
On Modulo 2n þ 1 Adder Design
Haridimos T. Vergos, Member, IEEE, and Giorgos Dimitrakopoulos, Member, IEEE

Abstract—Two architectures for modulo 2n þ 1 adders are introduced in this paper. The first one is built around a sparse carry

computation unit that computes only some of the carries of the modulo 2n þ 1 addition. This sparse approach is enabled by the

introduction of the inverted circular idempotency property of the parallel-prefix carry operator and its regularity and area efficiency are

further enhanced by the introduction of a new prefix operator. The resulting diminished-1 adders can be implemented in smaller area

and consume less power compared to all earlier proposals, while maintaining a high operation speed. The second architecture unifies

the design of modulo 2n � 1 adders. It is shown that modulo 2n þ 1 adders can be easily derived by straightforward modifications of

modulo 2n � 1 adders with minor hardware overhead.

Index Terms—Modulo arithmetic, residue number system (RNS), parallel-prefix carry computation, computer arithmetic, VLSI.

Ç

1 INTRODUCTION

ARITHMETIC modulo 2n þ 1 has found applicability in a
variety of fields ranging from pseudorandom number

generation and cryptography [1], [2], [3], up to convolution
computations without round-off errors [4], [5], [6]. Also,
modulo 2n þ 1 operators are commonly included in residue
number system (RNS) applications [7], [8], [9]. The RNS is
an arithmetic system which decomposes a number into
parts (residues) and performs arithmetic operations in
parallel for each residue without the need of carry
propagation among them, leading to significant speedup
over the corresponding binary operations. RNS is well-
suited to applications that are rich of addition/subtraction
and multiplication operations and has been adopted in the
design of digital signal processors [7], [10], [11], FIR filters
[12], [13], [14] and communication components [15], [16],
[17], offering in several cases apart from enhanced opera-
tion speed, low-power characteristics [18].

The complexity of a modulo 2n þ 1 arithmetic unit is
determined by the representation chosen for the input
operands. Three representations have been considered;
namely, the normal weighted one, the diminished-1 [19]
and the signed-LSB representations [20]. We only consider
the first two representations in the following, since the
adoption of the signed-LSB representation does not lead to
more efficient circuits in delay or area terms. In every case,
when performing arithmetic operations modulo 2n þ 1 the
input operands and the results are limited between 0 and 2n.

In the normal weighted representation, each operand
requires nþ 1 bits for its representation but only utilizes 2n þ
1 representations out of the 2nþ1 that these can provide. A
more dense encoding of the input operands and simplified
arithmetic operations modulo 2n þ 1 are offered by the

diminished-1 representation. In the diminished-1 represen-
tation,A is represented as azA

?, where az is a single bit, often
called the zero indication bit, and A? is an n-bit vector, often
called the number part. IfA > 0, then az ¼ 0 andA? ¼ A� 1,
whereas for A ¼ 0; az ¼ 1, and A? ¼ 0. For example, the
diminished-1 representation of A ¼ 5 modulo 17 is 001002.

Considering that the most common operations required
in modulo 2n þ 1 arithmetic are negation, multiplication by
a power of two and addition [4], the adoption of the
diminished-1 representation, allows to limit these opera-
tions to n bits. Specifically, negation is performed by
complementing every bit of A?, if az ¼ 0 and inhibiting
any change when az ¼ 1. Multiplication by 2i is performed
by an i-bit left rotation of the bits of A?, in which the re-
entering bits are complemented, if az ¼ 0 and inhibiting any
change when az ¼ 1. Finally, the addition of azA

? with bzB
?,

boils down to an n-bit modular addition of A? with B? with
some minor modifications. All operations involved in
modulo 2n þ 1 addition for diminished-1 operands are
discussed in detail in Section 3.

1.1 Related Work

Several papers have attacked the problem of designing
efficient diminished adders. The majority of them rely on the
use of an inverted end around carry (IEAC) n-bit adder,
which is an adder that accepts two n-bit operands and
provides a sum increased by one compared to their integer
sum if their integer addition does not result in a carry output.
Although an IEAC adder can be implemented by using an
integer adder in which its carry output is connected back to
its carry input via an inverter, such a direct feedback is not a
good solution. Since the carry output depends on the carry
input, a direct connection between them forms a combina-
tional loop that may lead to an unwanted race condition [21].
To this end, a number of custom solutions have been
proposed for the design of efficient IEAC adders.

Considering the diminished-1 representation for modulo
2n þ 1 addition, [4], [5] used an IEAC adder which is based
on an integer adder along with an extra carry lookahead
(CLA) unit. The CLA unit computes the carry output which
is then inverted used as the carry input of the integer adder.
Solutions that rely on a single carry computation unit have
also been proposed. Zimmermann [22], [23] proposed IEAC
adders that make use of a parallel-prefix carry computation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012 173

. H.T. Vergos is with the Department of Computer Engineering and
Informatics, University of Patras, GR 26500, Patras, Greece.
E-mail: vergos@ceid.upatras.gr.

. G. Dimitrakopoulos is with the Department of Informatics and Commu-
nications Engineering, University of Western Macedonia, Karamanli and
Lygeris, Kozani, GR 50100, Greece. E-mail: gdimitrak@uowm.gr.

Manuscript received 27 Jan. 2010; revised 28 June 2010; accepted 14 Sept.
2010; published online 7 Dec. 2010.
Recommended for acceptance by P. Montuschi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-01-0067.
Digital Object Identifier no. 10.1109/TC.2010.261.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

unit along with an extra prefix level that handles the
inverted end-around carry.

Although these architectures are faster than the carry-
lookahead ones proposed in [24], for sufficiently wide
operands, they are slower than the corresponding parallel-
prefix integer adders because of the need for the extra prefix
level. In [24], it has been shown that the recirculation of the
inverted end around carry can be performed within the
existing prefix levels, that is, in parallel with the carries’
computation. In this way, the need of the extra prefix level
is canceled and parallel-prefix IEAC adders are derived that
can operate as fast as their integer counterparts, that is, they
offer a logic depth of log2 n prefix levels. Unfortunately, this
level of performance requires significantly more area than
the solutions of [22], [23], since a double parallel-prefix
computation tree is required in several levels of the carry
computation unit.

For reducing the area complexity of the parallel-prefix
solutions, select-prefix [25] and circular carry select [26]
IEAC adders have been proposed. Unfortunately, both these
proposals achieve a smaller operating speed than the
parallel-prefix ones of [24]. Recently, very fast IEAC adders
that use the Ling carry formulation of parallel-prefix
addition [27] have appeared in [28], that also suffer from
the requirement of a double parallel-prefix computation tree.

Although a modulo 2n þ 1 adder that follows the
ðnþ 1Þ-bit weighted representation can be designed fol-
lowing the principles of generic modulo adder design [29],
specialized architectures for it have appeared in [30], [31].
However, it has been recently shown [32] that a weighted
adder can be designed efficiently by using an IEAC one
and a carry save adder (CSA) stage. As a result, improving
the design for an IEAC adder would improve the weighted
adder design as well.

1.2 Main Contribution

In this paper, two novel architectures for the design of
modulo 2n þ 1 adders are introduced. Both architectures
target the IEAC part of modulo 2n þ 1 addition. The
remaining cases of diminished-1 modulo 2n þ 1 addition
that stem from the need to handle zero operands, are covered
by a newly proposed method that imposes only simple
modifications to the core IEAC as discussed in Section 3.

The first design is based on a new parallel prefix carry
computation unit that is customized for the case of modulo
2n þ 1 addition and eliminates the double parallel-prefix
computation tree problem of previously fast designs [24],
[28]. The proposed architecture is utilized for the design of
sparse modulo 2n þ 1 adders that offer significantly
reduced cell area, wiring complexity and power consump-
tion along with a high operation speed. Its introduction is
based on the extension of the well-known idempotency
property of the prefix operator, by proving its inverted
circular nature in the case of modulo 2n þ 1 addition.

The second alternative is a versatile architecture that
unifies the design of modulo 2n � 1 and 2n þ 1 adders. We
prove that modulo 2n þ 1 addition can be treated as a subcase
of the corresponding modulo 2n � 1 addition. New relations
are introduced that associate the sum bits of the adders of
these two moduli. Therefore, modulo 2n � 1 parallel-prefix
adders [33], [34] can be also used for the design of modulo
2n þ 1 adders using a small amount of extra logic.

The rest of the paper is organized as follows: Section 2
discusses shortly the design of parallel-prefix adders. The
basics of modulo 2n � 1 addition are presented in Section 3.

We also discuss how a diminished-1 modulo 2n þ 1 adder
can be derived by minor modifications of an IEAC adder.
Section 4 introduces the new sparse parallel prefix carry
computation units customized for the case of IEAC adders,
while their performance benefits in terms of delay, area, and
power consumption are quantified in Section 5 for the design
of both diminished-1 and weighted modulo 2n þ 1 adders.
Then, in Section 6, the new theory that unifies modulo 2n � 1
and IEAC (and consequently modulo 2n þ 1) addition is
developed. Conclusions are drawn in the last section.

2 PARALLEL-PREFIX ADDITION BASICS

Suppose that A ¼ An�1An�2 . . .A0 and B ¼ Bn�1Bn�2 . . .B0

represent the two numbers to be added and S ¼
Sn�1Sn�2 . . .S0 denotes their sum. An adder can be
considered as a three-stage circuit. The preprocessing stage
computes the carry-generate bits Gi, the carry-propagate
bits Pi, and the half-sum bits Hi, for every i; 0 � i � n� 1,
according to

Gi ¼ Ai � Bi Pi ¼ Ai þBi Hi ¼ Ai �Bi;

where �;þ, and � denote logical AND, OR, and exclusive-
OR, respectively. The second stage of the adder, hereafter
called the carry computation unit, computes the carry
signals Ci, for 0 � i � n� 1 using the carry generate and
carry propagate bits Gi and Pi. The third stage computes the
sum bits according to

Si ¼ Hi � Ci�1:

Carry computation is transformed into a parallel prefix
problem using the � operator, which associates pairs of
generate and propagate signals and was defined in [35] as

ðG;P Þ � ðG0; P 0Þ ¼ ðGþ P �G0; P � P 0Þ:

In a series of associations of consecutive generate/propa-
gate pairs ðG;P Þ, the notation ðGk:j; Pk:jÞ, with k > j, is used
to denote the group generate/propagate term produced out
of bits k; k� 1; . . . ; j, that is,

ðGk:j; Pk:jÞ ¼ ðGk; PkÞ � ðGk�1; Pk�1Þ � � � � � ðGj; PjÞ:

Since every carry Ci ¼ Gi:0, a number of algorithms have
been introduced for computing all the carries using only �
operators. Fig. 1 presents the most well-known approaches
for the design of an 8-bit adder, while Fig. 2 depicts the
logic-level implementation of the basic cells used through-
out the paper.

For large wordlengths, the design of sparse parallel
prefix adders is preferred, since the wiring and area of the
design are significantly reduced without sacrificing delay.
The design of sparse adders relies on the use of a sparse
parallel-prefix carry computation unit and carry-select (CS)
blocks. Only the carries at the boundaries of the carry-select
blocks are computed, saving considerable amount of area in
the carry-computation unit [39]. A 32-bit adder with 4-bit
sparseness is shown in Fig. 3a. The carry select block
computes two sets of sum bits corresponding to the two
possible values of the incoming carry. When the actual
carry is computed, it selects the correct sum without any
delay overhead. A possible logic-level implementation of a
4-bit carry-select block is shown in Fig. 3b.

174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

3 MODULO 2n � 1 ADDITION BASICS

3.1 Modulo 2n � 1 Adders

The computation of modulo 2n � 1 addition is, in fact, a
conditional operation defined as

ðAþBÞmodð2n � 1Þ ¼
ðAþBÞ; AþB < 2n;

ðAþBþ 1Þmod 2n; AþB � 2n:

�

A modulo 2n � 1 adder can be implemented using an integer
adder that increments also its sum when the carry output is
one, that is, when AþB � 2n. This is also equivalent to
feeding the carry-input of the adder with the carry-output of
the first addition. The conditional increment can be
implemented by an additional carry increment stage as
shown in Fig. 4a. In this case, one extra level of 	 cells driven
by the carry output of the adder, is required.

Depending on the implementation of the modulo 2n � 1
adder, for bitwise-complementary inputs, i.e., when
AþB ¼ 2n � 1, the adder may produce an all 1s output
vector, in place of the expected result which is equal to zero.
In most applications, this is acceptable as a second
representation for zero.

The implementation of a modulo 2n � 1 adder requires the

connection of the carry output Cn�1 ¼ Gn�1:0 of an integer

adder to its carry-input port. The carries of the modulo 2n � 1

adder C�i that takes also a carry-input port are equal to

C�i ¼ Gi:0 þ Pi:0 � Cin. Therefore, connecting the carry output

to the carry input leads to C�i ¼ Gi:0 þ Pi:0 �Gn�1:0. This

relation contains many redundant terms and according to

[40] can be simplified to

C�i ¼ Gi:0 þ Pi:0 �Gn�1:iþ1: ð1Þ

This simpler equation can be equivalently expressed using

the � operator as follows:

C�i $ ðGi; PiÞ � � � � ðG0; P0Þ � ðGn�1; Pn�1Þ � � � � � ðGiþ1; Piþ1Þ:
ð2Þ

Relation (2) that computes the modulo 2n � 1 carries has a

cyclic form and, in contrast to integer addition, the number of

generate and propagate pairs ðGi; PiÞ that need to be

associated for each carry is equal to n. This means that the

parallel-prefix carry computation unit of a modulo 2n � 1

adder has significantly increased area complexity than that of

a corresponding integer adder. In terms of delay, the carries

C� can be computed in log2 n levels using regular parallel

prefix structures, as the one shown in Fig. 4b. At each level of

the parallel prefix structure, larger groups of ðGi; PiÞ are

progressively associated and the carries C� are computed at

the last level. The final sum bits S�i are equal to Hi � C�i�1.
The above form of modulo 2n � 1 adder suffers from the

double representation of zero. Few solutions have been

reported on the design of a modulo 2n � 1 adder with a

single zero representation. Those proposed by [40] have an

increased delay compared to those with a double zero

representation since they rely on using Hi instead of Pi as

VERGOS AND DIMITRAKOPOULOS: ON MODULO 2n þ 1 ADDER DESIGN 175

Fig. 1. Examples of 8-bit parallel-prefix structures for integer adders. (a) Kogge-Stone [36], (b) Ladner-Fischer [37], and (c) one representative of the

Knowles [38] family of adders.

(Gi : k , Pi : k) (Gk-1 : j , Pk-1 : j)

(Gi : j , Pi : j) (Gi : j , Pi : j)

(Gi : k , Pi : k)
(Gk-1 : j , Pk-1 : j)

Si

Ci-1Hi

Si

Hi Ci-1

Fig. 2. The logic-level implementation of the basic cells used in parallel-prefix adders.

the carry propagate signal, while those proposed in [41]

compute the modulo carries C� as

C�i $ ðGi; PiÞ � � � � ðG0; P0Þ � ðGn�1; Pn�1Þ � � � � � ðPiþ1; Piþ1Þ

that is, by using Piþ1 instead of Giþ1. Although this change

seems minor, it ruins the regularity of the adders, and the

resulting implementation suffers from increased cell and

interconnect area. In the rest of this paper, we consider

modulo 2n � 1 adders with a double representation for zero.

3.2 Modulo 2n þ 1 Adders

Diminished-1 modulo 2n þ 1 addition is more complex

since special care is required when at least one of the input

operands is zero ð1 00 . . . 0Þ. The sum of a diminished-1

modulo adder is derived according to the following cases:

1. When none of the input operands is zero (az; bz 6¼ 0)
their number parts A? and B? are added modulo

2n þ 1. This operation as discussed in the following,
can be handled by an IEAC adder.

2. When one of the two inputs is zero the result is equal
to the nonzero operand.

3. When both operands are zero, the result is zero.

In any case that the result is equal to zero (cases 1 or 3), the
zero-indication bit of the sum needs to be set and the
number part of the sum should be equal to the all-zero
vector. According to the above, a true modulo addition in a
diminished-1 adder is needed only in case 1, while in the
other cases the sum is known in advance.

When none of the input operands is zero, az; bz 6¼ 1, the
number part of the diminished-1 sum is derived by the
number parts A? and B? of the input operands as follows:

Sþ ¼ ðA? þB?Þ mod ð2n þ 1Þ

¼ ðA? þB? þ 1Þ mod 2n; A? þB? < 2n;
ðA? þB?Þ mod 2n; A? þB? � 2n:

�
ð3Þ

176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 3. (a) Sparse-4 parallel-prefix structure for a 32-bit integer adder and (b) the logic level implementation of the CS block.

Equation (3) reveals that an IEAC adder can be used for
providing the number part in this case. Fig. 5a [22], [23]
presents the implementation of an IEAC adder by the
addition of a carry increment stage to an integer parallel
prefix adder.

In an analogous way to that of the modulo 2n � 1 case,
[24] has shown that the carry Cþi at the ith bit position of an
IEAC adder, when feeding the carry input Cin ¼ Cþ�1 with
the inverted carry out Cn�1 ¼ Gn�1:0, can be computed more
simply by

Cþi ¼ Gi:0 þ Pi:0 �Gn�1:iþ1: ð4Þ

Equivalently, using the � operator the IEAC addition carries
can be expressed as

Cþi $ ðGi; PiÞ � � � � ðG0; P0Þ � ðGn�1; Pn�1Þ � � � � � ðGiþ1; Piþ1Þ;

where by definition, ðg; pÞ is equal to ðg; pÞ, and the final sum

bits Sþi are equal to Hi � Cþi�1. Using the above simplified

carry equations, the parallel prefix graph shown in Fig. 5b

can be derived for case 1 of the diminished-1 addition.
When comparing Figs. 4b and 5b, it is evident that

developing a regular parallel prefix structure for the

computation of Cþi is extremely complicated due to the

inversion of the termGn�1:iþ1 that appears in (4). The solution

provided in [24] doubles up several operators of the

computation unit in order to compute each Cþi in at most

log2 n prefix levels, while its regularity vanishes for large

values of n and when n is not a power of two. These

drawbacks do not appear in the case of modulo 2n � 1

addition, where regular and efficient parallel-prefix units can

be designed for every n, using in many cases less thann log2 n

prefix operators when n is not a power of two [33], [42].

VERGOS AND DIMITRAKOPOULOS: ON MODULO 2n þ 1 ADDER DESIGN 177

Fig. 4. Parallel prefix modulo 28 � 1 adders: (a) using an additional carry-increment stage and (b) recirculating the end around carry within the

existing log2 n prefix levels.

Fig. 5. Parallel prefix modulo 28 þ 1 adders: (a) using an additional carry-increment stage and (b) recirculating the inverted end around carry within

the existing log2 n prefix levels.

In the following, we discuss how an IEAC adder, which
is used for the addition of the number parts of case 1, can be
modified for handling the other two cases of the input
operands (cases 2 and 3) in a unified way. Apart from small,
the modifications should not hurt the parallel prefix
structure of the adder. These modifications are required
since the IEAC adder has been built to work correctly only
when az; bz 6¼ 0. In this case, all zeros vector in the number
parts A
; B
, represents the integer 1 and not a zero
operand. Therefore, when one or both the input operands
is zero (az ¼ 1 or bz ¼ 1) and the IEAC has not been
properly modified, it will return a number part increased by
one compared to the expected.

In order to avoid having a wrongly incremented output,
when the IEAC is used for true zero operands (cases 2 and
3), we propose to set all the carries Cþi equal to zero, when
at least one of the input operands is equal to zero (az ¼ 1 or
bz ¼ 1). The carries Cþi , with i > 0 follow the form
Gi:0 þ Pi:0 �Gn�1:iþ1, while Cþ�1 used for the derivation of
Sþ0 is equal to Gn�1:0. In cases 2 and 3, it can be easily
verified that all carry generate bits Gi are equal to zero since
at least one of the number parts of the input operands is
equal to the all zeros vector. Therefore, forcing all carry
propagate bits Pi to zero, when az ¼ 1 or bz ¼ 1, suffices to
set Cþi ¼ 0, with i > 0. However, this approach does not
alter Cþ�1 which remains equal to one. Therefore, we choose
just to invert Sþ0 when at least one of the input operands is
zero, thus canceling in a simple manner the fact that Cþ�1

remains equal to one. This can be easily performed by
computing Sþ0 as Sþ0 ¼ ½H0 � ðaz þ bzÞ� � Cþ�1.

The above modifications do not alter the parallel-prefix
structure of the IEAC shown in Fig. 5b and their delay
overhead is very small. More specifically, the only delay
overhead is caused by the transformation of the 2-input OR
gates of the preprocessing stage into OR-AND compound
gates. The modification at Sþ0 does not add to the critical
path of the IEAC.

The adders of [4], [5], [23] could have also used this
approach. However, since they rely on an additional carry-
increment stage as shown in Fig. 5a it is simpler to use as a
re-entering carry the Cþ�1 ¼ az þ bz þ Cn�1 that also covers
efficiently cases 2 and 3 of diminished-1 modulo addition.

Finally, the last point that remains to be discussed is the
generation of the zero-indication flag of the sum sz when
the result is equal to zero. This condition arises in the
following cases:

. When both input operands are zero az ¼ bz ¼ 1 and
A
 ¼ B
 ¼ 0.

. When none of the input operands are zero andA
; B

are bitwise complementary that is A
 þB
 ¼ 2n � 1.

Both these conditions can be encoded in the following
Boolean relation:

sz ¼ az � bz þ az þ bz �Gn�1:0 � Pn�1:0;

where Gn�1:0 � Pn�1:0 detects that the input operands are
bitwise complementary [43].

In the rest of the paper, we focus only on the parallel-
prefix structures that implement an IEAC adder similar to
the circuit shown in Fig. 5b, which according to the above
discussion is the core of a modulo 2n þ 1 adder. The small
extra hardware required to cover the additional cases
arising from true zero input operands and the computation

of the sz flag in a diminished-1 adder is assumed to coexist
with the reported circuits and explicitly considered only
when necessary.

4 NEW SPARSE MODULO 2n þ 1 ADDERS

In this section, we focus on the design of diminished
modulo adders with a sparse parallel-prefix carry computa-
tion stage that can use the same carry-select blocks as the
sparse integer adders.

4.1 Partially Regular Sparse Parallel-Prefix Adders

We will first show that the carries of the diminished-1
modulo 2n þ 1 addition are associated in the very same way
as the carries of the integer addition. To this end, the
inverted circular idempotency property is introduced by the
following Theorem:

Theorem 1.

ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ � ðGi:0; Pi:0Þ
¼ ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ

with ðG;P Þ ¼ ðG;P Þ, according to the definition given in
[24].

Proof. At first, we ungroup the � operators with their
equivalent Boolean relations as

ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ � ðGi:0; Pi:0Þ
¼ ðGi:0; Pi:0Þ � ðGn�1:iþ1 þ Pn�1:iþ1 �Gi:0; Pn�1:iþ1 � Pi:0Þ
¼ ðGi:0 þ Pi:0 � ðGn�1:iþ1 þ Pn�1:iþ1 �Gi:0Þ;
Pi:0 � Pn�1:iþ1 � Pi:0Þ:

In the following, in the generate part of the prefix
relation we expand the inversion operation, while in the
propagate part we simplify the double appearance of the
term Pi:0 as

ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ � ðGi:0; Pi:0Þ
¼ ðGi:0 þ Pi:0 � ðGn�1:iþ1 � ðPn�1:iþ1 þGi:0ÞÞ;
Pi:0 � Pn�1:iþ1Þ

¼ ðGi:0 þ ðPi:0 �Gn�1:iþ1 � Pn�1:iþ1Þ
þ ðPi:0 �Gn�1:iþ1 �Gi:0Þ; Pi:0 � Pn�1:iþ1Þ:

The terms Gi:0 þ Pi:0 �Gn�1:iþ1 �Gi:0 are reduced to Gi:0 þ
Pi:0 �Gn�1:iþ1 which simplifies the initial relation as
follows:

ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ � ðGi:0; Pi:0Þ
¼ ðGi:0 þ ðPi:0 �Gn�1:iþ1 � Pn�1:iþ1Þ þ ðPi:0 �Gn�1:iþ1Þ;
Pi:0 � Pn�1:iþ1Þ:

Observing the last two terms of the generate part, we see
that the product Pi:0 �Gn�1:iþ1 appears redundantly
twice. Therefore, our relation can be simplified as
follows:

ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ � ðGi:0; Pi:0Þ
¼ ðGi:0 þ Pi:0 �Gn�1:iþ1; Pi:0 � Pn�1:iþ1Þ:

178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

If we reuse the � operator, the equation is rewritten in the

following way:

ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ � ðGi:0; Pi:0Þ
¼ ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ
¼ ðGi:0; Pi:0Þ � ðGn�1:iþ1; Pn�1:iþ1Þ;

which concludes the proof. tu
The inverted circular idempotency property indicates

that we can repeat ðGi; PiÞ terms that appear at the front of a
prefix relation of the form suggested by (4) inverted at its
tail. For example, consider the prefix relation for Cþ1 in the
case of a 24 þ 1 diminished adder:

ðG1; P1Þ � ðG0; P0Þ � ðG3; G3Þ � ðG2; P2Þ:

According to the inverted circular idempotency property,
this relation is also equivalent to the following ones:

ðG1; P1Þ � ðG0; P0Þ � ðG3; P3Þ � ðG2; P2Þ � ðG1; P1Þ
ðG1; P1Þ � ðG0; P0Þ � ðG3; P3Þ � ðG2; P2Þ � ðG1; P1Þ � ðG0; P0Þ:

Armed with the inverted circular idempotency, we will
present the proposed methodology by using as an
example the design of a sparse-4 parallel-prefix modulo
232 þ 1 adder. Since we assume a sparsity of 4, only one
every four carries is generated at positions 3, 7, 11, 15, 19,
23, 27, and 31 or equivalently �1. In order to use the
carry-select block of Fig. 3b, we need to show that this
internally derives the required modulo addition carries
based on the available ones.

For example, Cþ25 should be derived by the available by
the sparse parallel-prefix unit Cþ23 and the carry-select block
logic. According to (4) we know that

Cþ25 ¼ G25:0 þ P25:0 �G31:26;

Cþ23 ¼ G23:0 þ P23:0 �G31:24:

We will show that although Cþ23 contains the group generate

term G25:24 which partially overlaps with the group

generate term G25:0 of Cþ25, in a circular manner, as shown

in Fig. 6, it is still possible to derive Cþ25 from Cþ23. Utilizing

the � operator Cþ25 can be equivalently expressed as

Cþ25 $ ðG25:0; P25:0Þ � ðG31:26; P31:26Þ:

Expanding ðG25:0; P25:0Þ in two smaller carry generate/

propagate groups we have that

Cþ25 $ ðG25:24; P25:24Þ � ðG23:0; P23:0Þ � ðG31:26; P31:26Þ:

Based on Theorem 1 the term

ðG25:24; P25:24Þ � ðG23:0; P23:0Þ � ðG31:26; P31:26Þ

that appears in the relation of Cþ25 can be equivalently

expanded to

ðG25:24; P25:24Þ � ðG23:0; P23:0Þ � ðG31:26; P31:26Þ � ðG25:24; P25:24Þ:

Regrouping together the contiguous carry generate and
propagate terms ðG31:26; P31:26Þ and ðG25:24; P25:24Þwe get that

Cþ25 $ ðG25:24; P25:24Þ � ðG23:0; P23:0Þ � ðG31:24; P31:24Þ:

It can be easily identified that ðG23:0; P23:0Þ � ðG31:24; P31:24Þ
corresponds to Cþ23 and thus

Cþ25 ¼ G25:24 þ P25:24 � Cþ23: ð5Þ

From (5), we conclude that although carries Cþ25 and Cþ23

refer to diminished-1 modulo 2n þ 1 addition, the relation
that associates them is the same as in the case of integer
addition. Therefore, the carry select block used for integer
adders can be used without modifications for the design of
sparse modulo 2n þ 1 adders.

Fig. 7 presents the architecture proposed in [24] (a) and
the architecture (b) that can be derived using the above
developed theory for modulo 216 þ 1 diminished adders.
The sparse architecture offers the same prefix levels as the
architecture of [24], but the carry computation unit is far
simpler, since it requires significantly less prefix operators
and wiring.

4.2 Totally Regular Parallel-Prefix Units

The methodology presented in [24] is the only approach
known so far that can organize the computation of the
carries Cþ, in case of modulo 2n þ 1 addition, in a parallel-
prefix-like form with log2 n prefix levels. As also shown in
Fig. 7a some prefix operators are doubled up, since two
carry computations need to be performed in parallel; one on
normal propagate and generate signals, while the other on
their complements. The problem gets worse when the input
operands’ width is not a power of two. Although, the sparse
version of the parallel-prefix adders introduced in this
paper alleviates a lot the regularity and the area-overhead
problem, as it can be verified from Fig. 7b, there is still a lot
of space for improvement.

In the following, we attack this problem by introducing a
new prefix operator and an even simpler parallel-prefix
carry computation unit. The new technique will be
presented via an example. Let us consider the design of a
sparse-4 diminished-1 modulo 216 þ 1 adder. In this case,
we need a carry computation unit that implements the
following prefix equations:

Cþ15 $ ðG15:0; P15:0Þ;
Cþ11 $ ðG11:0; P11:0Þ � ðG15:12; P15:12Þ;
Cþ7 $ ðG7:0; P7:0Þ � ðG15:8; P15:8Þ;
Cþ3 $ ðG3:0; P3:0Þ � ðG15:4; P15:4Þ:

For computing all carries within log2 n prefix levels in [24] it
was shown that

VERGOS AND DIMITRAKOPOULOS: ON MODULO 2n þ 1 ADDER DESIGN 179

Fig. 6. The circular overlap of the modulo carries Cþ25 and Cþ23 in case of modulo 232 þ 1 addition.

ðg; pÞ � ðG;P Þ ¼ ðp; gÞ � ðG;P Þ

and therefore the parallel-prefix carry computation unit of
Fig. 7a equivalently computes Cþ3 and Cþ11 by

Cþ3 $ ðp3; g3Þ � ðp2; g2Þ � ðp1; g1Þ � ðp0; g0Þð Þ � ðG15:12; P15:12Þ
� ðG11:4; P11:4Þ;

Cþ11 $ ðG11:4; P11:4Þ � ðp3; g3Þ � ðp2; g2Þ � ðp1; g1Þ � ðp0; g0Þð Þ
� ðG15:12; P15:12Þ:

This approach unfortunately doubles up several opera-
tors, since ðg1; p1Þ � ðg0; p0Þ and ðp1; g1Þ � ðp0; g0Þ need to be
computed in parallel and the same is true for ðg3; p3Þ �
ðg2; p2Þ with ðp3; g3Þ � ðp2; g2Þ and ðG3:0; P3:0Þ with ðp3;
g3Þ � ðp2; g2Þ � ðp1; g1Þ � ðp0; g0Þ. For larger adders, signifi-
cantly more operators need to be doubled up, leading to
increased area and wiring. To overcome this problem, we

need a prefix operator that can associate ðGk:0; Pk:0Þ �
ðGn�1:r; Pn�1:rÞ with ðGr�1:m; Pr�1:mÞ for computing ðGk:0;

Pk:0Þ � ðGn�1:m; Pn�1:mÞ. In our example case, this will permit

us to compute Cþ3 by associating

ðG3:0; P3:0Þ � ðG15:12; P15:12Þ with ðG11:4; P11:4Þ

in order to produce

Cþ3 $ ðG3:0; P3:0Þ � ðG15:12; P15:12Þ � ðG11:4; P11:4Þ:

To this end, we introduce a new operator, hereafter called

gray operator. The implementation of a gray operator is given

in Fig. 8. It accepts five inputs and produces four outputs.

Three of the inputs of a gray operator residing at prefix level

j� 1, namely, Gj�1
V ; P j�1

V and Tj�1
V form the operator’s

vertical input bus, while the rest two Gj�1
L and Pj�1

L form

180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 7. Modulo 216 þ 1 diminished adders. (a) Proposal of [24] and (b) using a sparse carry computation unit.

its lateral input bus. The lateral bus signals are driven

inverted to the operator. The gray operator produces three

signals for its vertical successor of prefix level j (Gj
V ; P

j
V and

TjV) and one (cj) for its lateral successor. Note that compared

to the � prefix operator, the gray one requires one extra gate,

but does not require extra logic levels. Considering a sparse-

2k parallel-prefix carry computation unit, gray operators will

not be used in the first k prefix levels, since these need only

compute the group generate and propagate terms out of 2k

adjacent bit positions.
The logic equations performed by a gray operator

residing at prefix level j� 1 are

Gj
V ¼ G

j�1
V þ Tj�1

V ;

P j
V ¼ P

j�1
V �Gj�1

L ;

T jV ¼ P
j
V � P

j�1
L ;

cj ¼ Gj
V þ P

j
V :

Consider now that we connect

Tj�1
V to 0;

Gj�1
V and Pj�1

V to Gk:0 and Pk:0; respectively; and

Gj�1
L and Pj�1

L to Gn�1:r and Pn�1:r; respectively:

Then, the gray operator will provide cj ¼ Gk:0 þ Pk:0 �Gn�1:r

at its lateral output. More importantly, it will also provide at

its vertical outputs:

Gj
L ¼ Gk:0;

P j
L ¼ Pk:0 �Gn�1:r;

T jL ¼ Pk:0 �Gn�1:r � Pn�1:r;

an information which as we will show in the following

suffices for the vertical successor to compute ðGk:0; Pk:0Þ �
ðGn�1:m; Pn�1:mÞ out of ðGk:0; Pk:0Þ � ðGn�1:r; Pn�1:rÞ and

ðGr�1:m; Pr�1:mÞ. Consider the vertical successor of the

aforementioned gray operator which resides in prefix level

j. By using a gray operator in its place in which we connect

Gj
L and Pj

L to Gr�1:m and Pr�1:m, respectively, and Gj
V ;

P j
V and TjV to the vertical output of the gray operator of

level j� 1 mentioned above, that is,

Gj
V to Gk:0;

P j
V to Pk:0 �Gn�1:r; and

TjV to Pk:0 �Gn�1:r � Pn�1:r:

The lateral output of the operator will be equal to

cjþ1 ¼ Gj
V þ P

j
V ¼ Gk:0 þ Pk:0 �Gn�1:r � Pn�1:r þ Pk:0

�Gn�1:r �Gr�1:m;

¼ Gk:0 þ Pk:0 � ðGn�1:r � ðPn�1:r þGr�1:mÞÞ;
¼ Gk:0 þ Pk:0 � ðGn�1:r � ðPn�1:r �Gr�1:mÞÞ;
¼ Gk:0 þ Pk:0 � ðGn�1:r þ Pn�1:r �Gr�1:mÞ;
¼ Gk:0 þ Pk:0 �Gn�1:m;

and will provide at its vertical outputs:

Gjþ1
V ¼ Gk:0;

P jþ1
V ¼ Pk:0 �Gn�1:m;

T jþ1
V ¼ Pk:0 �Gn�1:m � Pn�1:m:

Applying the same procedure recursively, the lateral output

of the last vertical successor of a gray operator will be equal to

Gk:0 þ Pk:0 �Gn�1:kþ1;

that is, equal to Cþk .
From the above analysis, we conclude that starting from a

sparse architecture with doubled up operators, it suffices to

1. remove the doubled up operators that associate
inverted signals,

2. replace the top operator of every column excluding
the leftmost that accepts a feedback signal with a
gray one, with its TV input tied to zero, and

3. replace every vertical successor of a gray operator
introduced by the previous step with a gray one,

to attain a diminished-1 modulo 2n þ 1 adder, with an even

simpler totally regular sparse parallel-prefix carry compu-

tation unit. Fig. 9 presents the resulting architecture for a

diminished-1 modulo 216 þ 1 adder, in which two gray

operators are used. The top one which resides at prefix level

3, accepts a feedback signal and therefore has its T 3
V input

tied to zero. This operator is used to compute ðG3:0; P3:0Þ �
ðG15:12; P15:12Þ, which is necessary for the computation of

VERGOS AND DIMITRAKOPOULOS: ON MODULO 2n þ 1 ADDER DESIGN 181

Fig. 8. Gray prefix operator; notation and implementation.

both Cþ3 and Cþ11. Its vertical successor is also replaced by a
gray operator that computes the final:

Cþ3 $ ðG3:0; P3:0Þ � ðG15:12; P15:12Þ � ðG11:4; P11:4Þ:

5 COMPARISONS

In this section, at first we compare the diminished-1 adders
that use the totally regular parallel-prefix IEAC adders
presented in the previous section (hereafter called proposed
diminished-1) against the diminished-1 adders proposed by
[4], [5] and those that use the IEAC proposed in [23], [24],
[28]. We consider that all diminished-1 adders can handle
true zero operands and indicate true zero results. That is, all
diminished-1 adders that use an IEAC adder have all
necessary modifications discussed in Section 3. For the
adders of [4], [5], we consider that the carry output
computed by the CLA unit is used as a late increment
carry signal in the successor integer adder. For the latter, we
consider that it follows the Ladner-Fisher (LF) proposal
augmented by a carry increment prefix level. For the IEAC
adders of [23], we consider that the first log2 n prefix levels
may either follow the Ladner-Fisher (LF) or the Kogge-
Stone (KS) proposal. Finally, we examine both the reduced
area parallel prefix (RAPP) and the full parallel prefix (FPP)
architectures of the IEAC adders that use Ling carries [28].

For attaining our comparison data, we first generated
structural Verilog descriptions of all adders under compar-
ison. After extensive simulations that verified the correctness
of each description, each design was synthesized and
mapped in a power-characterized 90 nm implementation
technology [44]. For the synthesis and mapping of the
designs, we used the Synopsys1 Design Compiler1 tool in
its topographical mode. In this mode, for achieving faster
timing closure, the tool performs floorplanning in parallel

with synthesis and mapping and the design is annotated
with wiring lengths and fan-out and parasitic capacitances
coming directly from the floorplan of the design and not
from a wire load model. We assumed that each adder’s input
and output is driven by the output of a D flip-flop and drives
the input of a D flip-flop of the same implementation library,
respectively. A typical corner (1.2 V, 25�C) was considered.

Each adder was recursively optimized for speed until
the tool was unable to produce a faster design. A final area
recovery step was then applied. For obtaining power data,
we followed a simulation driven approach, by applying 216

random input vectors at a 500 MHz frequency at each
netlist (the same vectors were applied at the corresponding
netlists of the architectures under comparison) and mea-
sured the average power dissipation. The attained results
are given in Table 1.

Our experimental data reveal that the proposed dimin-
ished-1 adders offer a higher operation speed than those of
[4], [5] and the diminished-1 adders that result by using the
IEAC adders proposed by [23] and the RAPP architecture of
[28]. Their speed is also slightly higher than that of the
adders resulting from the IEAC adders of [24], mainly
because the reduction in the total number of critical paths.
In this way, the true critical paths are favored receiving a
larger drive strength and see less off-path loading. At the
same time, wiring delays are also reduced due to more
compact layout. The proposed diminished-1 adders are
slightly slower (less than 5.5 percent) than those that use the
FPP architecture of [28] but the difference is diminishing at
the wider cases. Nevertheless, in this case, it should be
noted that the proposed diminished-1 adders require
significantly less area and consume significantly less power.
The proposed adders require from 15.8 to 28.7 percent less
area than the most compact earlier solution, from 18 to
52 percent less area than the adders resulting from the use
of the IEAC adders of [24] and from 28 to 58 percent less

182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 9. Proposed sparse-4 modulo 216 þ 1 diminished-1 adder.

area than those that use the IEAC FPP adder proposal of
[28]. Finally, the power consumption savings offered range
from 21 to 61.5 percent in the examined adders cases.

The results of Table 1 indicate that if we use the
proposed IEAC adders as building blocks for weighted
adders in the architecture proposed in [32], the resulting
weighted adders will also be more efficient than those that
use any other previously proposed IEAC adder architec-
ture. Therefore, we compare the weighted adders that result
by using the proposed IEAC adders, against the weighted
adders of [31], which have been shown to be more efficient
in both area and delay terms than the proposal of [30]. The
comparison results given in Table 2, reveal that the
weighted adders resulting from using the proposed IEAC
adders in the scheme proposed in [32] are faster, smaller
and consume less power than the adders of [31] throughout
the examined range. The savings offered are about 7 percent
in operation speed and range from 12 to 52 percent and
from 24 to 63 percent in the required implementation area
and average power consumption, respectively.

6 UNIFIED APPROACH TO THE DESIGN OF MODULO

2n � 1 ADDERS

Several area-time-power efficient architectures (for exam-
ple, [33], [34], [40]) have been proposed for the simpler

case of modulo 2n � 1 addition. These architectures
preserve all the benefits of parallel-prefix carry computa-
tion units and can be easily designed for every n. More
specifically, Dimitrakopoulos et al. [33] generalized the
design of such units for all values of n and has provided
easy-to-follow topographical design rules. The resulting
structures for n 6¼ 2k save significant amount of area
without sacrificing delay.

We therefore conclude that mapping the diminished
modulo 2n þ 1 adder design problem to that of modulo
2n � 1 addition, would be beneficial given all the efficient
architectures that have been proposed for the latter. In the
following, we show that this mapping requires a constant
time postprocessing stage and analyze its area and time
overhead.

6.1 Modulo 2n � 1 Unification Theory

In order to unify the parallel-prefix modulo 2n � 1 addition
principles, we need to explore the relation between the
carries of these two addition operators, that is, between C�i
and Cþi .

The relationship that connects the recirculating carry-out
bits C�n�1 and Cþn�1 that are employed for the derivation of
the sum bits on the least-significant position zero is trivial

Cþn�1 ¼ C�n�1 ¼ Gn�1:0 ¼ Cþ�1: ð6Þ

VERGOS AND DIMITRAKOPOULOS: ON MODULO 2n þ 1 ADDER DESIGN 183

TABLE 1
Experimental Results for Diminished-1 Adders

Delay results are given in picoseconds, area results in square micrometers, and average power results in milliwatts.

TABLE 2
Experimental Results for Weighted Adders

Delay results are given in picoseconds, area results in square micrometers, and average power results in milliwatts.

Please note that in this cases both carries are considered as

incoming carries from bit position �1.
For all other bit positions with 0 � i < n� 1, the relation

between C�i and Cþi is given by the following Theorem.

Theorem 2. Cþi ¼ C�i � ðGi:0 � Pi:0Þ, with i < n� 1.

Proof. By the definition of the XOR operator C�i � ðGi:0 �
Pi:0Þ can be written as

C�i � ðGi:0 þ Pi:0Þ þ C�i �Gi:0 � Pi:0:

Replacing C�i with its definition in the above relation

we get

ðGi:0 þ Pi:0 �Gn�1:iþ1Þ � ðGi:0 þ Pi:0Þ
þGi:0 � ðPi:0 þGn�1:iþ1Þ �Gi:0 � Pi:0
¼ Gi:0 þGi:0 � Pi:0 �Gn�1:iþ1 ¼ Gi:0 þ Pi:0 �Gn�1:iþ1:

Based on (4), the derived term is the definition of the

carry signal Cþi in the case of diminished-1 modulo 2n þ
1 addition. tu
The direct consequence of the newly derived relationship

is that we can compute the carries for the case of modulo

2n þ 1 adders directly from a modulo 2n � 1 carry computa-

tion unit by a stage of XOR gates that will combine the

carries C�i with the terms Gi:0 � Pi:0.
At first, it may seem complicated to compute Gi:0 � Pi:0

since it requires a complete carry tree to be added for the

computation of Gi:0. However, based on Theorem 3 that we

introduce in the following, the computation of Gi:0 � Pi:0 is

straightforward and can be implemented at low cost.

Theorem 3. Gi:0 � Pi:0 ¼ Hi:0, where Hi:0 ¼ Hi �Hi�1 � � � � �H0.

Proof. By definition we know that Gi:0 ¼ Gi þ Pi �Gi�1:0 and

that Pi:0 ¼ Pi � Pi�1:0. Therefore, the term Gi:0 � Pi:0 can be

written as

Gi � Pi þGi�1:0

� �
� Pi � Pi�1:0 ¼ Gi � Pi �Gi�1:0 � Pi�1:0:

The term Gi � Pi can be easily proven that is equal to Hi.

Hence,

Gi:0 � Pi:0 ¼ Hi � Gi�1:0 � Pi�1:0

� �
:

In the same manner, the term in the parentheses Gi�1:0 �
Pi�1:0 ¼ Hi�1 �Gi�2:0 � Pi�2:0 leading to

Gi:0 � Pi:0 ¼ Hi �Hi�1 Gi�2:0 � Pi�2:0

� �
:

Applying the same rule recursively n times we get

Gi:0 � Pi:0 ¼ Hi �Hi�1 � . . . �H0 ¼ Hi:0:

tu

Therefore, from the two newly introduced theorems, the

diminished-1 modulo 2n þ 1 sum can be derived from the

corresponding modulo 2n � 1 sum as follows: by definition,

we know that

Sþi ¼ Hi � Cþi�1:

Replacing Cþi�1 with its new value C�i�1 �Hi�1:0 we get that

Sþi ¼ Hi � C�i�1 �Hi�1:0:

We identify that Hi � C�i�1 is the corresponding sum S�i .

Thus, it holds that

Sþi ¼ S�i �Hi�1:0 for i 6¼ 0: ð7Þ

Also, based on (6), the sum bit Sþ0 is simply equal to S�0 .
An arithmetic example illustrating the derivation of a

diminished-1 modulo 17 sum via a modulo 15 adder and

some extra logic is given in Fig. 10.
According to Section 3, one or both the input operands in

case of diminished-1 representation may be equal to zero. We

chose to handle this case by setting the corresponding

184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 10. An arithmetic example of the new approach for the computation of the modulo 2n þ 1 sum via the result of the corresponding modulo 2n � 1

addition.

diminished-1 carries Cþi to zero. However, when using a
modulo 2n � 1 adder for the implementation of a dimin-
ished-1 modulo 2n þ 1 adder an even simpler approach can
be employed: when at least of the input operands is zero, i.e.,
az ¼ 1 or bz ¼ 1, then we ignore the term Hi�1:0 for the
derivation of the bit Sþi and keep the original sum of the
modulo 2n � 1 adder. This simple condition can be efficiently
implemented by the following equations:

Sþi ¼ S�i �Hi�1:0 � az þ bzð Þ for i 6¼ 0 and

Sþ0 ¼ S�0 � az þ bzð Þ:
ð8Þ

6.2 Hardware Implementation Discussion

Equation (7) reveals that the modulo 2n þ 1 sum can be
computed using a modulo 2n � 1 adder, followed by an extra
stage of XOR gates. The half sum bitsHi are already available
by the modulo 2n � 1 adder. The only extra circuitry required
is that needed to compute all the intermediate products
Hi�1:0, that is, a parallel-prefix structure of AND gates. Either
a Kogge-Stone or a Ladner-Fischer parallel-prefix structure as
the ones shown in Fig. 1 can be employed, where each node
consists of just a 2-input AND gate. Therefore, this structure
can be embedded inside a complete modulo 2n � 1 parallel-
prefix adder (as the one shown in Fig. 5), by enhancing the
functionality of the common nodes of the parallel-prefix tree.

Alternatively, the area overhead of this approach can be
reduced if instead of Pi:0 we use the equivalent Hi:0 for the
computation of modulo 2n � 1 carries C�i [40]. The AND
gates already present in the prefix (�) operators are in this
way also used then for computing the Hi:0 terms.

It is evident that the implementation of the modulo 2n þ 1
adder via an equal-width modulo 2n � 1 adder, requires at
least one extra logic level compared to the modulo adders of
[24] and the ones proposed in Section 4. Therefore, their delay
is expected to be worse than the aforementioned designs. For
large wordlengths, the delay overhead is diminishing and the
performance of both architectures (unified modulo 2n � 1
adder and customized modulo 2n þ 1 adder) converges fast.
More importantly, mapping the problem of the diminished-1
modulo 2n þ 1 addition to that of modulo 2n � 1 addition
allows to reuse all the efficient architectures proposed for the
modulo 2n � 1 addition case and opens a whole new
unexplored design space for diminished-1 modulo 2n þ 1
adders.

7 CONCLUSIONS

Efficient modulo 2n þ 1 adders are appreciated in a variety
of computer applications including all RNS implementa-
tions. In this paper, two contributions are offered to the
modulo 2n þ 1 addition problem.

A novel architecture has been proposed that uses a
sparse totally regular parallel-prefix carry computation
unit. This architecture was derived by proving the inverted
circular idempotency property of the parallel-prefix carry
operator in modulo 2n þ 1 addition and by introducing a
new prefix operator that eliminates the need for a double
computation tree in the earlier fastest proposals. The
experimental results indicate that the proposed architecture
heavily outperforms the earlier solutions in implementation

area and power consumption, while offering a high
execution rate.

The modulo 2n þ 1 addition problem was also shown to
be related to the modulo 2n � 1 addition problem. The
unifying theory presented in this paper revealed that a
simple postprocessing stage composed of an XOR gate for
each output bit needs to be added to a modulo 2n � 1 adder
for attaining a modulo 2n þ 1 adder. As a result, every
architecture that has been and more importantly that will be
proposed for designing modulo 2n � 1 adders, can be
reused for the design of modulo 2n þ 1 adders.

REFERENCES

[1] X. Lai and J.L. Massey, “A Proposal for a New Block Encryption
Standard,” EUROCRYPT, D.W. Davies, ed., vol. 547, pp. 389-404,
Springer, 1991.

[2] R. Zimmermann et al., “A 177 Mb/s VLSI Implementation of the
International Data Encryption Algorithm,” IEEE J. Solid-State
Circuits, vol. 29, no. 3, pp. 303-307, Mar. 1994.

[3] H. Nozaki et al., “Implementation of RSA Algorithm Based on
RNS Montgomery Multiplication,” Proc. Third Int’l Workshop
Cryptographic Hardware and Embedded Systems, pp. 364-376, 2001.

[4] Y. Morikawa, H. Hamada, and K. Nagayasu, “Hardware Realisa-
tion of High Speed Butterfly for the Maximal Length Fermat
Number Transform,” Trans. IECE, vol. J66-D, no. 1, pp. 81-88,
1983.

[5] M. Benaissa, S.S. Dlay, and A.G.J. Holt, “CMOS VLSI Design of a
High-Speed Fermat Number Transform Based Convolver/Corre-
lator Using Three-Input Adders,” Proc. IEE, vol. 138, no. 2,
pp. 182-190, Apr. 1991.

[6] V.K. Zadiraka and E.A. Melekhina, “Computer Implementation of
Efficient Discrete-Convolution Algorithms,” Cybernetics and Sys-
tems Analysis, vol. 30, no. 1, pp. 106-114, Jan. 1994.

[7] M.A. Soderstrand et al., Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing. IEEE Press, 1986.

[8] P.V.A. Mohan, Residue Number Systems: Algorithms and Architec-
tures. Springer-Verlag, 2002.

[9] A. Omondi and B. Premkumar, Residue Number Systems: Theory
and Implementations. Imperial College Press, 2007.

[10] J. Ramirez et al., “RNS-Enabled Digital Signal Processor Design,”
Electronics Letters, vol. 38, no. 6, pp. 266-268, Mar. 2002.

[11] J. Ramirez et al., “Design and Implementation of High-
Performance RNS Wavelet Proccessors Using Custom IC
Technologies,” J. VLSI Signal Processing Systems, vol. 34, no. 3,
pp. 227-237, July 2003.

[12] J. Ramirez et al., “High Performance, Reduced Complexity
Programmable RNS-FPL Merged FIR Filters,” Electronics Letters,
vol. 38, no. 4, pp. 199-200, Feb. 2002.

[13] G.C. Cardarilli, A. Nannarelli, and M. Re, “Reducing Power
Dissipation in FIR Filters Using the Residue Number System,”
Proc. 43rd IEEE Midwest Symp. Circuits and Systems, pp. 320-323,
Aug. 2000.

[14] Y. Liu and E.M.-K. Lai, “Moduli Set Selection and Cost Estimation
for RNS-Based FIR Filter and Filter Bank Design,” Design Automa-
tion for Embedded Systems, vol. 9, no. 2, pp. 123-139, June 2004.

[15] U. Meyer-Bäse, A. Garcia, and F. Taylor, “Implementation of a
Communications Channelizer Using FPGAs and RNS Arith-
metic,” J. VLSI Signal Processing Systems, vol. 28, nos. 1/2,
pp. 115-128, May/June 2001.

[16] J. Ramirez et al., “Fast RNS FPL-Based Communications Receiver
Design and Implementation,” Proc. 12th Int’l Conf. Field Program-
mable Logic, pp. 472-481, 2002.

[17] M. Panella and G. Martinelli, “An RNS Architecture for Quasi-
Chaotic Oscillators,” J. VLSI Signal Processing Systems, vol. 33,
no. 1, pp. 199-220, Jan./Feb. 2003.

[18] R. Chokshi, K.S. Berezowski, A. Shrivastava, and S.J. Piestrak,
“Exploiting Residue Number System for Power-Efficient Digital
Signal Processing in Embedded Processors,” Proc. Int’l Conf.
Compilers, Architecture, and Synthesis for Embedded Systems (CASES
’09), pp. 19-28, 2009.

[19] L.M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat
Number Transform,” IEEE Trans. Acoustics, Speech and Signal
Processing, vol. ASSP-24, no. 5, pp. 356-359, Oct. 1976.

VERGOS AND DIMITRAKOPOULOS: ON MODULO 2n þ 1 ADDER DESIGN 185

[20] G. Jaberipur and B. Parhami, “Unified Approach to the Design of
Modulo-(2n � 1) Adders Based on Signed-LSB Representation of
Residues,” Proc. 19th IEEE Symp. Computer Arithmetic, pp. 57-64,
2009.

[21] J.J. Shedletsky, “Comment on the Sequential and Indeterminate
Behavior of an End-Around-Carry Adder,” IEEE Trans. Computers,
vol. C-26, no. 3, pp. 271-272, Mar. 1977.

[22] R. Zimmermann, “Binary Adder Architectures for Cell-Based
VLSI and Their Synthesis,” PhD dissertation, Swiss Fed. Inst. of
Technology, 1997.

[23] R. Zimmerman, “Efficient VLSI Implementation of Modulo ð2n �
1Þ Addition and Multiplication,” Proc. 14th IEEE Symp. Computer
Arithmetic, pp. 158-167, Apr. 1999.

[24] H.T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One
Modulo 2n þ 1 Adder Design,” IEEE Trans. Computers, vol. 51,
no. 12, pp. 1389-1399, Dec. 2002.

[25] C. Efstathiou, H.T. Vergos, and D. Nikolos, “Modulo 2n � 1 Adder
Design Using Select Prefix Blocks,” IEEE Trans. Computers, vol. 52,
no. 11, pp. 1399-1406, Nov. 2003.

[26] S.-H. Lin and M.-H. Sheu, “VLSI Design of Diminished-One
Modulo 2n þ 1 Adder Using Circular Carry Selection,” IEEE
Trans. Circuits and Systems II, vol. 55, no. 9, pp. 897-901, Sept. 2008.

[27] G. Dimitrakopoulos and D. Nikolos, “High-Speed Parallel-Prefix
VLSI Ling Adders,” IEEE Trans. Computers, vol. 54, no. 2, pp. 225-
231, Feb. 2005.

[28] H.T. Vergos and C. Efstathiou, “Efficient Modulo 2n þ 1 Adder
Architectures,” Integration, the VLSI J., vol. 42, no. 2, pp. 149-157,
Feb. 2009.

[29] M. Bayoumi, G. Jullien, and W. Miller, “A VLSI Implementation of
Residue Adders,” IEEE Trans. Circuits and Systems, vol. CAS-34,
no. 3, pp. 284-288, Mar. 1987.

[30] A. Hiasat, “High-Speed and Reduced-Area Modular Adder
Structures for RNS,” IEEE Trans. Computers, vol. 51, no. 1,
pp. 84-89, Jan. 2002.

[31] C. Efstathiou, H.T. Vergos, and D. Nikolos, “Fast Parallel-Prefix
Modulo 2n þ 1 Adders,” IEEE Trans. Computers, vol. 53, no. 9,
pp. 1211-1216, Sept. 2004.

[32] H.T. Vergos and C. Efstathiou, “A Unifying Approach for
Weighted and Diminished-1 Modulo 2n þ 1 Addition,” IEEE Trans.
Circuits and Systems II, vol. 55, no. 10, pp. 1041-1045, Oct. 2008.

[33] G. Dimitrakopoulos, H.T. Vergos, D. Nikolos, and C. Efstathiou,
“A Family of Parallel-Prefix Modulo 2n � 1 Adders,” Proc. IEEE
Int’l Conf. Application-Specific Systems, Architectures and Processors,
pp. 326-336, 2003.

[34] J. Chen and J.E. Stine, “Parallel Prefix Ling Structures for Modulo
2n � 1 Addition,” Proc. 20th IEEE Int’l Conf. Application-Specific
Systems, Architectures and Processors, pp. 16-23, July 2009.

[35] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel
Adders,” IEEE Trans. Computers, vol. C-31, no. 3, pp. 260-264,
Mar. 1982.

[36] P.M. Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans.
Computers, vol. C-22, no. 8, pp. 786-792, Aug. 1973.

[37] R.E. Ladner and M.J. Fischer, “Parallel Prefix Computation,”
J. ACM, vol. 27, no. 4, pp. 831-838, 1980.

[38] S. Knowles, “A Family of Adders,” Proc. 14th IEEE Symp. Computer
Arithmetic, pp. 30-34, 1999.

[39] S. Mathew, M. Anders, R.K. Krishnamurthy, and S. Borkar, “A 4-
GHz 130-nm Address Generation Unit with 32-bit Sparse-Tree
Adder Core,” J. Solid-State Circuits, vol. 38, no. 5, pp. 689-695, May
2003.

[40] L. Kalampoukas et al., “High-Speed Parallel-Prefix Modulo 2n � 1
Adders,” IEEE Trans. Computers, vol. 49, no. 7, pp. 673-680, July
2000.

[41] R.A. Patel, M. Benaissa, and S. Boussakta, “Fast Parallel-Prefix
Architectures for Modulo 2n � 1 Addition with a Single Repre-
sentation of Zero,” IEEE Trans. Computers, vol. 56, no. 11, pp. 1484-
1492, Nov. 2007.

[42] G. Dimitrakopoulos, D.G. Nikolos, D. Nikolos, H.T. Vergos, and
C. Efstathiou, “New Architectures for Modulo 2n � 1 Adders,”
Proc. IEEE Int’l Conf. Electronics, Circuits, and Systems, 2005.

[43] H.T. Vergos and D. Bakalis, “On the Use of Diminished-1 Adders
for Weighted Modulo 2n þ 1 Arithmetic Components,” Proc. 11th
Euromicro Conf. Digital System Design, pp. 752-759, Sept. 2008.

[44] Synopsys Inc., “SAED 90 nm EDK,” https://www.synopsys.com/
apps/protected/university/members.html, 2011.

Haridimos T. Vergos received the diploma in
computer engineering, and the PhD degree from
the Department of Computer Engineering and
Informatics, University of Patras, Greece, where
he currently holds an associate professor and
the Head of the Hardware and Computer
Architecture Division. He was a member of
Atmel Multimedia and Communications Group,
and worked on the development of the first IEEE
802.11 compliant wireless MAC device. His

research interests include computer arithmetic and architecture,
dependable system architectures, and low power design and low power
test. He holds one worldwide patent and has authored or coauthored
more than 70 scientific papers. He is a member of the IEEE.

Giorgos Dimitrakopoulos received the PhD
degree in computer engineering from the Uni-
versity of Patras, Greece, in 2007. He is a
lecturer in the Department of Informatics and
Communications Engineering at the University
of West Macedonia, Kozani, Greece. In 2008-
2010, he held a postdoctoral research position at
the Computer Architecture and VLSI Systems
Laboratory, Institute of Computer Science, of the
Foundation for Research and Technology-Hellas

(FORTH), in Heraklion, Crete, Greece, and he taught digital design
related courses to the Computer Science Department of the University
of Crete. His interests are in the design of digital integrated circuits
focusing on on-chip interconnection network architectures, media-
enhanced microprocessors, and computer arithmetic as well as ultra
low voltage circuit design. He is a member of the technical chamber of
Greece and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

186 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

