
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

ElastiStore: Flexible Elastic Buffering for
Virtual-Channel-Based Networks on Chip

Ioannis Seitanidis, Anastasios Psarras, Kypros Chrysanthou, Chrysostomos Nicopoulos,
and Giorgos Dimitrakopoulos

Abstract— As multicore systems transition to the many-core
realm, the pressure on the interconnection network is
substantially elevated. The network on chip (NoC) is expected
to undertake the expanding demands of the ever-increasing
numbers of processing elements, while its area/power footprint
remains severely constrained. Hence, low-cost NoC designs
that achieve high-throughput and low-latency operation are
imperative for future scalability. While the buffers of the
NoC routers are key enablers of high performance, they are also
major consumers of area and power. In this paper, we extend
elastic buffer (EB) architectures to support multiple virtual
channels (VCs), and we derive ElastiStore, a novel lightweight
EB architecture that minimizes buffering requirements without
sacrificing performance. ElastiStore uses just one register per VC
and a shared buffer sized large enough to merely cover the
round-trip time that appears either on the NoC links or due to
the internal pipeline of the NoC routers. The integration of the
proposed EB scheme in the NoC router enables the design of
efficient architectures, which offer the same performance as
baseline VC-based routers, albeit at a significantly lower cost.
Cycle-accurate network simulations including both synthetic
traffic patterns and real application workloads running in a
full-system simulation framework verify the efficacy of the
proposed architecture. Moreover, the hardware implementation
results using a 45-nm standard-cell library demonstrate
ElastiStore’s efficiency.

Index Terms— Buffer sharing, elastic buffering (EB), network
on chip (NoC), virtual channels (VCs), VLSI.

I. INTRODUCTION

THE network-on-chip (NoC) paradigm is already being
adopted in the majority of large systems on chip (SoCs)

for simplifying system integration at the IP-assembly
functional verification level—all the way down to physical
integration—by alleviating physical routing congestion and
simplifying timing closure [1]. On-chip networks also improve
performance by parallelizing communication, by providing
quality-of-service guarantees, and by enabling flexible system
partitioning. The NoC designed to support these characteristics

Manuscript received May 2, 2014; revised October 20, 2014; accepted
December 4, 2014. The work of I. Seitanidis was supported by the
Alexander S. Onassis Foundation for the Ph.D. scholarship.

I. Seitanidis, A. Psarras, and G. Dimitrakopoulos are with the Department
of Electrical and Computer Engineering, Democritus University of Thrace,
Xanthi 671 00, Greece (e-mail: iseitani@ee.duth.gr; apsarra@ee.duth.gr;
dimitrak@ee.duth.gr).

K. Chrysanthou and C. Nicopoulos are with the Department of Electrical and
Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus (e-mail:
chrysanthou.kypros@ucy.ac.cy; nicopoulos.chrysostomos@ucy.ac.cy).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2383442

needs to implement a resource separation mechanism, typically
facilitated by virtual channels (VCs). A VC-based architecture
allows a physical channel to be used in a time-multiplexed
manner by different traffic flows (i.e., VCs), provided that each
flow (VC) owns a separate buffer space [2]. Consequently,
VC-based networks enable traffic separation and isolation by
assigning different traffic classes to different VCs, and they
reduce on-chip physical routing congestion by trading off
physical channel width with the number of supported VCs,
thereby creating a more layout-flexible SoC architecture [3].

VCs are also instrumental for the correct operation of higher
level mechanisms. For instance, protocol-level restrictions
in chip multiprocessors (CMPs) employing directory-based
cache coherence necessitate the use of VCs. Coherence
protocols require isolation between the various message
classes to avoid protocol-level deadlocks. Isolation between
the message classes is enabled by VCs; each VC (or a
group of VCs) is dedicated exclusively to one message class.
Therefore, each message class of the coherence protocol is,
essentially, given its own dedicated virtual network with its
own dedicated buffering space. For example, the MOESI
directory-based cache coherence protocol requires at least
three virtual networks to prevent protocol-level deadlocks [4].

The NoC needs to be both scalable, in terms of network
functionality and performance, and flexible, in terms of
physical implementation. This requirement motivates us to
unify a VC-based architecture, which favors NoC scalability,
with elastic buffering (EB), which eases physical
implementation and promises area and power reduction.

Owing to its elastic operation—based on simple ready/valid
handshakes—EB is a primitive and simplified form of NoC
buffering, which can be easily integrated in a plug-and-play
manner at the inputs and outputs of the routers (or inside
them) [5]–[7], as well as on the network links to act as a
buffered repeater [8]. EB assumes only one form of handshake
on each network channel. The handshake cannot distinguish
between different flows, thus making the EB operation serial
in nature. This feature prevents the interleaving of packets
and the isolation of traffic flows, while it complicates
deadlock prevention. Due to this limitation, direct support
for VCs is abandoned and replaced by multiple physical
networks or implemented via complex and nonscalable hybrid
EB/VC buffering architectures [9]–[11]. However, the latter
techniques remove the basic property of the EBs to act as
stitching elements that can be placed seamlessly anywhere in
the NoC.

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

In this paper, we aim to address the aforementioned
deficiencies of EB-based designs, by generalizing the
operation of EB to support multiple VCs, while at the same
time retaining all scalability and composability attributes.
The proposed architecture, which we call ElastiStore,
minimizes the number of buffers per channel close to the
absolute minimum of one buffer slot per VC, without sacri-
ficing performance and without introducing any dependencies
between VCs, thus ensuring deadlock-free operation. The
operation of ElastiStore is generalized to support arbitrary
round-trip latencies. The elastic operation and minimum
buffering are maintained, while the extra buffering required
due to the increased round-trip latency is absorbed via a low-
cost shared (across VCs) buffer structure inside ElastiStore.

The scalability of the proposed scheme is demonstrated by
the integration of ElastiStore in both single-cycle and pipelined
NoC routers that offer the same performance as baseline
VC-based routers, albeit at a significantly lower area cost. The
experimental results—based on both synthetic traffic patterns
and real application workloads running in a full-system simu-
lation framework—validate the effectiveness of the proposed
architecture. In addition, the hardware implementation results
corroborate our claims pertaining to ElastiStore’s efficiency.
Overall, our evaluation demonstrates that ElastiStore enables
the design of extremely low-cost and highly scalable VC-based
NoC architectures that provide equal networking performance
as much more expensive (in terms of area/power) state-of-
the-art VC-based implementations. ElastiStore is envisioned
as an archetypical primitive for future, extremely low-cost
NoC router implementations, where the performance and func-
tionality enhancements provided by VCs cannot be sacrificed.

The rest of this paper is organized as follows. Section II
describes the operation of elastic flow control for the cases
of single and multiple VCs and analyzes the relation between
the chosen buffering architecture and the achieved throughput.
Section III presents the proposed ElastiStore architecture,
while Section IV describes a generalization of the ElastiStore
concept that enables efficient operation under arbitrary
round-trip times. The integration of ElastiStore buffers within
NoC routers is discussed in Section V. The experimental
results are presented in Section VI. Pertinent related work
is discussed in Section VII, while the conclusion is drawn
in Section VIII.

II. ELASTIC CHANNELS AND BUFFERS

A single-lane elastic channel carries—in parallel to the
data wires—two extra control wires (valid and ready), which
are required to implement the elastic protocol, as shown
in Fig. 1(a). The EBs implement the elastic protocol by
replacing any simple data connection with an elastic channel.
When an EB can accept an input, it asserts its ready signal
upstream; when it has an available output, it asserts the
valid signal downstream. When two adjacent EBs both see
that the valid and ready signals are both true, they indepen-
dently know the transfer has occurred, without negotiation or
acknowledgement. An example of this handshake is shown
in Fig. 1(b).

Fig. 1. Fundamentals of the EB protocol. The protocol requires two control
wires (valid and ready), which typically run in parallel to the data wires. The
data and control wires together comprise a single-lane elastic channel. Any
EB architecture derived for edge-triggered flip-flops can also be implemented
with latches. (a) Elastic channel. (b) Elastic data flow. (c) Flip-flop-based EB.
(d) Latch-based EB.

When the output of a chain of EBs stalls, the stall can
only propagate back one stage per cycle. To handle this,
all EBs can hold two words: one for the stalled output and
one caught when necessary from the previous stage. Such
an implementation is shown in Fig. 1(c). By controlling the
clock phases accordingly, as shown in [12], the two-slot EB
can also be designed using two latches in series, instead
of two flip-flops, similar to Fig. 1(d). Following the same
methodology, any EB architecture derived for edge-triggered
flip-flops can also be implemented with latches.

The same handshake signals can be used for deriving an
inelastic flow-control policy. When elasticity is removed and
the end of a pipeline of flow-controlled registers is stalled, data
movement stops concurrently for all stages of the pipeline;
data flow is simply frozen, and, inevitably, some pipeline
stages remain empty. On the contrary, an elastic flow-control
policy allows all empty stages to be filled with incoming
data. In NoCs, the flits of the packet need to flow as close
as possible to their final destination before being stalled for
any reason. Therefore, the implementation of any flow-control
policy in NoCs should be inherently elastic.

Baseline elastic flow control is serial in nature (FIFO-like).
Thus, it is not possible to support different isolated flows
analogous to a multilane street, or even to allow the
interleaving of flits from different lanes on the same elastic
channel. This can only be supported by employing individual
handshaking interfaces for each supported VC, so that the
various VC traffic flows are inherently logically separated
and easily guided to their respective parallel buffer slots.

A. VC-Based Elastic Channels

An elastic channel supporting VCs—acting effectively as a
multilane street in time-multiplexed manner [2]—consists of a
set of data wires that transfer one flit per clock cycle, and as
many pairs of control wires valid (i)/ready (i) as the number
of VCs. Fig. 2 shows an example of a two-VC elastic channel.
Since multiple VCs may be active at the sender, arbitration
is employed to select which VC will use the channel. As a
result, only one valid (i) signal is asserted per cycle. At the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SEITANIDIS et al.: FLEXIBLE ELASTIC BUFFERING 3

Fig. 2. Example of a two-VC elastic channel. A generic elastic channel
supporting VCs consists of a data bus that transfers one flit per clock cycle,
and as many pairs of control wires valid (i)/ready (i) as the number of VCs.

Fig. 3. Baseline EB architecture for three VCs. Such a buffer primitive for
VC-based elastic channels can be built by replicating one two-slot EB per VC
and by including an arbiter and a multiplexer.

same time, the receiver may be ready to accept flits that can
potentially belong to any VC. Therefore, there is no limitation
on how many ready (j) signals can be asserted per cycle. The
arbiter at the sender should grant only a VC that is ready at
the receiver. Therefore, the requests of the active VCs are first
qualified by the incoming ready signals.

A buffer primitive for such VC-based elastic channels
can be built by replicating one two-slot EB per VC, and by
including an arbiter and a multiplexer, following the connec-
tions shown in Fig. 3 for the case of three VCs. The arbiter
selects which VC will drive the output by checking if it has
valid data and if the corresponding VC is ready downstream.

The buffer primitive shown in Fig. 3 is an expensive
solution, since the available resources (EBs, in this case) are
replicated per VC. When M VCs are active per channel, with
2 ≤ M ≤ V and V representing the maximum number of
supported VCs, each VC will receive a throughput of 1/M .
In this case of uniform utilization, each VC will use only one
buffer out of the two available per VC, since it will be accessed
once every M cycles. The second buffer is used only when a
VC stalls. This behavior exhibits a high degree of buffer under
utilization, since, most of the time, only one buffer per VC
is utilized. Only under extreme congestion, one will see the
majority of the second buffers of each VC occupied. However,
even under this condition, a single active VC can enjoy full
throughput independent of the rest.

B. Pipelined Elastic Links

When the delay of the link exceeds the preferred clock
cycle, one needs to segment the link into smaller parts
by inserting an appropriate number of pipeline stages.
In the case of single-lane channels, the role of the pipeline
stages is covered by EBs, which isolate the timing paths
(all output signals—data, valid, and ready—are first registered
before being propagated in the forward or in the backward
direction), while still maintaining link-level flow control, as
shown in Fig. 4(a). In the case of multilane channels that
support VCs, we can achieve the same result by replacing the

Fig. 4. Pipelined links with (a) EBs that support single-lane operation and
(b) EBs for a link that supports multiple VCs (lanes).

Fig. 5. Abstract model of a pipelined link with multiple VCs and independent
ready/valid handshake signals per VC.

EBs with the VC-based EBs of Fig. 3, as shown in Fig. 4(b).
Although this approach works correctly and allows for
distributed buffer placement, even in the case of VC-based
elastic flow control, it is not easily handled in complex SoCs,
since the addition of 2V registers in arbitrary positions may
create layout and physical integration problems.

The scenario of using VC-based EBs at the ends of the
link and simple EBs on the link will work, but only after
introducing dependencies across VCs, since the flow control
information per VC needs to be serialized under a common
ready/valid handshake; if one VC stops being ready, all the
words on the link should stop, irrespective of the VC they
belong to, as done in [11]. Such dependencies ruin the isolation
and deadlock-freedom properties of the VCs and require
ad hoc modifications to the flow control mechanism, even if
sufficient private buffer space is allocated per VC.

Alternatively, in the case of VC-based elastic channels, we
can rely on simple registers for pipelining the data and the
ready/valid handshake signals on the link, as shown in Fig. 5.
In this case, the flits cannot stop in the middle of the link,
since the pipeline registers do not employ any flow control.
Many words may be in flight, since it takes L f cycles
for the signals to propagate in the forward direction and
Lb cycles in the backward direction. Therefore, the buffers at
the receiver need to be sized appropriately to guarantee lossless
and full throughput operation, i.e., more buffers per VC are
needed than the two slots per VC allocated in the case of a
single-cycle channel (Fig. 3).

First of all, assume that only one VC, i.e., the i th one, is
active for a period of time and the remaining VCs do not send
or receive any data. When the buffer of the i th VC is empty,
it asserts the ready (i) signal. The sender will observe that
ready (i) is asserted after Lb cycles and immediately starts
to send new data to that VC. The first flit will arrive at the
receiver after L f + Lb cycles. This is the first time that the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

receiver can react by possibly deasserting the ready (i) signal.
If this is done, i.e., ready (i) = 0, then under the worst case
assumption, the receiver should be able to accept the L f − 1
flits that are already on the link and the Lb flits that may arrive
in the next cycles (the sender will be notified to stop with a
delay of Lb cycles). Thus, when the i th VC stalls, it should
have at least L f + Lb empty buffers to ensure lossless opera-
tion. Actually, the minimum number of buffers for the i th VC
reduces to L f + Lb − 1, if we assume that the sender stops
transmission in the same cycle it observes that ready (i) = 0.

Thus, a channel with V VCs and a round-trip time of
L f + Lb needs at least V (L f + Lb − 1) slots. When many
VCs are active on the channel, their flits would be interleaved
and the probability that all L f + Lb − 1 flits belong to the
same VC is small. However, the worst case condition calls
for providing as much buffer space to each VC as needed
to prevent the dropping of any flit, independent of the traffic
conditions on the remaining VCs.

Unfortunately, giving the minimum number of buffers to
each VC has some throughput limitations. Assume that the
i th VC has occupied all its buffer slots at the receiver and
starts draining the stored flits downstream at a rate of one
flit per cycle. After L f + Lb − 1 cycles, the buffer will be
empty (no more flits to drain) and the ready (i) signal will
be asserted, causing the fist new flit to arrive L f + Lb − 1
cycles later [the ready (i) signal is asserted in the same cycle
that the last flit is drained]. Therefore, in a time frame of
2(L f + Lb − 1) cycles, the receiver was able to drain only
L f + Lb − 1 flits, which translates to 50% throughput. Thus,
a single active VC can enjoy 100% throughput when it has
2(L f + Lb − 1) buffers and is ready when the number of
empty slots is at least L f + Lb − 1. The baseline VC-based
EB of Fig. 3 employed in single-cycle links (L f = Lb = 1)
is a subcase of the general pipelined link and achieves 100%
throughput of lossless operation using two buffers per VC.

III. ELASTISTORE ARCHITECTURE

In the case of single-cycle links with L f = Lb = 1,
the baseline VC-based EB—which allocates two slots per
VC—allows each VC to stop and resume transmission at a
full rate independently from the rest. This feature is indeed
useful in the case of traffic originating only from a single VC,
where any extra cycles spent per link will severely increase
the overall latency of the packet. However, in the case of
multiple active VCs, whereby each one receives only a portion
of the overall throughput (1/M in the case of M active VCs),
allocating more than one buffer slot per VC is an overkill.

A. Operational Details

In this paper, we take advantage of the abovementioned
realization and provide a very cost-efficient design. The
proposed buffering architecture, called ElastiStore, utilizes
only V + 1 buffers for V VCs. Each VC owns a single buffer,
which is enough in the case of uniform utilization, where
each VC receives a throughput of 1/M , with 2 ≤ M ≤ V .
Furthermore, when a single VC uses the channel without
any other VC being active, i.e., M = 1, it receives 100%

Fig. 6. Example of flit flow on an elastic channel that supports two VCs
and utilizes ElastiStores.

throughput, and, in the case of a stall, it may use the
additional buffer available in ElastiStore. This additional
buffer is shared dynamically by all VCs, although only one
VC can have it in each clock cycle. However, when all VCs,
except one, are blocked, and the shared buffer is utilized by
a blocked VC, then the only active VC will get 50% of the
throughput, since it effectively sees only one buffer available
per channel. The baseline and expensive VC-based EB of
Fig. 3, which allocates two buffers to each VC, would allow
this active VC to enjoy full channel utilization.

Fig. 6 shows an example of flit flow in a pipeline of two
ElastiStores connected in series, with each ElastiStore hosting
two VCs. In cycle 0, both ElastiStores contain flits from
the previous cycles; A0 and B0 reside in ElastiStore#1, and
A1 and B1 reside in ElastiStore#0. In cycle 1, A0 is moved
to the output and its position is filled with flit A1. In parallel,
the flit A2 waiting at the input of the pipeline in cycle 0 is
written into ElastiStore#0 in cycle 1. In cycle 2, the output of
the pipeline is driven by flit B0, and, concurrently, the empty
positions are filled with flits moving between ElastiStores or
coming from the input. In this way, VCs A and B receive
1/2 of the throughput per channel (M = 2), and, at each step,
they utilize one buffer slot. In those cycles, the shared auxiliary
registers of the two ElastiStores are not utilized. The shared
buffers are used between cycles 4 and 7 to accommodate the
stalled words of VC B. In those cycles, VC A—which is not
blocked—continues to deliver its words to the output of the
channel. The stall of VC B is hidden from the input of the
pipeline, since any incoming flit of VC B is accommodated
in the shared buffer slots of both ElastiStore units. If the stall
lasted longer, flits from VC B would not enter the pipeline
after cycle 7.

ElastiStore offers a reasonable tradeoff, since it saves
V − 1 buffer slots per elastic VC buffer, as compared with
the baseline VC-based EB of Fig. 3, and limits throughput
only under heavy congestion that blocks all the VCs except
one. In the case of light traffic, a single active VC receives
full throughput without any limitation. In addition, the static
allocation of a single buffer to each VC and the completely
independent flow control per VC guarantees forward progress
for all VCs and avoids possible protocol-level deadlocks.

B. Hardware Implementation

ElastiStore can be designed using the datapath
shown in Fig. 7, which consists of a single register

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SEITANIDIS et al.: FLEXIBLE ELASTIC BUFFERING 5

Fig. 7. Datapath and organization of an ElastiStore primitive for three VCs.
ElastiStore consists of a single register per VC (main registers) along with a
shared register that is dynamically shared by all VCs.

per VC (main registers) along with a shared register that is
dynamically shared by all VCs. The select signals of the
bypass multiplexers, the load enable signals of the registers,
and the interface ready/valid signals are all connected to
ElastiStore control.

When a new flit that belongs to the i th VC arrives at the
input of ElastiStore, it may be placed either in the main register
of the corresponding VC or in the shared register. If the main
register of the i th VC is empty or becomes empty in the same
cycle as the main register of the baseline EB of Fig. 1(c), the
flit will occupy this position. If the main register is full, then
the incoming flit will move to the shared buffer. Concurrently,
once the shared buffer is utilized, all the VCs that have their
main register full will stop being ready to accept new data,
while those with an empty main register remain unaffected.
In ElastiStore, any VC is ready to accept a new flit if at least
one of the two registers is empty: either the main register
corresponding to said VC or the shared one.

On the read side of ElastiStore, data are only dequeued
from the main registers. The shared register acts only as an
auxiliary storage and does not participate in any arbitration or
allocation decisions that select which VC should be dequeued.
According to this design principle, when the main register of
a VC dequeues a new flit and the shared buffer is occupied by
the same VC, the main register of this VC should be refilled
by the data stored in the shared buffer in the same cycle. The
shared buffer cannot receive a new word in the same cycle,
since its readiness—which releases all VCs that have their
main register full—will appear on the upstream channel in
the next clock cycle. The automatic data movement from the
shared to main buffer avoids any bubbles in the flow of flits
of the same VC and achieves a maximum throughput.

IV. GENERALIZED ELASTISTORE ARCHITECTURE:
SUPPORTING ARBITRARY ROUND-TRIP TIMES

ElastiStore represents the simplest form of a VC-based
buffer structure that can be used either as a distributed
buffering alternative or at the inputs of VC-based routers,
as will be shown in Section V. When the flow-control
signals between two ElastiStore units take more cycles
to propagate in the forward or in the backward direction,

the baseline ElastiStore architecture needs to be augmented
with more shared buffer positions to absorb the in-flight flits.

As in the case of single-cycle links, in pipelined links with
L f and Lb of forward and backward latencies, respectively,
we minimize buffering by employing sharing and by exploiting
the fact that only a single VC (dynamically selected) can enjoy
100% throughput when it is the only active VC in the system.

Instead of having 2(L f + Lb − 1) buffer slots for each VC,
we dedicate L f + Lb − 1 slots per VC needed for safe
operation (called the main buffers) and L f + Lb −1 more,
which can be dynamically shared by all VCs (called the shared
buffer). Any VC is ready, as long as there are L f + Lb − 1
empty slots either in its main register alone or accounting
for the free space in the shared buffer as well. Therefore, a
single active VC can enjoy 100% throughput, while, in the
case where the shared buffer is full, every active VC cannot get
more than 50% of throughput (it can receive/send L f + Lb −1
flits at most every 2(L f + Lb − 1) cycles); when many
VCs are active, the throughput per VC is always much lower
than 50%.

Under high utilization, the channel is already shared by
many VCs, and achieving high throughput per independent
VC does not give much benefit, unless it is the only active VC.
Therefore, our optimal goal is to offer full throughput to a
single active VC using just one register per VC of private
buffering, as well as L f + Lb − 1 more positions shared
by all VCs. If we try to achieve this goal with the current
flow-control semantics, dependencies across VCs may appear
that can possibly lead to a deadlock. Assume, for example,
that the i th VC uses its main buffer (one register) and at least
one slot from the shared buffer, leaving less than L f + Lb − 1
free slots in the shared buffer. Then, every other VC must
deassert its ready signal, even if its main register is empty,
since the available free slots for each VC are less than
L f + Lb − 1, which are needed to guarantee safe operation
per VC. Under this scenario, the traffic on one VC is allowed
to block the traffic on another VC, which removes the needed
isolation property across VCs.

To satisfy our minimum buffering requirements, we need to
adopt a different flow control mechanism, which does not have
the limitations of independent ready/valid handshake per VC.
Such transformation is only needed when simple pipeline
registers that do not participate in the flow control mechanism
are added between any two ElastiStores. This is most often
done inside routers, as we will show in Section V.

A. Credit-Based Operation

To achieve our goal of minimum buffering, we should
change the flow control mechanism and allow the sender to
explicitly store the condition of each downstream VC, as done
by credit-based flow control. The sender keeps a free-slot
counter, or else called a credit counter, for each downstream
VC and a counter for the shared buffer that counts the available
shared buffer slots. A VC is eligible to send a new flit when
there is at least one free position (either at the main register
or the shared buffer). Once the flit is sent from the i th VC,
it decrements the credit counter of the i th VC. If the credit

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

counter of the i th VC was already equal to or smaller than
zero, this means that the flit consumed a free slot of the shared
buffer and the counter of the shared buffer is also decremented.

Since the state of each VC is kept at the sender, the receiver
only needs to send backward a credit-update signal, including
a VC ID, which indexes the VC that has one more available
credit for the next cycle. On a credit update that refers to
the j th VC, the corresponding credit counter is increased.
If the credit counter is still smaller than zero, this means that
this update refers to the shared buffer. Thus, the credit counter
of the shared buffer is also increased. Please note that even
if there is a separate credit counter for the shared buffer, the
forward valid signals and the credit updates refer only to the
VCs of the channel and no separate flow control information
is needed for the shared buffer.

In this case, safe operation is guaranteed even if there is
only one empty slot per VC (main register), but with a very
limited throughput due to the increased round-trip time; no flit
can be in flight if it has not consumed a credit beforehand.
A single active VC can utilize both its main register and all the
positions of the shared buffer and achieve 100% throughput,
by effectively allowing this VC to use L f + Lb buffers in
total. With credits, once a credit update is sent backward
for a VC, it means that a new flit will arrive for this VC
after L f + Lb − 1 cycles. Therefore, offering to a single
VC L f + Lb − 1 buffer means that at the time the last flit is
drained from the VC, the first new flit will arrive, thus leaving
no gaps in the transmission and offering full throughput. Note
again that any VC is still eligible to accept a new flit in its
private (main) buffer, irrespective of the state of the shared
buffer, thus completely avoiding deadlock conditions.

By adopting credit-based flow control, the generalized
ElastiStore minimizes the private buffer space per VC, thus
achieving its main goal of minimizing the buffer space to just
one register per VC, and some extra shared space to fully
cover the round-trip time for one VC.

The use of credits, or ready (i)/valid (i) handshake signals,
for the flow control of different VCs is similar, in the sense
that they both count either implicitly or explicitly the available
number of buffer slots for each VC. For the ready (i)/valid (i)
interfaces, this counting is done at the receiver, and the sender
is notified via the delayed ready signals. On the contrary,
in credit-based flow control, buffer availability is checked
locally at the sender, without any notification delay. This
difference in the notification delay causes the two flow-control
policies to behave differently, in terms of minimum buffering
requirements for achieving full throughput operation.

B. Hardware Implementation

The implementation of the generalized ElastiStore (which
is able to support arbitrary round-trip times) is based on
the three basic operational principles/rules that characterize
all ElastiStore designs and differentiate them from other
state-of-the-art buffer implementations.

1) Each VC has only one slot of private buffer space
implemented via a main register per VC, while the
remaining buffer space is shared and used together with

Fig. 8. Organization of the generalized ElastiStore. The shared buffer consists
of as many buffer slots as required to cover the round-trip time of the
flow-control signals.

the one main register per VC to cover the round-trip
time of the channel that ElastiStore is connected to
(this translates to one shared buffer for single-cycle
links and L f + Lb − 1 buffer slots for a link with
L f forward and Lb backward latencies, respectively).
This configuration offers the minimum possible buffer-
ing, with the constraint that at most one VC can receive
full throughput. This is not a restrictive choice, since
a VC will get full throughput only when it is the only
active VC. In all other cases, each VC will receive an
equal share of the available throughput.

2) Any allocation decision regarding which VC should
dequeue a flit from the ElastiStore structure is taken
based only on the status of the main registers. In this
way, request generation can begin without any overhead
associated with checking the head-of-line flits of many
VC queues hosted in a shared buffer space.

3) When a main register sends a flit downstream and gets
empty, it is refilled in the same cycle, either with a
flit possibly present in the shared buffer or directly
from the input, assuming the new flit belongs to the
same VC. This design principle completes the previous
one and avoids idle cycles in the data flow. With this
type of refill, ElastiStore actually mimics the simple EB
of Fig. 1(c), which refills (in the same cycle) the main
register using the data of the auxiliary register or the
data of the input, when the main register gets empty, to
offer full throughput of data transfer.

The introduced design principles and the use of negative
credits—that simplify the process of credit identification,
i.e., which credits belong to the main registers and which ones
belong to the shared buffer space—offer an overall simplified
buffering architecture.

The datapath that implements the generalized ElastiStore
is shown in Fig. 8. The multiplexers at the input of the main
registers allow new data to come directly from the ElastiStore’s
input or the shared buffer. If the main registers cannot accom-
modate an incoming flit, a shared slot is allocated, where the
flit is stored. As soon as the main register becomes available
again, the flit is retrieved from the shared buffer and moves
to the corresponding main register.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SEITANIDIS et al.: FLEXIBLE ELASTIC BUFFERING 7

Fig. 9. Example of the interaction between the shared buffer and the
main VC registers in the generalized ElastiStore architecture. Every time a
VC dequeues a flit from its main register, it should check the shared buffer
for another flit that belongs to the same VC.

Fig. 10. Block diagram of the shared buffer of the ElastiStore architecture.
The shared buffer consists of two main storage modules. The first
one (top part) is a shift-register-based FIFO that stores (in each slot) the
VC ID of a flit and a pointer. The second storage module (bottom part) is the
register file that stores the actual flit contents.

Every time a VC dequeues a flit from its main register,
it should check the shared buffer for another flit that belongs
to the same VC. Fig. 9 demonstrates the interaction between
the shared buffer and the main VC registers through a simple
example. In cycle 0, VC A owns two shared slots and dequeues
a flit from its main register. The empty main register should
be refilled in the same cycle to avoid any bubbles in the flit
flow control. Therefore, VC A initiates a search on the shared
contents to find the flits that match VC A and locate the oldest
(the one that came first). The refill of the main register of VC A
is completed in cycle 1. Then, in cycle 2, the same procedure
is followed, effectively loading the main register of VC A with
a new flit. The main register of a VC does not necessarily get
new data from the shared buffer, but it can be loaded directly
from the input, as done for VC C in cycle 1.

The shared buffer within ElastiStore should preserve an
FIFO order, not in terms of the whole buffer, but separately for
the flits of each VC. In the example of Fig. 9, the flits’ order
of arrival is preserved by shifting them forward every time a
slot in the shared buffer is emptied. However, this is simply
an abstract representation of what is really happening: flits
are not physically shifted, but, instead, their pointers change.
In other words, the FIFO order is maintained through the
pointer logic. The block diagram of the shared buffer of the
ElastiStore architecture is shown in Fig. 10. It consists of two
main storage modules. The first one (top part of Fig. 10) is a
shift-register-based FIFO that stores (in each slot) the VC ID
of a flit and a pointer. The second storage module (bottom
part of Fig. 10) is the register file that stores the actual flit
contents. When a flit is pushed to the shared buffer, the actual
contents are written in the register file, while the write address

and the VC ID of the incoming flit are pushed into the first
empty slot of the shift register (the pointer FIFO in Fig. 10).

The proposed shared buffer does not participate in router
allocation, as imposed by the second design rule, and thus, it is
redundant to be able to see the head-of-line flits of all hosted
VC queues (this option would need at least one read pointer
for each active VC queue). On a read (dequeue operation), the
shared buffer should be able to read out the first appearance of
the dequeuing VC ID, to refill its main register. This is done
by comparing the IDs stored in the pointer FIFO or the input,
with the ID of the dequeuing VC, and selecting—using a fixed-
priority arbiter—the first one that matches. Then, the pointer
stored in the pointer FIFO is used to retrieve the actual flit
from the register file, while the information of the dequeued
flit is removed from the pointer FIFO, thereby causing all
subsequent pointers to shift forward. At the same time, the
address of the dequeued flit is marked as available in the
register file and can be reallocated to any VC.

V. INTEGRATION OF ELASTISTORE IN NoC ROUTERS

ElastiStore can be considered as the first proposal of either:
1) a primitive EB structure that supports VCs for single-cycle
channels (Fig. 7) or 2) as a distributed EB architecture that
supports VCs in pipelined links [Fig. 4(b)] utilizing a low-cost
shared buffer structure built on top of the design principles
introduced in Section IV-B. In both cases, ElastiStores can be
placed seamlessly and in a plug-and-play manner everywhere
within the NoC.

When a packet arrives in a router, it needs to find its
output destination port via routing computation (RC). The
output port can be precomputed in the previous router, using
look-ahead RC (LRC) [13]. Each packet then has to choose a
VC at the input of the next router, before leaving the current
router (known as an output VC). Matching input VCs to
output VCs is performed by the VC allocator (VA). Allowing
packets to change VC in flight can be employed when
the routing algorithm does not impose any VC restrictions
(e.g., XY routing does not even require the presence of VCs).
However, if the routing algorithm and/or the upper layer
protocol (e.g., cache coherence) place specific restrictions
on the use of VCs, then arbitrary in-flight VC changes
are prohibited, because they may lead to deadlocks. In the
presence of VC restrictions, the VA will enforce all rules
during VC allocation to ensure deadlock freedom. Such
VC restrictions are orthogonal to the operation of ElastiStore.

The flits that own an output VC arbitrate for accessing
their output port. If a flit wins this stage—called switch
allocation (SA) and organized in local and global arbitration
steps, SA1 and SA2—it will traverse the crossbar [switch
traversal (ST)], and then it will move to the output link [link
traversal (LT)] toward the next router [14], [15].

ElastiStore can be integrated at the inputs and at the outputs
of a router, as shown in Fig. 11. When ElastiStores are
used in both inputs and outputs, the output VCs refer to the
buffers of the output ElastiStore and not to the VC buffers
at the input of the next router. The same also holds for flow
control information that reflects the buffer status of the output

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 11. Integration of ElastiStore in NoC routers. ElastiStore modules can be
integrated at the inputs and at the outputs of a router. In general, ElastiStores
can be placed seamlessly and in a plug-and-play manner everywhere within
the NoC.

ElastiStore of the same router. A flit is ready to move to the
output ElastiStore when the corresponding VC of the output
ElastiStore is ready. The placement of an output ElastiStore
actually breaks the flow-control cycle (which determines the
round-trip time) between two neighboring routers in two
parts: 1) the intrarouter part, which involves the forward and
backward latencies inside the router and 2) the interrouter
part, which only involves the flow-control latencies of the link.
The flow control on the links does not allow packets to change
VC, and its operation needs only an arbiter and a multiplexer
for selecting a flit to send to the next router.

In single-cycle routers, where one cycle is spent inside the
router and one on the link, the intrarouter and interrouter
round-trip times are equal to two cycles. This configuration
enables the use of baseline ElastiStores (shown in Fig. 7)
at the inputs and the outputs, which have only one register
per VC and one shared slot among all VCs. Single-cycle
implementations, to avoid the serial operation of VA and SA,
are often implemented with more aggressive allocation
strategies, such as combined allocation [16] or speculative
allocation [17], [18], which enable faster implementations and
offer almost the same network performance.

High clock frequencies can be equivalently achieved
by employing router pipelining. For example, a two-stage
pipelined router would separate (L)RC-VA from SA-ST,
thus isolating the critical path to the second pipeline stage.
In this configuration, however, the intrarouter round-trip time
increases to three cycles, following the inevitable increase
of the forward latency by one cycle. In this case, assuming
again that ElastiStores are placed both at the inputs and at
the outputs, the input ElastiStore should be transformed to a
generalized ElastiStore unit that consists of one register per
VC plus a two-slot shared buffer (Fig. 8). When a VC is
selected by SA, its main register is dequeued and a refill
possibly occurs from the shared buffer. The refill data can
be prepared beforehand, just after SA1, thus overlapping the
search in the shared buffer with SA2, while actual dequeue
(pointer movement) happens only if SA2 is also successful for
the same VC. Since the round-trip time across the link remains
the same, the output ElastiStore can still be the simplest one.

Baseline routers utilize a simple pipeline register—instead
of the output ElastiStores—that isolates the interrouter

TABLE I

MINIMUM BUFFERING REQUIREMENTS FOR BASELINE AND

ELASTISTORE-BASED ROUTER ORGANIZATIONS

timing paths from LT. Therefore, the round-trip times
expand inevitably between the inputs of two neighboring
routers, which are the only flow-controlled buffering points.
In single-cycle baseline routers, this translates to three buffers
per VC to cover the round-trip time, while a pipelined router
with two stages increments the credit round-trip latency by
one more cycle, thus needing a minimum of four buffers
per VC. This analysis assumes that credit updates across
routers need at least one cycle to propagate. This extra cycle
can be removed if flow-control information is transferred
across routers via direct combinational paths. However, this
actually limits the benefits of pipelining, and the increased
link delay directly affects the speed of the router.

Similarly, when ElastiStores are used only as replacements
of the input buffers (the output of the router has only a pipeline
register), the router should be designed using generalized
ElastiStore units that support the increased round-trip times in
a cost-effective manner. A single-cycle implementation with
three cycles of round-trip delay would need a generalized
ElastiStore with one register per VC and two buffer slots in the
shared module, while a two-stage pipelined implementation
would just add one more position to the shared buffer, to
absorb the one cycle increase in the round-trip time.

The buffering requirements of a baseline router with N input
and output ports, a router with ElastiStores at both inputs and
outputs (ES-IO), and a router that employs ElastiStore only
at the inputs (ES-I) for one-stage (single-cycle) and two-stage
pipelined organizations are summarized in Table I.

In every case, the proposed designs save considerable
amount of buffers, which directly translate to significant area
savings without any network performance loss, as it will be
shown in the next section. When using ElastiStore only at the
inputs, one may reach the absolute minimum of VC buffering
of one register per VC (needed also for deadlock freedom),
plus any additional buffer slots needed for covering the round-
trip time and offering the privilege to a single active VC to
achieve 100% throughput. The use of ElastiStores at the output
of the routers steals some time from LT, due to the arbitration
and multiplexing operation. However, the extra delay added to
the delay of the link will affect the NoC clock frequency only
in the case of very long wires. In such cases, simple pipeline
registers can still be used at the outputs, as shown in Fig. 11.

VI. EVALUATION

In this section, we compare ElastiStore-based routers with
conventional VC-based routers, both in terms of hardware
complexity and network performance, which includes
synthetic traffic patterns (Section VI-B), as well as real
application workloads (Section VI-C).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SEITANIDIS et al.: FLEXIBLE ELASTIC BUFFERING 9

Fig. 12. Hardware implementation results of various designs with (a) one-stage four VCs, (b) one-stage eight VCs, (c) two-stage four VCs, and (d) two-stage
eight VCs router designs, using an industrial low-power 45-nm standard-cell library.

A. Hardware Implementation

The routers under comparison (using LRC) were imple-
mented in VHDL, mapped (synthesized) to an industrial
low-power 45-nm standard-cell library under worst case condi-
tions (0.8 V, 125 °C), and placed and routed using the Cadence
digital implementation flow. The generic router models have
been configured to five input–output ports, as needed by a
2-D mesh network, and to four and eight VCs per port, while
the flit width was set to 64 bits. The area/delay curves, shown
in Fig. 12, were obtained for all designs after constraining
appropriately the logic-synthesis and back-end tools and
assuming that each output is loaded with a wire of 2 mm.

The routers under comparison include baseline routers
with one-stage and two-stage pipelined organizations, as well
as ElastiStore-based routers that include buffers both at the
inputs and the outputs (ES-IO) and only at the inputs (ES-I).
Baseline VC routers can be built with shallow or deep buffers
per VC. It is critical, however, for each VC to contain as
many buffers as needed to cover the credit round-trip latency.
Therefore, for all routers, we assume the buffers shown
in Table I. For all the single-cycle routers, we employed
the combined allocation approach presented in [16], which
offers the same network performance as traditional allocation
organizations, but with significantly better achievable clock
frequency. On the contrary, the two-stage pipelined routers
follow the normal allocation strategy, where SA begins only
after VA has been completed for an arriving packet.

In all cases, the ElastiStore-based routers offer significant
area savings, up to 18% and 24% for four and eight VCs,
respectively, without any delay overhead. This behavior is
the result of the reduced number of buffer slots required by
ElastiStore and the overall simplicity of its control logic k
(<10% of the total ElastiStore area). The latter is a conse-
quence of the three newly introduced design principles/rules
and the simplified credit-handling protocol. The ES-I config-
uration, as expected, is the most area-efficient solution. The
ES-IO setup, which completely isolates the interrouter flow
control mechanism from the intrarouter one, achieves even
faster designs, since the readiness of each VC is directly
provided by the ready/valid handshake signals, while still
saving area relative to the baseline design. Note that the delay
numbers reported correspond to operation at 0.8 V. At this low
voltage, the clock frequency of even ultrafast three-stage com-
mercial routers is below or marginally pass 1 GHz [19], [20].

TABLE II

ENERGY PER CYCLE (IN PICOJOULES) REQUIRED FOR BASELINE AND

ELASTISTORE-BASED ROUTERS HAVING FOUR AND EIGHT VCs

AND OPERATING IN SINGLE-CYCLE OR TWO-STAGE

PIPELINED CONFIGURATIONS

The hardware complexity analysis is completed by reporting
the energy behavior of the routers under comparison. Energy
(or area) comparisons are meaningful when the compared
circuits are optimized for the same delay target. Therefore,
based on the delay profile reported in Fig. 12 for single-
cycle and two-stage pipelined solutions, we select the designs
that correspond to a delay of 1.5 and 1.8 ns for the case
of four and eight VCs, respectively. The energy consumed
for each case is reported in Table II. The energy analysis
is reported after considering all layout parasitics, while the
switching activity has been computed using delay-accurate
simulation of the derived logic-level netlists. The evaluated
routers are all driven by the same arriving packet sequence,
which mimics uniform random (UR) traffic of one-flit and
five-flit packets at an injection rate of 0.2 flits/cycle. The traffic
characteristics determine the header contents of each packet,
while the data contents—i.e., the payload—of each packet
(mostly for body and tail flits) are produced using a
UR number generator. In all cases, the energy required to drive
the output links is also included.

ElastiStore-based routers require the least energy per cycle,
due to the significant energy cost reduction of the buffers,
which are responsible—together with the network links—for
the majority of the energy required in each data transfer. The
energy reductions due to ElastiStore surpass its area savings
and lead to 23% and 28% more energy-efficient routers for
four and eight VCs, respectively.

B. Network Performance

Network performance comparisons were performed using
a cycle-accurate SystemC network simulator that models all
microarchitectural components of an NoC router, assuming an
8 × 8 2-D mesh network with XY dimension-ordered routing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 13. Latency versus load curves for single-stage and two-stage baseline and ElastiStore-based pipelined routers with four VCs and eight VCs under
UR traffic. Configurations with four and eight VCs per port are evaluated. (a) One-stage four VCs. (b) One-stage eight VCs. (c) Two-stage four VCs.
(d) Two-stage eight VCs.

Fig. 14. Latency versus load curves for single-stage and two-stage baseline and ElastiStore-based pipelined routers with four VCs and eight VCs under
BC traffic. Configurations with four and eight VCs per port are evaluated. (a) One-stage four VCs. (b) One-stage eight VCs. (c) Two-stage four VCs.
(d) Two-stage eight VCs.

The evaluation involves two synthetic traffic patterns:
1) UR and 2) bit-complement (BC) traffic. Other permutation
traffic patterns follow very similar trends to BC traffic. The
injected traffic consists of two types of packets to mimic
realistic system scenarios: one-flit short packets (just like
request packets in a CMP) and longer five-flit packets (just
like response packets carrying a cache line). For the latency-
throughput analysis, we assume a bimodal distribution of
packets with 50% of the packets being short, one-flit packets,
and the rest being long, five-flit packets, in accordance to
recent studies [21].

Even with the lower amount of buffering—which translates
directly to area/power savings—the ElastiStore-based
routers achieve a similar network performance when
compared with single- and two-cycle VC-based routers.
Fig. 13(a) and (b) shows the load-latency curves of all single-
cycle routers under comparison using four VCs and eight VCs
under UR traffic. In all cases, the performance of the routers
is virtually indistinguishable, both at low and at high loads,
while the ES-IO configuration achieves slightly less delay at
high loads, when compared with ES-I. The same conclusion is
drawn by the results shown in Fig. 13(c) and (d), for the case of
two-stage routers. Due to its directed nature, BC traffic
eliminates the small differences in the performance of
baseline and ElastiStore-based designs at high loads, as shown
in Fig. 14. Therefore, the savings of ElastiStore are offered to
the NoC designer for free, without trading off performance.

C. Full-System Simulation Results

1) Experimental Setup: To assess the impact of ElastiStore
on the overall system performance, we simulate a 64-core

TABLE III

SYSTEM PARAMETERS FOR THE EXECUTION-DRIVEN

FULL-SYSTEM SIMULATIONS

tiled CMP system running real application workloads on a
commodity operating system. The execution-driven
full-system simulation framework employs Wind River’s
Simics [22]—which handles the functional simulation
tasks—extended with the Wisconsin Multifacet GEMS
simulator [4]. The latter provides a detailed timing model
of the memory hierarchy, and it includes the GARNET [23]
cycle-accurate NoC simulator.

Table III shows the full-system simulation parameters.
Each CMP tile consists of an in-order UltraSparc III+
processor core with private and separate 32-KB L1 I and D
caches. The CMP has a total of 16 MB shared L2 cache
(each tile has a 256-KB L2 slice, i.e., 64 × 256 KB = 16 MB
total) and 4 GB of off-chip main memory (dynamic RAM).
The system uses the MOESI directory-based cache

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SEITANIDIS et al.: FLEXIBLE ELASTIC BUFFERING 11

Fig. 15. Total execution times of the various PARSEC benchmark applications, normalized to the baseline router. The baseline router setup uses three VCs
per input port, with each VC buffer storing six flits. The ElastiStore setup uses one single-flit register per VC, plus one multiflit buffer of size five, which is
shared among all three VCs.

coherence protocol. The NoC is an 8 × 8 2-D mesh
(i.e., one router per CMP tile) employing a dimension-ordered
XY routing. Each router is implemented as a conventional
four-stage pipelined router (RC, VA, SA, and ST) with
one cycle interrouter link delay. As previously mentioned,
cache coherence protocols require isolation between the
various message classes to avoid protocol-level deadlocks.
Specifically, the MOESI protocol requires at least three virtual
networks to prevent protocol-level deadlocks. Consequently,
in our simulations, each router input port has three VCs, each
handling a specific message class of the coherence protocol.

Two different router architectures were considered. The
baseline router design uses three VCs per input port, with
each VC buffer having a six-flit depth. This setup represents
a traditional NoC input port architecture, where the buffer
space is statically allocated to each VC. On the contrary,
the proposed ElastiStore architecture uses only one single-flit
register per VC, plus a five-flit buffer shared among all
three VCs, which aims to provide a direct comparison with
the baseline setup, since each VC can hold a maximum of
six flits (one in the main VC register + all five flits in the
shared buffer). The six-flit buffers are necessary to cover
the six-cycle round-trip time of a four-stage pipelined router
(plus one interrouter link stage).

Both the baseline and ElastiStore-based router architectures
were implemented within GARNET. The GARNET NoC
simulator cycle accurately models the packet-switched routers,
their pipelines, VC buffers, allocators/arbiters, crossbars, and
all interrouter links.

The executed applications are part of the PARSEC
benchmark suite [24], which contains multithreaded workloads
from various emerging applications. All benchmarks were
executed with 64 threads (one thread per processing core).
The execution times reported are those of the regions of
interest (ROIs), as identified in the PARSEC benchmarks.
The ROI of each benchmark starts right after the initialization
of the input data and ends when the computation is
complete.

2) Results With PARSEC Applications: We ran the PARSEC
benchmarks [24] using the setup described in Section VI-C1
to evaluate the two different NoC configurations. Fig. 15 shows
the total execution times of the various applications,
normalized to the baseline router.

The important insight that can be extracted from Fig. 15
is that a lightweight ElastiStore design with one single-flit
register per VC and a five-flit shared buffer can yield near-
identical performance as a baseline design with a six-flit buffer
per input VC. In fact, the performances are indistinguishable.
Both router architectures can provide a maximum space
of six flits per VC, but the ElastiStore setup shares this
maximum depth among all VCs (through the five-flit shared
buffer). This sharing results in much more efficient resource
utilization, with no impact on performance. The reason why
such a dramatic decrease in buffer space is not accompanied
by a decrease in the overall system performance is due to
the very low average NoC traffic injection rates observed
when running real single- and multithreaded applications in
CMPs [25]. Hence, the baseline router architecture is, in fact,
significantly over-provisioned for the needs of real application
workloads, such as the PARSEC benchmarks. The fact that
the ElastiStore architecture provides the same performance
as the baseline with only 44% of the buffer space (a total of
eight flit slots per input port versus 18 in the baseline) results
in substantial savings.

D. Virtual Channels Versus Multiple Physical Networks

The separation of resources offered by VCs can also be
achieved by multiple physical networks (built with wormhole
routers), where each physical network serves a certain VC or,
more accurately, a virtual network, since moving from one
VC to another one is impossible in the case of multiple
networks, due to the physical separation of the networks.
Low-cost wormhole routers can be built with simple EBs at
the inputs and the outputs of the router, as proposed in [5],
using the two-slot EBs of Fig. 1(c) or (d).

Comparing VC-based architectures with multiple physical
VC-less networks is a multidimensional problem, which has
been the focus of other independent research efforts, such
as [26]. However, in this paper, we repeat part of this study
using ElastiStore-based VC routers.

In our comparisons, we consider four cases of an
8 × 8 2-D mesh network, which offers eight-way separation
of resources, assuming a channel width of 64 bits. The
first examined case involves a network built with eight-VC
ElastiStore-based routers, where ElastiStores are used only
at the inputs of the router (ESI-8VC-64). The second and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 16. (a) Load-latency curves and (b) normalized area cost of all examined
configurations for comparing virtual (using ElastiStore buffers) or physical
separation of resources. The area results are normalized to the area of a single
EB-based wormhole network.

the third case involve eight physical networks of EB-based
wormhole networks. The second case uses 64-bit channels
per network, thus having a total of 64 × 8 bits per channel
(EB-WHx8-64), while the third case assumes equal bisection
bandwidth with the VC-based networks and uses 64/8 bits
per channel (EB-WHx8-13). However, since we would like
to keep the packet’s header in one flit, we need at least
13 bits per network channel (2 bits for the flit’s ID, 6 bits
for the network addressing, and 5 bits for encoding the output
port request, as needed by the LRC employed by all routers
under comparison). The last case involves a hybrid of both
worlds. It consists of two physical networks of four-VC
ElastiStore-based routers, which—under equal bisection
bandwidth—operate on 32-bit channels (ESI-4VC-x2-32).

While the first two cases can send and receive directly
the one-flit and five-flit packets used in the previous
experimental setup, the third and the fourth cases impose
a significant serialization latency, since the number of flits
per packet should be increased by 5× and 2×, to fit into
the 13-bit and 32-bit channels, respectively. Please note that
EB-WH×8-13 gets 1.6× more bisection bandwidth that
ElastiStore-based architectures due to the 13-bit channels.

For a fair comparison, we assume a static VC allocation
policy for the VC-based routers. In this case, packets are not
allowed to change VC in flight and are forced to keep the
VC given to them at the source (i.e., similar to what happens
when a packet enters a physical network of VC-less routers).
This feature simplifies significantly the VA logic of VC-based
NoC routers [27], with a slight reduction in the overall network
throughput, and can be used with ElastiStore, too.

First, we compare the four examined cases in terms of
network performance, using the same configuration of
Section VI-B for UR traffic. The results are shown
in Fig. 16(a). EB-based wormhole routers are small and fast.
Thus, in the load-latency curves of Fig. 16(a), we assume
that the routers can switch incoming flits in one cycle.
On the contrary, VC-based routers operate in a three-stage
pipelined configuration to achieve the same clock frequency.
As expected, the EB-WHx8-64 configuration has the best
performance, both in terms of latency and throughput. The
EB-WHx8-13 setup is the worst. ElastiStore-based VC-based
architectures enjoy high throughput of operation, despite
having 8× less bisection bandwidth than EB-WHx8-64,

and, as it will be shown later, they achieve this goal with
significantly less cost. The only drawback of the VC-based
architectures is the high zero-load latency, due to the increased
number of pipeline stages required to achieve high clock
frequencies.

The cost of the implementation of each case (in terms of
area) is shown in Fig. 16(b), where—for the ElastiStore-based
routers—three-stage-pipelined alternatives are examined with
static VC allocation, which have almost equal delay to that of
simpler single-cycle EB-based wormhole routers. ElastiStore
with eight VCs allows the design of NoCs offering eight-way
separated resources, with less area cost than eight physical
EB-based WH networks. The 24% area savings are the result
of the efficient buffer sharing mechanism of ElastiStore,
derived using the three design principles presented in
Section IV-B and the newly introduced credit-based flow
control that employs negative credits. As expected, the eight
physical networks of EB-based WH routers operating under
equal bisection bandwidth have lower area cost, but, as shown
in Fig. 16(a), they also have the worst performance, both
in terms of latency and saturation throughput. The hybrid
solutions that employ multiple physical networks of
ElastiStore-based routers, each one supporting a smaller
number of VCs, keep the network cost low with acceptable
performance.

The final outcome of this analysis is that ElastiStore
significantly reduced the cost of VC-based routers, without
sacrificing the throughput of the network, thereby allowing the
design of NoCs with a high degree of resource separation with
lower cost than multiple physical networks. The remaining
challenge for VC-based architectures, which is orthogonal to
ElastiStore, is the simplification of their allocation logic to
decrease the number of pipeline stages required for achieving
high clock frequency. This would also lower the zero-load
latency of each flit.

VII. RELATED WORK

In this section, we focus on the two main thrusts of prior
research that are most relevant to the proposed ElistiStore
design: 1) elastic channels and buffering in NoCs and
2) shared-buffering schemes in NoC routers.

Kodi et al. [11] explored the integration of elastic storage
elements into the links of NoCs, in conjunction with traditional
dynamically assigned VC input buffers. The introduced ideal
router employs a hybrid flow control, where multiple VCs are
multiplexed on a single-lane link with a ready/valid handshake.
This hybrid flow control obligates the first VC that is full to
stop the remaining VCs—with possibly incoming flits on the
link—thus creating dependencies across VCs that may lead to
higher level protocol deadlocks if not handled appropriately,
irrespective of the available buffer space.

The notion of elastic channels in NoCs was further
developed in [5] and [9], which reused the latch-based
EBs presented in [12] for minimizing the buffering cost
in NoC routers. To alleviate the problems caused by the
serializing nature of elastic links, which do not provide
any isolation of traffic flows and prevent the interleaving of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SEITANIDIS et al.: FLEXIBLE ELASTIC BUFFERING 13

packets, the authors resort to multiple physical channels, to
create multiple subnetworks, instead of relying on a hybrid
flow control mechanism.

A modified version of elastic operation, which also enables
traffic-flow separation without multiple physical resources, has
been employed in [10] and [28]. In [10], elasticity is only
preserved across the multidrop busses of the MECS topology,
and when it comes to the inputs of the routers, traditional
VC-based buffers are used. On the contrary, in [28], elasticity
is preserved on single-lane channels, while separation of
resources is enabled by packet-level bubble flow control.

In contrast, ElastiStore uses lightweight EB primitives, and
it can support any number of VCs, without the need to have
multiple physical subnetworks, or to rely on any hybrid flow
control mechanism. Moreover, ElastiStore can be used either
as a distributed buffer primitive or at the inputs and output
of routers. The semantics of the VC flow control mechanism
are preserved and implemented either with independent
ready/valid handshakes per VC or using credits. The presence
of a shared buffer in ElastiStore is instrumental in optimizing
the use of the available buffer space and covering the arbitrary
round-trip times imposed by router pipelining. In essence,
the proposed mechanism achieves the same objective as
the significantly more expensive per-input shared-buffering
techniques [29]–[34]. Other buffering architectures that extend
sharing across multiple inputs [35]–[37] require multiporting,
and even though they provide significant performance in
terms of throughput, they suffer in terms of router delay
(or they increase the required pipeline stages) and they do
not scale well to higher numbers of VCs per input port.

As opposed to the extremely lightweight shared-buffering
structure of ElastiStore, the aforementioned shared-buffering
architectures rely on fairly complex logic to keep track of the
location of flits within the unified buffer, which needs signifi-
cant modifications to handle variable packet sizes. Specifically,
in shared-buffer schemes, designers predominantly use linked
lists [29]–[31] and table-based approaches [32] that may possi-
bly need multiported memory accesses in their pointer-tracking
logic or self-compacting buffers [33], [34] to coordinate traffic
flow through the buffers. Each VC maintains its own set of
pointers to identify where its flits are located in the buffer.
For example, in the case of ViChaR [32], two control logic
modules are needed in each input port (the arriving/departing
flit pointer logic and the slot availability tracker) for the correct
operation of the shared buffer, regardless of the size of the
buffer. While the cost of this logic is amortized in routers
with large buffer space, the overhead becomes significant in
routers with minimal buffering.

Furthermore, state-of-the-art buffering mechanisms assume
that all flits of the VCs that reside in the shared buffer space
should be visible in the allocation logic, and the throughput per
VC is a result of the VC utilization and the status of the buffer
space (available credits) in each cycle. This behavior is avoided
in ElastiStore, which allows only the main registers of each
VC (just one per VC) and not the shared buffer to participate
in allocation, and the throughput received per VC follows a
more strict distribution, allowing only one VC to receive full
throughput when it is the only active one (this is the only case

that full throughput matters). The shared buffer is isolated
from the router’s operation; it just refills the main registers
of the VC, when needed. In this way, every dependency
across VCs is eliminated—which also enables deadlock-free
operation—while variable packet sizes are supported for free
as in any baseline VC buffer with no sharing. The shared
buffer of the generalized ElastiStore partially follows a self-
compacting approach, similar in concept to [33] and [34],
although much simpler to implement. Flits are written at the
end of an FIFO irrespective of the VC they belong to, and
no data movement is needed to find an empty place for an
incoming flit.

VIII. CONCLUSION

The NoC router’s buffer architecture is a critical design
aspect that affects both network-wide performance and
implementation characteristics. In this paper, we efficiently
merge elastic operation and buffering with VC flow control.
The derived buffer architecture, called ElastiStore, can take
many forms, based on application demands. ElastiStore
can be used as the simplest form of VC buffering, which
uses only one register per VC, plus one more dynamically
shared register that enables a single active VC to achieve full
throughput. ElastiStore can also be applied on the links, as a
distributed elastic buffering architecture, or at the inputs and
the outputs of NoC routers. In addition, when NoC routers
follow a pipelined organization, ElastiStore can be adapted to
its most generic form, which utilizes a larger shared buffer to
cover the increased round-trip time arising from the pipelined
operation. The new design principles governing the design
of ElastiStore-based routers enable the design of low-cost
routers with significant area savings and no delay penalty, as
compared with current state-of-the art VC-based routers. More
importantly, the resulting ElastiStore-based routers offer the
same network performance as the aforementioned VC-based
implementations, as verified using extensive simulations with
both synthetic traffic and real application workloads.

REFERENCES

[1] J. Handy, “NoC interconnect improves SoC economics,” in Semiconduc-
tor Market Research. Los Gatos, CA, USA: Objective Analysis, 2011.

[2] W. J. Dally, “Virtual-channel flow control,” in Proc. Int. Symp. Comput.
Archit., May 1990, pp. 60–68.

[3] J. Browne, On-Chip Communications Network Report. Mountain View,
CA, USA: Sonics, 2012.

[4] M. M. K. Martin et al., “Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset,” ACM SIGARCH Comput. Archit.
News, vol. 33, no. 4, pp. 92–99, Nov. 2005.

[5] G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic-buffer flow
control for on-chip networks,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., Feb. 2009, pp. 151–162.

[6] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency
in SOC design,” IEEE Micro, vol. 22, no. 5, pp. 24–35, Sep./Oct. 2002.

[7] A. Roca, C. Hernández, J. Flich, F. Silla, and J. Duato, “Silicon-aware
distributed switch architecture for on-chip networks,” J. Syst. Archit.,
vol. 59, no. 7, pp. 505–515, Aug. 2013.

[8] N. Concer, M. Petracca, and L. P. Carloni, “Distributed flit-buffer
flow control for networks-on-chip,” in Proc. 6th IEEE/ACM/IFIP
Int. Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), 2008,
pp. 215–220.

[9] G. Michelogiannakis and W. J. Dally, “Elastic buffer flow control for
on-chip networks,” IEEE Trans. Comput., vol. 62, no. 2, pp. 295–309,
Feb. 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[10] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “A QoS-enabled on-
die interconnect fabric for kilo-node chips,” IEEE Micro, vol. 32, no. 3,
pp. 17–25, May/Jun. 2012.

[11] A. K. Kodi, A. Sarathy, and A. Louri, “iDEAL: Inter-router dual-function
energy and area-efficient links for network-on-chip (NoC) architectures,”
in Proc. 35th Int. Symp. Comput. Archit. (ISCA), Jun. 2008, pp. 241–250.

[12] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proc. ACM/IEEE Design Autom.
Conf., Jul. 2006, pp. 657–662.

[13] M. Galles, “Spider: A high-speed network interconnect,” IEEE Micro,
vol. 17, no. 1, pp. 34–39, Jan./Feb. 1997.

[14] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA, USA: Morgan Kaufmann, 2004.

[15] M. Azimi, D. Dai, A. Mejia, D. Park, R. Saharoy, and A. S. Vaidya,
“Flexible and adaptive on-chip interconnect for tera-scale architectures,”
Intel Technol. J., vol. 13, no. 4, pp. 62–79, 2009.

[16] Y. Lu, C. Chen, J. McCanny, and S. Sezer, “Design of interlock-free
combined allocators for networks-on-chip,” in Proc. IEEE Int. SOC
Conf. (SOCC), Sep. 2012, pp. 358–363.

[17] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in Proc. 7th Int. Symp. High-Perform. Comput.
Archit. (HPCA), Jan. 2001, pp. 255–266.

[18] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel routers
for on-chip networks,” in Proc. 31st Annu. Int. Symp. Comput. Archit.,
2004, pp. 188–197.

[19] P. Salihundam et al., “A 2 Tb/s 6 × 4 mesh network with DVFS
and 2.3 Tb/s/W router in 45nm CMOS,” in Proc. IEEE Symp. VLSI
Circuits (VLSIC), Jun. 2010, pp. 79–80.

[20] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[21] S. Ma, N. E. Jerger, and Z. Wang, “Whole packet forwarding: Efficient
design of fully adaptive routing algorithms for networks-on-chip,” in
Proc. IEEE 18th Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2012, pp. 1–12.

[22] Wind River Inc. Simics, Product Overview. [Online]. Available:
http://www.windriver.com/products/simics/, accessed Dec. 2014.

[23] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2009, pp. 33–42.

[24] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. 17th Int.
Conf. Parallel Archit. Compilation Techn., Oct. 2008, pp. 72–81.

[25] R. Hesse, J. Nicholls, and N. E. Jerger, “Fine-grained bandwidth
adaptivity in networks-on-chip using bidirectional channels,” in Proc.
6th IEEE/ACM Int. Symp. Netw. Chip (NoCS), May 2012, pp. 132–141.

[26] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual channels
and multiple physical networks: Two alternatives to improve NoC
performance,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 12, pp. 1906–1919, Dec. 2013.

[27] F. Gilabert, M. E. Gómez, S. Medardoni, and D. Bertozzi, “Improved
utilization of NoC channel bandwidth by switch replication for cost-
effective multi-processor systems-on-chip,” in Proc. NOCS, May 2010,
pp. 165–172.

[28] S. M. Hassan and S. Yalamanchili, “Centralized buffer router: A low
latency, low power router for high radix NOCs,” in Proc. 7th IEEE/ACM
Int. Symp. Netw. Chip (NoCS), Apr. 2013, pp. 1–8.

[29] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers
for VLSI communications switches,” in Proc. 15th Annu. Int. Symp.
Comput. Archit., 1988, pp. 343–354.

[30] W.-T. Su, J.-S. Shen, and P.-A. Hsiung, “Network-on-chip router design
with buffer-stealing,” in Proc. 16th Asia South Pacific Design Autom.
Conf. (ASP-DAC), Jan. 2011, pp. 160–164.

[31] G. Kim, J. Kim, and S. Yoo, “FlexiBuffer: Reducing leakage power
in on-chip network routers,” in Proc. 48th ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2011, pp. 936–941.

[32] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das, “ViChaR: A dynamic virtual channel regulator for
network-on-chip routers,” in Proc. 39th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2006, pp. 333–346.

[33] N. Ni, M. Pirvu, and L. N. Bhuyan, “Circular buffered switch design
with wormhole routing and virtual channels,” in Proc. ICCD, Oct. 1998,
pp. 466–473.

[34] J. Park, B. W. O’Krafka, S. Vassiliadis, and J. Delgado-Frias,
“Design and evaluation of a DAMQ multiprocessor network with
self-compacting buffers,” in Proc. ACM/IEEE Conf. Supercomput.,
Nov. 1994, pp. 713–722.

[35] A. T. Tran and B. M. Baas, “RoShaQ: High-performance on-chip
router with shared queues,” in Proc. IEEE 29th Int. Conf. Comput.
Design (ICCD), Oct. 2011, pp. 232–238.

[36] M. H. Neishaburi and Z. Zilic, “Reliability aware NoC router architec-
ture using input channel buffer sharing,” in Proc. 19th ACM Great Lakes
Symp. VLSI, 2009, pp. 511–516.

[37] K. Latif, A.-M. Rahmani, L. Guang, T. Seceleanu, and H. Tenhunen,
“PVS-NoC: Partial virtual channel sharing NoC architecture,” in Proc.
19th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP),
Feb. 2011, pp. 470–477.

Ioannis Seitanidis received the Diploma degree
in electrical and computer engineering from the
Democritus University of Thrace, Xanthi, Greece,
in 2013, where he is currently pursuing the
Ph.D. degree in computer engineering.

His current research interests include computer
architectures and on-chip interconnection networks.

Anastasios Psarras received the Diploma degree in
electrical and computer engineering and the master’s
degree from the Democritus University of Thrace,
Xanthi, Greece, in 2012 and 2013, where he is
currently pursuing the Ph.D. degree.

His current research interests include system-on-
a-chip design, and in particular, on-chip intercon-
nection networks.

Kypros Chrysanthou received the B.Sc. degree in
computer engineering from the University of Cyprus,
Nicosia, Cyprus, in 2013, where he is currently
pursuing the master’s degree with the Department
of Electrical and Computer Engineering.

His current research interests include on-chip inter-
connection networks, computer architecture, and
fault-tolerant and reliable system design.

Chrysostomos Nicopoulos received the
B.S. and Ph.D. degrees in electrical engineering
with a specialization in computer engineering from
Pennsylvania State University, State College,
PA, USA, in 2003 and 2007, respectively.

He is currently an Assistant Professor with
the Department of Electrical and Computer
Engineering, University of Cyprus, Nicosia, Cyprus.
His current research interests include networks-
on-a-chip, computer architecture, multi/many-core
microprocessor and computer system design, and

architectural challenges in terascale integration.

Giorgos Dimitrakopoulos received the
Ph.D. degree from the University of Patras,
Patras, Greece.

He is currently a Lecturer with the Department of
Electrical and Computer Engineering, Democritus
University of Thrace, Xanthi, Greece. He is
interested in the design of digital integrated
circuits and computer architecture. His current
research interests include the design of on-chip
interconnection networks and ultralow-power
graphics accelerators and processors.

