutation units can follow a structure
similar to sorting networks. In the following sections, we explore the
architecture and the circuit implementation of two alternatives of the
enhanced sorting networks that we propose for the design of the GRP
execution unit. The efficiency of the proposed circuits has been vali-
dated using static CMOS implementations in a 130-nm CMOS tech-
nology. Experimental results are given in Section V and conclusions
are drawn in Section VI.

II. MAIN IDEA

According to GRP, the data bits that are associated with a control bit
equal to one, are concentrated to the left side of the output. This action
resembles a sorting operation for the control bits, where the largest bits,
i.e., bits equal to one, are gathered to the left. Therefore, the problem of
designing a hardware unit that executes GRP, is equivalent to the design
of a sorting network that sorts the control bits and simultaneously ex-
changes the positions of the corresponding data bits appropriately. The
main problem that arises is, that apart from sorting the control bits, we
must also ensure that the relative position of the data bits remains un-
changed. We consider two cases of sorting networks [12], the bitonic
and the merge-sorting network, which are shown in Fig. 2 for the case of
8 bits. Each sorting network is composed of the same compare element
and the direction of its arrow denotes the final position of the maximum
input. In Fig. 2 both networks sort the same binary word. This binary
word corresponds to the control bits of the GRP instruction. We need
to examine if, at the sorted output, the relative significance of the bits
inside the two groups of ones and zeros, respectively, is preserved.

1063-8210/$25.00 © 2007 IEEE

712 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Fig. 3. Implementation of GRP using two separate extraction units.

At first, we consider the case of a bitonic-sorting network [see
Fig. 2(a)]. The circuit is composed of appropriately connected sub-
networks, called bitonic sorters [13]. A bitonic sorter can only sort
bitonic sequences. A string of bits is a bitonic sequence, when it has
the form 0

�

1
�

0
� or 1�0�1�. At each stage, two bitonic sequences are

merged and a new double size bitonic sequence is produced. Bitonic
sorting networks cannot preserve at the output the relative significance
of equal bits. When two bitonic sequences are merged the bits are
recursively divided in two independent halves. Therefore, when a bit
is put in one half, it cannot regain its relative significance compared
to the rest bits with the same value that were placed to the other
half. Please notice the example of the two marked ones in Fig. 2(a).
Although they are correctly sorted at the output (no zero bit exists
in a more significant position), the routes that they followed have
altered their relative significance. Therefore, if their associated data
bits followed them, while they were sorted, they would be in wrong
order according to the definition of GRP.

The merge sorting network, shown in Fig. 2(b), follows a different
sorting principle. At each stage, two already sorted sequences, i.e.,
1
�

0
�, are merged to form a double size sorted sequence. The merging

of the two sequences is carried out by the merge sorter. The merge
sorter has the same number of compare levels as the bitonic sorter but
requires less compare elements. A clear explanation for the construc-
tion of bitonic and merge sorting networks can be found in [14]. Again,
as shown by the example of Fig. 2(b), the merge sorting network cannot
preserve at the output the relative significance of equal bits.

Since the bitonic and merge networks cannot preserve the relative
significance of equal bits, the data associated with control bits equal
to one and zero, respectively, are separately extracted from the input
operand and aligned at the output. The general form of the two-data-
path architecture is shown in Fig. 3. The left datapath is responsible
for concentrating the data bits with a control bit equal to one to the left
side of the result register. In the same manner, the right datapath that
assumes complemented control bits, concentrates the rest data bits to
the right side of the result register. The partial results of the two extrac-
tion units are unified with a logical OR operation. In order to allow the
OR unification at the output, the input data bits are first masked with
the corresponding control bits. The general architecture that uses two
separate extraction units was also followed in previous GRP implemen-
tations [10], [11]. However, each extraction unit follows a completely
different design principle and, as we will show in Section V, it leads to
the less efficient circuits compared to the proposed sorter-based GRP
units.

Fig. 4. Block diagram of an 8-bit enhanced bitonic-sorting network, showing
also the structure of the corresponding 2-, 4-, and 8-bit EBS units.

III. ENHANCED BITONIC-SORTING NETWORK

In the following, we derive a new structure, called enhanced bitonic-
sorting network (EBSN), that properly aligns the data bits with control
bits equal to one to the left side of the output (left extraction unit).
Then, following the two-datapath architecture of Fig. 3, a complete
GRP unit can be easily derived. The general structure of an 8-bit EBSN
is shown in Fig. 4. The EBSN takes two n-bit inputs; the data bits
that need to be correctly aligned at the left side of the output, and the
control bits that denote, which data bits should be selected. According
to the architecture of Fig. 3, the data bits are at first masked with their
associated control bits. Since we are not interested in the masked data
bits that are set to zero, they are graphically represented as x values.
The EBSN is composed of appropriately connected subnetworks called
enhanced bitonic sorters (EBS). Each EBS has two sets of inputs. A set
of control bits that should be in bitonic form and their associated data
bits. The purpose of the EBS is to sort the control bits and appropriately
move the corresponding data bits. Every two neighbor EBS units of
Fig. 4 are of equal size and have opposite converging directions. This
is required so as the newly derived double-size sequence of control bits,
i.e., the combination of the outputs of two EBS units, to be in bitonic
form.

An EBS is effectively a butterfly network. The structure of an 8-bit
EBS unit that sorts the maximum elements to the left, is shown in Fig. 4.
The first role of the EBS unit is to sort the bitonic sequence of control
bits. When two control bits are compared, their maximum is given by
their boolean OR function, which appears at the output of the HB cell.
Similarly, their minimum is given by their boolean AND function and
is produced at the output of the LB cell. The other purpose of the EBS
unit is to move appropriately the data bits with control bits equal to
one. Since the control bits are in bitonic form, we can use only a subset
of them in order to align the data bits. To see this we assume for the
8-bit case that the data and control bits are equal to xxCDExxx and
000111000, respectively. If we had an EBS unit that could correctly
move the data bits, C;D;E, with control bits equal to one, to the left
side of the output, then the result would be equal to CDExxxxx. We
do not care about the relative significance of the x bits, since they are
equal to zero. We can get the same result if we assume that all the
n=2 less significant control bits are equal to one. Therefore, only the
n=2 more significant of the input control bits are required to move
appropriately the data bits. The rest can be safely assumed equal to
one.

Following the control bits’ simplification, we will describe how the
data bits are moved to the output of the EBS via the 8-bit example

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007 713

Fig. 5. Example of the functionality of the 8-bit EBS.

shown in Fig. 5. The input data and control bits are shown in Fig. 5(a).
Data bits A7; A6; A5, and A0 are x values but we keep their names for
clarity. Also, as explained earlier, the control bit ofA0 can be safely as-
sumed equal to one. The connections shown in Fig. 5(b)–(d) represents
the connections of the first, the second, and the third level, respectively,
of the 8-bit EBS, shown in Fig. 4.

The functionality of the first stage of the 8-bit EBS is shown in
Fig. 5(b). The control bits that are equal to zero at the left end of the
control word, represent empty positions that must be filled by the most
significant data bits of the right half. Data bits A3; A2, and A1 should
be exchanged with A7; A6; A5, that have control bits equal to zero, in
order to fill the left half of the data word. In this way, although A3; A2,
and A1 have moved to the correct half of the output, their relative sig-
nificance with respect toA4, that also has a control bit equal to one, has
been violated. At the output of the first stage, a new control bit, called
swap bit, is generated for each data bit. Each swap bit indicates if the
corresponding data bit has changed its position at the previous stage.
Hence, swap bits equal to one are assigned to data bits A3; A2; A1 and
A7; A6; A5. The swap bits associated with A4 and A0 are set to zero,
because they did not change their position, and they are already at the
correct half of the result. In general, in the first stage, an exchange be-
tween data bits Aj+n=2 and Aj ; 0 � j < n=2 takes place, only when
the corresponding control bits Cj+n=2 of the upper half and Cj of the
lower half are equal to 0 and 1, respectively. Since all the control bits of
the lower half are assumed equal to one, the condition for an exchange
reduces toCj+n=2 = 0. Hence, the newly generated swap bits are both
set equal to Cj+n=2. The implementation of the HB and LB cells used
in the first level of every EBS is shown in Fig. 6. The AND/OR gates are
used for sorting the initial control bits and the multiplexers that select
between the corresponding data bits, are driven by the generated swap
signals.

In the following, each stage uses the swap bits generated at the output
of the previous stage to correct the relative position of the data bits.
When the swap bits of two data bits are different, it means that their
relative position is not correct, and they should be exchanged. For in-
stance, at the second stage [see Fig. 5(c)], data bitsA2; A4, andA6; A0

have different swap bits. A2 came from the lower half of the previous
stage and passed over A4 that did not move at the first stage. Hence,
an exchange should take place between A4 and A2 in order to correct
their relative significance. At the right half of the second stage, A6 and
A0 also have different swap bits. A6 came from the left half of the pre-
vious stage and it was placed to a more significant position compared
to A0. Since A6 has been swapped in the previous stage, it means that
it was compared to a data bit with a larger control bit, while A0 was
compared to a data bit with an equal control bit (equal to one). Thus,
A0 should be in a more significant position than A6 in the final result.
Therefore, an exchange between A6 and A0 should take place in order

Fig. 6. Implementation of the HB and LB cells.

to correct their relative position. At the output of the second stage, swap
bits equal to one are assigned to the data bits that changed position at
this stage. The remaining stages work in the same way due to the re-
cursive nature of the butterfly network. Fig. 5(d) shows the last stage
of the example, where data bits with different swap bits are exchanged.
Since the last four data bits A0A7A6A5 are from the beginning equal
to zero [see Fig. 5(a)], the output is correct according to the function-
ality of the left extraction unit.

In general, when the swap bits of two data bits are different, an ex-
change takes place and their new swap bits are set to one. Therefore,
every new swap bit is the exclusive-OR of the swap bits of the previous
stage. The HB/LB cells that implement the remaining levels of the EBS
are shown in Fig. 6. The complete enhanced bitonic sorting network
[see Fig. 4] requires EBS units that can sort also the data and the con-
trol bits to the right direction. In order to configure the EBS to gather
the corresponding data bits to the right end of the result, just two simple
changes are required. In the first stage of each EBS, the control signals
of the multiplexers should be changed from Cj+n=2 to Cj . This also
changes the generation of the corresponding swap bits. Finally, in all
stages of the EBS, the OR gates of the HB cells should be replaced by
AND gates, while the AND gates of the LB cells should be transformed
to OR gates.

IV. ENHANCED MERGE-SORTING NETWORK

In the case of merge sorting networks, each extraction unit is imple-
mented using the proposed enhanced merge-sorting network (EMSN).
The block diagram of an 8-bit EMSN-based left extraction unit is
shown in Fig. 7. As in the case of EBSN, the merge-sorting network
is also composed of appropriately connected subnetworks, called in
this case enhanced merge-sorters (EMS). The purpose of the EMS
unit is analogous to that of the EBS unit. However, due to the different
structure of the merge-sort approach, new circuit modifications are
required.

The structure of an 8-bit EMS unit is shown in Fig. 7. In the case
of EMS, the corresponding cells that perform the necessary data re-
arrangement, are denoted as HM and LM, respectively. Also, as in the
case of bitonic sorting, only the n=2 more significant control bits are
required to guide the data bits rearrangement and the rest control bits
can be assumed equal to one. The functionality of the EMS unit will be
clarified using the example of Fig. 8 for the 8-bit case. The connections
illustrated in Fig. 8(b)–(d) represents the connections of the 8-bit EMS
unit that is shown in Fig. 7.

714 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Fig. 7. 8-bit enhanced merge-sorting network and the structure of the 2-, 4-,
and 8-bit EMS units.

Fig. 8. Example of the functionality of the 8-bit EMS.

In Fig. 8(a), the most significant control bits of the upper part that are
equal to one, suggest that no exchange should be performed at those
positions. The corresponding data bits A7 and A6 are in the correct
positions and should remain at the same positions at the output. This
constraint holds for all compare levels of the EMS unit. Thus, in all
levels, the HM and LM compare-and-exchange cells that receive an
input from the left part of the EMS (from bit position j with j � n=2)
should not perform any comparison, when the input control bitCj = 1

(Barrier Constraint I). On the other hand, the zero control bits of the
upper part denote empty positions that should be filled by the data bits
of the lower part with control bits equal to one. Following the connec-
tions of the first level of the 8-bit EMS shown also in Fig. 8(b), the
only exchanges that are allowed at the first level, are between data bits
A1; A0 andA5; A4, respectively. After this operation two things occur.
Data bits A1 and A0 have violated their relative significance with A3

and A2 that have control bits equal to one, whileA4 and A5 have been
correctly placed at the tail of the result. In general, an exchange be-
tween data bits Aj+n=2 and Aj ; 0 � j < n=2 is performed at the first
stage only when Cj+n=2 = 0. Following this principle, we guarantee
that the most significant data bits of the upper part will never lose their
position, and the useless data bits with a zero control bit will be cor-
rectly moved to the right end of the result. In our example, all other
data bits should be rearranged between A7A6 and A5A4. We should

Fig. 9. Implementation of the HM/LM cell used in all stages of the EMS fol-
lowing the first.

not allow any other exchange operation to be performed at bit positions
0 and 1, where A4 and A5 have moved.

In general, the number of bit positions that should be blocked in the
right part of the EMS is equal to the number of zero control bits of
the upper part. Therefore, in all remaining levels the HM and LM cells
that receive an input from the jth bit position j < n=2, that belongs to
the right part of the EMS, should not perform any comparison, when
the input control bit Cj+n=2 = 0 (Barrier Constraint II). The barrier
constraints are set only by the n=2 more significant input control bits
and block the compare-and-exchange operations of the left and the right
end of the EMS, respectively.

As in the case of bitonic-sort, the data bits that have exchanged their
positions at the first stage, are assigned a swap signal equal to one, while
the rest, get a swap signal equal to zero [see Fig. 8(b)]. It should be
noted that the swap signal generation is only required for the positions
where the HM and LM cells are present in the next level. For the rest
positions, it is implicitly equal to zero. For example, due to the structure
of an 8-bit EMS, bit positions 7, 6, 1, and 0 directly get a zero swap
signal even if an exchange has been performed at those positions.

The functionality of the remaining stages is determined by the swap
signals that behave exactly the same way as in the case of the EBS. Nev-
ertheless, for EMS, Barrier Constraints I and II should be also taken into
account. An exchange is performed at the HM/LM cells, when the input
swap signals are different and the barrier signals of the corresponding
bit positions are both deasserted. If one of the barrier signals is asserted,
no exchange is performed at the HM/LM cells. It should be noted that
each swap signal is directly associated with a data bit and follows the
same route in the network. On the contrary, the barrier constraints that
are produced after the first level, describe a property of specific bit po-
sitions of the network and remain unchanged for all compare levels of
the EMS. The barrier Bj associated with the jth bit position is equal
to Cj for j > n=2 (left part), while in case that j < n=2 (right part)
Bj = Cj+n=2. Following this rule, and returning back to the example
of Fig. 8(c), data bits A3 and A2 are exchanged with A1 and A0, re-
spectively, since they have different swap signals and the operation is
not blocked by any barrier constraint. The last level of the EMS net-
work is shown in Fig. 8(d). Data bits A2 and A1 are correctly placed
and do not move since they have equal swap signals. Also, although
A6 and A3 have different swap signals, they are not exchanged since
the barrier associated with the 6th bit position is equal to one (Barrier
Constraint I, B6 = C6 = 1). The same holds for A0 and A5. In the
latter case, Barrier Constraint II is satisfied since B1 = C5 = 1.

The connections and the functionality of the first level of the EMS
is the same with the functionality of the first level of the EBS. There-
fore, the HM/LM cells of the first level are implemented in the same
way as in the case of EBS and their circuit implementation is shown
in Fig. 6. For the remaining levels of the EMS, the implementation of
the HM/LM cells is shown in Fig. 9. The AND/OR gates that are used to
sort the input control bits, are not blocked by any constraint and do not
interfere with the data-exchange operation.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007 715

Fig. 10. Energy-delay curves for the 64-bit GRP units implemented
with the EBSN and EMSN, respectively, (a) C =C = 25/100 fF and
(b) C =C = 5/25 fF. (c) The energy-delay curve for a subword oriented
GRP unit that supports a minumum subword size of 1 byte.

V. EXPERIMENTAL RESULTS

The proposed circuits have been evaluated using static CMOS im-
plementations in a 130-nm CMOS technology. The delay measure-
ments for all examined designs are reported in fanout-of-4 inverter de-
lays (FO4). The FO4 delay metric equals to the delay of an inverter
that drives four equally-sized inverters, and it is used since it provides
in some sense a technology independent way to express the delay of
a circuit. In order to explore the energy-delay space for each design,
we performed gate sizing for several delay targets, beginning from the
circuit’s minimum achievable delay. Circuit sizing is performed using
geometric-programming-based optimization [15]. For the derived gate
sizes, the energy and the delay of each circuit have been measured
in HSpice. For the energy measurements, we assumed random inputs
that caused on average 30% switching activity. Interstage wiring loads
have also been taken into account. The RC contribution of each wire
has been estimated according to its length, assuming a bit pitch of
16 metal-1 tracks.

At first, 64-bit GRP units have been evaluated. The energy-delay
curves of the EBSN and the EMSN-based GRP units, under two dif-
ferent loading conditions and for the typical process corner, are shown
in Fig. 10(a) and (b). For the data of Fig. 10(a), we assumed during op-
timization and measurements that the outputs of the circuit are loaded
with a capacitance of 100 fF and that the maximum allowable input
capacitance of each circuit is less than 25 fF, which corresponds to a
ratio of 4 for the circuit’s output to input capacitance. In Fig. 10(b),
both circuits are optimized for lighter load, since the assumed input
and output capacitance is equal to 5 and 25 fF, respectively. In both
cases, the GRP unit designed using the EMSN is faster and requires
less energy per operation for the same delay compared to EBSN. This
result is justified from the reduced number of compare-and-exchange
cells required by the EMSN, which leads to less fanout on the cells’
outputs and simplifies wiring. From Fig. 10(a) and (b), it is derived
that the energy required by the EMSN is less by 10%–75% compared
to that of the EBSN for equal delay.

The delay of the EMSN-based GRP unit reported in
Fig. 10(a) and (b) is roughly between 27 and 35 FO4. Based on

the analysis presented in [11], the most efficient previous GRP
implementation achieves a minimum delay of around 38 FO4
assuming equal input and output capacitances, which, under heavy
output loading conditions, is rather unrealistic. Thus, the best of the
proposed 64-bit GRP units achieves significant delay reductions
compared to previous solutions that range between 8% and 28%.

The energy-delay behavior of the most practical case of a GRP unit
that supports a minimum subword of 1 byte on a 64-bit word using the
two variants of the enhanced sorting network, is shown in Fig. 10(c).
The circuits are sized for the 25/100 fF input/output capacitance case.
The EMSN-based GRP unit is again the fastest solution achieving a
minimum delay of 11FO4. This delay is roughly equal to a 64-bit static
CMOS Radix-2 adder implemented in the same technology. However,
the energy spent per addition is significantly smaller. Again, the EBSN
approach is the worst solution, since, for every delay target, requires
more energy than the EMSN.

VI. CONCLUSION

A novel framework for the design of GRP permutation units has been
presented in this paper. The functionality of GRP has been transformed
to a sorting problem, and two enhanced sorting networks have been de-
rived. Each one of the proposed circuits is designed using a single pro-
cessing cell, while the connections between the cells are regular and
are well suited for a dense datapath-style layout. Also, the speed/en-
ergy savings of the proposed solutions does not come from any special
or tricky circuit technique that will not be viable in future technologies,
but is a result of a new algorithmic and logic-level approach. There-
fore, we believe that the proposed designs are scalable to any future
technology.

REFERENCES

[1] K. Diefendorff and P. K. Dubey, “How mutimedia will change pro-
cessor design,” IEEE Computer, vol. 30, no. 9, pp. 43–45, Sep. 1997.

[2] N. T. Slingerland and A. J. Smith, “Multimedia extensions for general
purpose microprocessors: A survey,” Microprocess. Microsyst., vol. 29,
no. 5, pp. 225–246, 2005.

[3] T. Conte et al., “Challenges to combining general-purpose and multi-
media processors,” IEEE Computer, vol. 30, no. 12, pp. 33–37, Dec.
1997.

[4] I. Kuroda and T. Nishitani, “Multimedia processors,” Proc. IEEE, vol.
86, no. 6, pp. 1203–1221, Jun. 1998.

[5] R. B. Lee, Z. Shi, and X. Yang, “Efficient permutation instructions for
fast software cryptography,” IEEE Micro, vol. 21, no. 6, pp. 56–69,
Nov./Dec. 2001.

[6] X. Yang and R. B. Lee, “Fast subword permutation instructions using
omega and flip network stages,” in Proc. IEEE Int. Conf. Comput. De-
sign, 2000, pp. 15–22.

[7] J. P. McGregor and R. B. Lee, “Architectural enhancements for fast
subword permutations with repetitions in cryptographic applications,”
in Proc. IEEE Int. Conf. Comput. Design, 2001, pp. 453–461.

[8] Z. Shi and R. B. Lee, “Bit permutation instructions for accelerating
software cryptography,” in Proc. IEEE Conf. Application-Specific Syst.,
Arch. Process., 2000, pp. 138–148.

[9] Z. J. Shi, “Bit permutation instructions: Architecture, implementation
and cryptographic properties,” Ph.D. dissertation, Electr. Eng. Dept.,
Princeton Univ., Princeton, NJ, 2004.

[10] Z. J. Shi and R. B. Lee, “Implementation complexity of bit permutation
instructions,” in Proc. Asilomar Conf. Signals, Syst. Comput., 2003, pp.
879–886.

[11] Y. Hilewitz, Z. J. Shi, and R. B. Lee, “Comparing fast implementations
of bit permutation instructions,” in Proc. Asilomar Conf. Signals, Syst.
Comput., 2004, pp. 1856–1863.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 1990.

[13] K. E. Batcher, “Sorting networks and their applications,” in Proc.
AFIPS Joint Comput. Conf., 1968, pp. 307–314.

[14] Z. Hong and R. Sedgewick, “Notes on merging networks,” in Proc.
ACM Symp. Theory Comput., 1982, pp. 296–302.

[15] S. P. Boyd, S. J. Kim, D. Patil, and M. A. Horowitz, “Digital circuit
optimization via geometric programming,” Oper. Res., vol. 53, no. 6,
pp. 899–932, Nov./Dec. 2005.

