
Efficient Diminished-1
Modulo 2n þ 1 Multipliers

Costas Efstathiou,
Haridimos T. Vergos, Member, IEEE,

Giorgos Dimitrakopoulos, and
Dimitris Nikolos, Member, IEEE

Abstract—In this work, we propose a new algorithm for designing diminished-1

modulo 2n þ 1 multipliers. The implementation of the proposed algorithm requires

nþ 3 partial products that are reduced by a tree architecture into two summands,

which are finally added by a diminished-1 modulo 2n þ 1 adder. The proposed

multipliers, compared to existing implementations, offer enhanced operation

speed and their regular structure allows efficient VLSI implementations.

Index Terms—Modulo 2n þ 1 multipliers, computer arithmetic, residue number

system, Fermat number transform, VLSI design.

�

1 INTRODUCTION

ARITHMETIC modulo 2n þ 1 has been used in several applications,

which include specialized digital signal processors based on

Residue Number System (RNS) arithmetic [1], [2], [3], [4], Fermat

Number Transform (FNT) for eliminating the roundoff errors in

convolution computations [5], [6], [7], [8], and cryptographic

algorithms [9]. For the implementation of these applications,

several designs for modulo 2n þ 1 arithmetic blocks have been

proposed. Efficient modulo 2n þ 1 adders have been presented in

[10], [11], [12], multioperand adders and residue generators in [13],

and multipliers in [14], [15], [16], [17], [18]. The prime moduli of

the form 2n þ 1, apart from being useful for ordinary RNSs, are

vital in FNT and useful in cryptography. The Fermat number

216 þ 1, by being the only Fermat number of practical interest, was

chosen for the implementation of the International Data Encryp-

tion Algorithm (IDEA) [9].
Since a number in the range of ½0; 2n� requires nþ 1 bits for its

representation, the weighted representation of an operand modulo

2n þ 1 is a problem in an RNS that uses the three moduli set

f2n � 1; 2n; 2n þ 1g, given that the other two channels operate on

n-bit quantities. To overcome this problem and since, in the case of

a zero operand, the result can be derived straightforwardly,

Leibowitz [5] introduced the diminished-1 representation. Under

this representation, each number is represented decremented by

1 modulo 2n þ 1 and all arithmetic operations are inhibited for a

zero operand. Zero is represented using a separate zero indication

bit. This representation has the advantage that the numbers are

represented by n bits and simplifies the basic operations of

addition, multiplication, and scaling modulo 2n þ 1. Recently, the

benefits of diminished-1 arithmetic have been utilized for the

design of low-power convolution architectures [19] and for high

speed implementation of the IDEA cryptographic algorithm [20].

We can distinguish the multipliers modulo 2n þ 1 in the

following categories, depending on the type of operands that they

accept:

. Both operands use standard representation [14], [15].

. One input uses a standard representation, while the other
utilizes a diminished-1 representation [18].

. Both inputs use diminished-1 representation [16], [17].

It is important to note that the multipliers presented in [10] also

use n bits for their representation, but do not follow the

diminished-1 discipline. This representation is specific for the

IDEA implementation and imposes all operands to be in weighted

form, except the operand 2n, which is represented as an all zeros

operand.

In this paper, we present a new algorithm for designing tree

multipliers for the third of the above categories, that is, modulo

2n þ 1 multipliers whose both inputs are in diminished-1 repre-

sentation. We show that the proposed multipliers are more

efficient than the multipliers presented in [14], [15], [16], [17],

[18]. The new design method is presented in Section 2. An area and

delay analysis is given in Section 3 and compared against the

previous solutions. Experimental results based on static CMOS

implementations are also presented in Section 3. Our conclusions

are drawn in the last section.

2 THE PROPOSED MULTIPLIERS

In this section, a new architecture for modulo 2n þ 1 multiplication

for diminished-1 operands is introduced. At first, the derivation of

the partial products is explained. Then, the reduction of the partial

products in two summands is examined.

Let A;B be two ðnþ 1Þ-bit numbers with 0 � A;B < 2n þ 1 and

suppose that A�1 ¼ an�1an�2 . . . a0, B�1 ¼ bn�1bn�2 . . . b0 denote

their diminished-1 representations such that

A�1 ¼
���A� 1

���
2nþ1

B�1 ¼
���B� 1

���
2nþ1

ð1Þ

and A�1; B�1 6¼ 0. Assume that Q denotes the product of A and B

modulo 2n þ 1, that is, Q ¼ jA�Bj2nþ1, where jxjm denotes the

residue of x modulo m. Then, according to [16] and [10], for the

diminished-1 representation of Q, we have that���Q�1

���
2nþ1

¼
���Q� 1

���
2nþ1

¼
���A�B� 1

���
2nþ1

¼
���ðA�1 þ 1Þ � ðB�1 þ 1Þ � 1

���
2nþ1

¼
���A�1 � B�1 þA�1 þB�1

���
2nþ1

¼
��� A�1 �B�1j j2nþ1þA�1 þ B�1

���
2nþ1

:

ð2Þ

The term jA�1 � B�1j2nþ1 of (2) can be expressed as

��A�1 �B�1

��
2nþ1

¼
Xn�1

i¼0

Xn�1

j¼0

aibj2
iþj

�����
�����
2nþ1

¼
Xn�1

i¼0

Xn�1

j¼0

aibj 2
iþj

�� ��
2nþ1

�����
�����
2nþ1

:

ð3Þ

Taking into account that iþ j � 2n� 2, (3) can be written as

��A�1 �B�1

��
2nþ1

¼
Xn�1

i¼0

Xn�1

j¼0

aibj ð�1Þs 2 iþjj jn

�����
�����
2nþ1

; ð4Þ

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 4, APRIL 2005 491

. C. Efstathiou is with the Department of Informatics, TEI of Athens, Ag.
Spyridonos St., 12210 Egaleo, Athens, Greece.
E-mail: cefsta@teiath.gr.

. H.T. Vergos, G. Dimitrakopoulos, and D. Nikolos are with the Technology
and Computer Architecture Lab, Computer Engineering and Informatics
Department, University of Patras, 26500 Patras, Greece.
E-mail: {vergos, dimitrak}@ceid.upatras.gr, nikolosd@cti.gr.

Manuscript received 31 Oct. 2003; revised 18 June 2004; accepted 22 Nov.
2004; published online 15 Feb. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0198-1003.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

where

s ¼ 0; if iþ j < n
1; if iþ j � n:

�
ð5Þ

For the two cases of (5), relation (4) can be expressed as

��A�1 �B�1

��
2nþ1

¼
Xn�1

i¼0

Xn�1�i

j¼0

aibj 2
iþjj jn þ

Xn�1

i¼1

Xn�1

j¼n�i

ð�aibjÞ 2 iþjj jn

�����
�����
2nþ1

:

ð6Þ

For z 2 f0; 1g, it holds that��� z
��
2nþ1

¼
��2n þ 1� z

��
2nþ1

¼
��2n þ z

��
2nþ1

; ð7Þ

where z denotes the complement of bit z. Then, according to (7), (6)
can be rewritten as��A�1 � B�1

��
2nþ1

¼
Xn�1

i¼0

Xn�1�i

j¼0

aibj 2
iþjj jn þ

Xn�1

i¼1

Xn�1

j¼n�i

ð2n þ aibjÞ 2 iþjj jn

�����
�����
2nþ1

:
ð8Þ

Relation (8) indicates that one way to form the partial products
is to complement each bit aibj with iþ j � n and place it at bit
position jiþ jjn, provided that a correction equal to j2n2jiþjjn j2nþ1 is
taken into account for each complementation. Therefore, (8) can be
reformulated as

��A�1 � B�1

��
2nþ1

¼
Xn�1

i¼0

ðPPi þ CiÞ
�����

�����
2nþ1

; ð9Þ

where PPi denotes the ith partial product

PPi ¼
Pn�1

j¼0 a0bj 2
j; if i ¼ 0Pn�1�i

j¼0 aibj 2
iþjj jn þ

Pn�1
j¼n�i aibj 2

iþjj jn ; if i 6¼ 0

(
ð10Þ

and Ci is the corresponding correction factor. It should be noted
that PP0 does not contain any complemented bits and, thus,
C0 ¼ 0. On the other hand, for i 6¼ 0, the value of Ci depends on the
number of complemented bits aibj and is given by

Ci ¼
Xn�1

j¼n�i

��2n 2jiþjjn
��
2nþ1

¼ 2n ð2i � 1Þ: ð11Þ

According to (10) and (11), the following partial products and
correction factors are derived:

PP0¼ a0bn�1 a0bn�2 ... a0b1 a0b0 ; C0¼ 0

PP1¼ a1bn�2 a1bn�3 ... a1b0 a1bn�1 ; C1¼ 2n ð21�1Þ
PP2¼ a2bn�3 a2bn�4 ... a2bn�1 a2bn�2 ; C2¼ 2n ð22�1Þ

...

PPn�2¼ an�2b1 an�2b0 ... an�2b3 an�2b2 ; Cn�2¼ 2n ð2n�2�1Þ
PPn�1¼ an�1b0 an�1bn�1 ... an�1b2 an�1b1 ; Cn�1¼ 2n ð2n�1�1Þ:

The total correction, CP , required for the formation of the above n

partial products is equal to

CP ¼
Xn�1

i¼0

Ci ¼ C0 þ
Xn�1

i¼1

2n ð2i � 1Þ ¼ 2nð2n � 1� nÞ: ð12Þ

In the following, we consider the reduction of the partial
products into two summands. This can be performed in a variety
of ways. In this paper, an FA-based Dadda tree architecture is
followed [21]. Although the use of a tree architecture in integer
multipliers results in irregular architectures, in our case, the
resulting FA array is completely regular and, therefore, well-suited
for VLSI implementations. This is due to the fact that the same
number of bits participate in every bit position since the carry

output of the most-significant bit position is fed back as a carry
input to the least-significant bit position of the next stage. Let cn
denote a carry output at the most significant bit position which has
a weight of 2n. Since��cn2n��2nþ1

¼
��� cn

��
2nþ1

¼
��2n þ cn

��
2nþ1

; ð13Þ

then cn can be complemented and added at the least significant bit
position of the next stage, provided that a correction of 2n is taken
into account. Since an FA row reduces the number of partial
products by one, nþ 1 FA rows are required in order to derive the
two final summands from nþ 3 partial products. The FAs at the
most significant bit position will then produce nþ 1 carries of
weight 2n. Therefore, the correction, CR, required during the
addition of nþ 3 partial products is

CR ¼ ðnþ 1Þ 2n: ð14Þ

Merging both correction factors of (12) and (14) results in a single
factor C, which, in modulo 2n þ 1 arithmetic, is equal to���C���

2nþ1
¼

���CP þ CR

���
2nþ1

¼
���2nð2n � n� 1Þ þ ðnþ 1Þ2n

���
2nþ1

¼ 1:

ð15Þ

Since C is treated in the proposed architecture as an extra partial
product, we have to use its diminished-1 representation in our
reduction scheme, i.e., C�1 ¼ jC � 1j2nþ1, which is equal to the all
0s n-bit vector. This vector, along with the n PPis of (9) and the
A�1, B�1 of (2) forms the nþ 3 partial products of the proposed
architecture. Although C�1 ¼ 0, it cannot be ignored during the
reduction of the partial products since, in this case, less than nþ 1

carries of weight 2n will be produced. The above analysis indicates
that

��Q�1

��
2nþ1

¼
Xn�1

i¼0

PPi þA�1 þB�1 þ C�1

�����
�����
2nþ1

: ð16Þ

An implementation of the proposed architecture is composed of
AND or NAND gates that form a bit of each partial product, a
Dadda tree that reduces the nþ 3 partial products into two
summands, and a modulo 2n þ 1 adder for diminished-1 operands
[12] that accepts these two summands and produces the required
product.

A diminished-1 modulo 2n þ 1 parallel adder is effectively
an inverted end-around-carry adder. Since a direct connection
of the carry output to the carry input via an inverter leads to
an oscillating circuit, dedicated architectures have been pro-
posed that do not suffer from this problem [10], [11], [12]. In
this work, the parallel-prefix architecture proposed in [12] is
utilized in order to achieve the fastest possible implementation.
This architecture was derived by allowing the inverted
reentering carry to recirculate at each existing prefix level.
The design of these adders is briefly described as follows: At
first, the carry-generate bits gi, the carry-propagate bits pi, and the
half-sum bits hi, for every i, 0 � i � n� 1, are computed according
to: gi ¼ ai � bi, pi ¼ ai þ bi, and hi ¼ ai � bi, where �, þ, and �
denote the logical AND, OR, and exclusive-OR operations,
respectively. Then, using the bits gi and pi, the carries ci, for
�1 � i � n� 2, are computed in log2 n prefix levels, according to
the following relation:

ðGi; PiÞ ¼ ðgi; piÞ � ðgi�1; pi�1Þ � � � � � ðg0; p0Þ
� ðgn�1; pn�1Þ � � � � � ðgiþ1; piþ1Þ;

with ci ¼ Gi. Finally, the sum bits si are derived using si ¼ hi � ci�1.
By definition, ðg; pÞ is equal to ðg; pÞ and � is the prefix operator
defined as ðg; pÞ � ðg0; p0Þ ¼ ðgþ p � g0; p � p0Þ.

492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 4, APRIL 2005

Additional simplifications are possible to the Dadda reduction
tree. Consider the partial products PP0 ¼ an�1b0 an�2b0 . . . a1b0 a0b0,
PPn ¼ A�1, and PPnþ1 ¼ B�1. If these three partial products are
driven to the same FA row of the array, then each FA can be
simplified significantly. Fig. 1 presents a possible implementation
of a block that accepts an�1, bn�1, and b0 and performs the addition
of the bits an�1b0, an�1, and bn�1. The simplified FA is denoted as
SFA. The FA of the same row that accepts a0b0, a0, and b0 can be
further simplified to an HA. Furthermore, since C�1 is the all 0s
vector, the row of FAs that accepts this operand can be simplified
to a row of half-adders (HA).

Example 1. For a modulo 257 multiplier the derived set of partial
products is shown in Fig. 2. Fig. 3 presents a numerical example
illustrating the modulo partial-product reduction using the
Dadda method. Every three terms are reduced to two, using an
FA row, which is indicated by a box that surrounds them. The
resulting sum and carry vectors are denoted as ðSÞ and ðCÞ. The
bold and underlined bits of each stage declare the carry bits of
weight 28 that are complemented and added at the least-
significant bit position. Additionally, Fig. 4 presents the
attained FA-based implementation. Note that, in the first level
of the tree, only HAs and SFAs have been used for reducing the
delay. The circles at the carry output of an HA, FA, or an SFA
denote the complement operation.

3 COMPARISONS

The multipliers designed according to the methods presented in
[14], [15], and [18] require, apart from the partial-products
reduction array, a final carry-propagate adder and a modulo
correction step with a delay equal to an n-bit carry propagate
adder. Thus, the proposed design and those of [16] and [17] that
require only one n-bit carry-propagate addition are superior to
these previous methods. Additionally, the authors of [16] and [17]
have proven their superiority over [14] and [18]. Therefore, in this
section, we compare the proposed (hereafter denoted block PROP)

multipliers against those of [16] (hereafter denoted block WANG)

and [17] (hereafter denoted block MA), both qualitatively and

quantitatively.
For our qualitative comparisons, we adopt the approximations

of the unit-gate model [22], that is, we consider that all 2-input

monotonic gates count as one gate equivalent for both area and

delay, while a 2-input XOR or XNOR gate counts as two gate

equivalents for both area and delay. We denote a Booth encoder by

BE, a Booth selector block by BS, and a parallel modulo 2n þ 1

adder by PAn. The area of a block Y will be denoted AY and its

execution latency as TY . The area and delay in equivalent gates of

the components used in the comparisons are shown in Table 1.
In the proposed multipliers, nþ 3 partial products are required.

The three of them are bits from the input operands, which are added

using the SFA cells, while one of them is the all zeros vector. The rest

of the partial products are produced by nðn� 1Þ AND or NAND

gates. These partial products are then reduced to two by the use of a

Dadda tree. The depth in FA stages of a Dadda tree, denotedDðkÞ, is
a function of its number of operands and is listed in Table 2 for all

practical values of k. Each of the n columns of the tree, except the

least significant one, is composed of n� 1 FAs, 1 SFA, and 1HA. The

least significant slice is composed of n� 1 FAs and 2 HAs.

Therefore, the total area of the Dadda tree required by the proposed

multipliers is ADT ¼ nðn� 1ÞAFA þ ðn� 1ÞASFA þ ðnþ 1ÞAHA,

while its execution delay is TDT ¼ Dðnþ 3ÞTFA. As exemplified in

the previous section, in several cases, it is possible to arrange the first

level of the Dadda tree so that it is composed only of SFAs or of SFAs

and HAs. This can be achieved in the cases where ðnþ 2Þ or ðnþ 1Þ
is a Dadda number, i.e., when n ¼ 4; 5; 7; 8; 11; 12; 17; 18; 26; 27;

In these cases, the execution delay of the Dadda tree is

TDT ¼ ðDðnþ 3Þ � 1ÞTFA þ THA. Taking into account the approx-

imations of the unit gate model, we get that

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 4, APRIL 2005 493

Fig. 1. Sample simplified-FA (SFA) implementation.

Fig. 2. The set of partial products for the proposed modulo 28 þ 1 multiplier.

Fig. 3. Numerical example in the case of the proposed modulo 28 þ 1 multiplier.

APROP ¼ n2 þ ADT þAPAn

¼ 8n2 þ 9

2
n log2 nþ 1

2
nþ 4 equivalent gates;

ð17Þ
TPROP ¼ 1þ TDT þ TPAn

¼
4Dðnþ 3Þ þ 2 log2 nþ 2; if n ¼ 4; 5; 7; 8; 11; 12; 17; 18; . . .

4Dðnþ 3Þ þ 2 log2 nþ 4; otherwise:

�
ð18Þ

The multipliers proposed in [16] follow a similar structure as

the proposed ones. However, the following should be noted:

. nþ 1 partial products are utilized. Out of them, n� 1 are
produced using two input AND gates. However, these
AND gates require that one of their input operands be
inverted. One partial product is produced by the use of
2 ! 1 multiplexors. We consider that a multiplexor has the
same complexity as an XOR gate. The final partial product
is the inverse of the number of zeros in the n� 1 bits from

494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 4, APRIL 2005

Fig. 4. The proposed modulo 28 þ 1 multiplier.

TABLE 1
Area and Delay of the Basic Components in Equivalent Gates

b1 to bn�1. This number is provided by an n� 1 bits to
dlog2ðn� 1Þe counter (denoted by CNT).

. In [16], it is proposed to reduce the partial products in two
final summands by the use of a Wallace tree. In our
comparisons, we assume that this reduction is performed
by a Dadda tree. The latter has the same time complexity
while it, in parallel, offers reduced area complexity.

. The two final summands are added in a modulo 2n þ 1
parallel adder with a carry input set to 1. Since such a block
is not available in the literature, we assume that this is
implemented by an HA stage, followed by a modulo 2n þ 1
parallel adder.

The area requirements of the multipliers proposed in [16] are:

. nðn� 1Þ AND and n XOR gates for forming the n partial
products.

. ðn� 1Þ � dlog2ðn� 1Þe FAs for the CNT block that forms
the last partial product.

. nðn� 1Þ FAs for the Dadda tree and n HAs for producing
the two final summands.

. A modulo 2n þ 1 adder PAn.

Taking into account the approximations of the unit-gate model, it

follows that

AWANG ¼ 8n2 þ 9

2
n log2 nþ 9

2
n� 7dlog2ðn� 1Þe � 1: ð19Þ

Considering the execution delay, one must note that:

. The terms of the n� 1 partial products require more than a
single gate delay to be produced since each is the AND of a
normal input bit with the other inverted.

. Themultiplexors impose an extra delay for the derivation of
this specific partial product against the rest. In order to
compensate for this extra delay, the output of the multi-
plexors should be driven to the second or to subsequent
stages of theDadda tree.However, this is not possible,when
nþ 1 is a Dadda number or, equivalently, when
n ¼ 5; 8; 12; 18; 27; 41; 62; 93

. Finally, the partial product produced by the CNT may also
not be ready when needed for a minimum depth Dadda
tree. Because of this, we cannot provide a closed form
equation for TWANG. In our estimation, we consider that
the CNT is designed according to [23].

The multipliers proposed in [17] use Booth recoding to reduce
the number of partial products that should be added. In the
following, we consider that n is even. The number of derived
partial products in [17] is n

2 þ 1, each ðnþ 1Þ-bits wide. One of the
partial products is a constant, whereas the rest are derived using a
Booth encoder for each overlapping triplet of the multiplier and
nþ 1 Booth selector blocks. In [17], it is proposed that these partial
products are reduced into a carry and sum vector using a Carry-
Save Adder (CSA) Array. In the following, we consider that this is
performed by a Dadda tree to reduce the delay. The number of
FA stages in the Dadda tree is Dðn2 þ 1Þ, whereas the number of
FAs and HAs required is 1

2nðn� 1Þ � 2blog2ðn2 þ 1Þc and n
2,

respectively. The sum and carry vectors produced are then fed
into two cascaded modulo CSA stages, each contributing TFA of
execution delay. The first stage, because of the constants in the
high order bits of the sum and carry vectors, can be implemented
by 1HA and dlog2ðn2Þe FAs, whereas the second requires n FAs. The
two resulting vectors need to be added in a modulo 2n þ 1 parallel
adder with a carry input set to 1, as in the case of the multipliers
proposed in [16]. Also, in this case, we assume that this is
implemented by an HA stage, followed by a modulo 2n þ 1 parallel
adder. According to the above analysis, we have that, for even
values of n:

AMA ¼ n

2
ABE þ n

2
ðnþ 1ÞABS

þ 1

2
nðn� 1Þ � 2 log2

n

2
þ 1

� �j k
þ log2

n

2

� �l m
þ n

� �
AFA

þ n

2
þ 1þ n

� �
AHA þAPAn

¼ 6n2 þ 9

2
n log2 nþ 27

2
nþ 7 log2

n

2

l m
� 14 log2

n

2
þ 1

� �j k
ð20Þ

TMA ¼ TBE þ TBS þD
n

2
þ 1

� �
TFA þ 2TFA þ THA þ TPAn

¼ 20þ 4D
n

2
þ 1

� �
þ 2 log2 n:

ð21Þ

Taking into account the area estimates of (17), (18), (19), and the
analysis presented earlier for the delay TWANG, (20) and (21), we
present in Table 3 the delay and area requirements of the
multipliers under consideration for several values of n. The
proposed multipliers offer significant savings in execution time
compared to either the multipliers proposed in [16] or in [17]. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 4, APRIL 2005 495

TABLE 2
FA Stages in a k Operand Dadda Tree

TABLE 3
Area and Delay in Equivalent Gates

proposed multipliers are also more area efficient than the multi-
pliers in [16] for n > 4. Finally, considering as a metric the area �
time product, the proposed multipliers are more efficient than the
multipliers proposed in [17] for n < 24.

Quantitative comparison results are obtained by implementing
the different multiplier architectures into a 0.18�mCMOS standard
cell library. At first, a program was written in C++ that generates
structural Verilog descriptions for the proposed and the multi-
pliers proposed in [16] and [17]. We used this program to generate
Verilog models for multipliers with operand sizes of 4, 8, 16, and
32 bits. Each design, after performing extensive simulations that
verified its correctness, was synthesized and optimized recursively
for minimum delay, with Synopsys Design Compiler using the
UMC 0.18�m CMOS standard cell library (five metal layers), under
typical conditions (1.8Volt, 25� C). Then, the derived netlists and
the design constraints were passed to Cadence Silicon Ensemble to
perform the final placement and routing of the design. All design
constraints, such as output load, max fanout, and floorplan
initialization information, were held constant for each architecture.
Final timing analysis was performed using PrimeTime of Synopsys
toolset after all RC parasitic information were extracted from the
layout and back-annotated to the gate-level netlist. Table 4 shows
the obtained area and delay results. The reported area measure-
ments are performed in the final layout and include both cell and
interconnect area. The simulation data indicate that the proposed
multipliers offer delay savings between 7 percent and 11 percent
over the multipliers in [16] and between 10 percent and 18 percent
over the multipliers in [17]. Additionally, in all cases, they are more
area efficient than the multipliers of [16] by 6 percent on average.

In order to measure power consumption, all designs were
optimized targeting a delay equal to the minimum delay of the
Booth modulo 2n þ 1 multipliers proposed by Ma in [17]. The
resulting netlists were placed and routed and the parasitics
were extracted. All gathered design data were passed to
PrimePower of Synopsys and power was estimated after the
application of 5; 000 random vectors. Experimental results, shown
in Table 5, indicate that the proposed multipliers in the majority of
the cases require the smallest implementation area, while their
power consumption is less than the multipliers of [16] and [17] by
13 percent and 23 percent on average.

4 CONCLUSIONS

In this paper, we have proposed a new algorithm for designing
diminished-1 modulo 2n þ 1 multipliers. The proposed multipliers
offer significant savings in propagation delay compared to the
already known ones and they are more area and power efficient for
less strict delay constraints.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
constructive comments. G. Dimitrakopoulos has been supported
by the “D. Maritsas” Graduate Scholarship.

REFERENCES

[1] F. Taylor, “A Single Modulus ALU for Signal Processing,” IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 33, pp. 1302-1315, 1985.

[2] E. DiClaudio et al., “Fast Combinatorial RNS Processors for DSP
Applications,” IEEE Trans. Computers, vol. 44, pp. 624-633, 1995.

[3] J. Ramirez et al., “RNS-Enabled Digital Signal Processor Design,” IEE
Electronics Letters, vol. 38, no. 6, pp. 266-268, 2002.

[4] R. Chaves and L. Sousa, “RDSP: A RISC DSP Based on Residue Number
System,” Proc. Euromicro Symp. Digital Systems Design, pp. 128-135, Sept.
2003.

[5] L.M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat Number
Transform,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 24,
pp. 356-359, 1976.

[6] T.K. Truong et al., “Techniques for Computing the Discrete Fourier
Transform Using the Quadratic Residue Fermat Number Systems,” IEEE
Trans. Computers, vol. 35, pp. 1008-1012, 1986.

[7] M. Benaissa et al., “Diminished-1 Multiplier for a Fast Convolver and
Correlator Using the Fermat Number Transform,” IEE Proc. G, vol. 135,
pp. 187-193, 1988.

[8] S. Sunder at al., “Area-Efficient Diminished-1 Multiplier for Fermat
Number-Theoretic Transform,” IEE Proc. G, vol. 140, pp. 211-215, 1993.

[9] R. Zimmermann et al., “A 177 Mb/s VLSI Implementation of the
International Data Encryption Algorithm,” IEEE J. Solid-State Circuits,
vol. 29, no. 3, pp. 303-307, 1994.

[10] R. Zimmerman, “Efficient VLSI Implementation of Modulo ð2n 	 1Þ
Addition and Multiplication,” Proc. IEEE Symp. Computer Arithmetic,
pp. 158-167, Apr. 1999.

[11] C. Efstathiou et al., “Modulo 2n 	 1 Adder Design Using Select-Prefix
Blocks,” IEEE Trans. Computers, vol. 52, pp. 1399-1406, 2003.

[12] H.T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One Modulo 2n þ
1 Adder Design,” IEEE Trans. Computers, vol. 51, pp. 1389-1399, 2002.

[13] S.J. Piestrak, “Design of Residue Generators and Multioperand Modular
Adders Using Carry-Save Adders,” IEEE Trans. Computers, vol. 43, pp. 68-
77, 1994.

[14] A.A. Hiasat, “A Memoryless modð2n 	 1Þ Residue Multiplier,” Electronics
Letters, vol. 28, no. 3, pp. 314-315, 1992.

[15] A. Wrzyszcz and D. Milford, “A New Modulo 2a þ 1 Multiplier,” Proc. Int’l
Conf. Computer Design, pp. 614-617, 1993.

[16] Z. Wang, G.A. Jullien, and W.C. Miller, “An Efficient Tree Architecture for
Modulo 2n þ 1 Multiplication,” J. VLSI Signal Processing, vol. 14, pp. 241-
248, 1996.

[17] Y. Ma, “A Simplified Architecture for Modulo ð2n þ 1Þ Multiplication,”
IEEE Trans. Computers, vol. 47, no. 3, pp. 333-337, Mar. 1998.

[18] A.V. Curiger et al., “Regular VLSI Architectures for Multiplication Modulo
(2n þ 1),” IEEE J. Solid-State Circuits, vol. 26, no. 7, pp. 990-994, 1991.

[19] V. Paliouras, A. Skavantzos, and T. Stouraitis, “Multi-Voltage Low Power
Convolvers Using the Polynomial Residue Number System,” Proc. ACM
Great Lakes Symp. VLSI, pp. 7-11, 2002.

[20] A. Hammalainen, M. Tommiska, and J. Skytta, “6.78 Gigabits per Second
Implementation of the IDEA Cryptographic Algorithm,” Lecture Notes in
Computer Science, vol. 2438, pp. 760-769, 2002.

[21] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34,
pp. 349-356, 1965.

[22] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adders,” IEEE Trans.
Computers, vol. 42, no. 10, pp. 1163-1170, Oct. 1993.

[23] E.E. Swartzlander, “Parallel Counters,” IEEE Trans. Computers, vol. 22,
pp. 1021-1024, 1973.

496 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 4, APRIL 2005

TABLE 4
Area (�m2) and Delay (ns) Results of the
Diminished-1 Modulo 2n þ 1 Multipliers

TABLE 5
Area (�m2) and Power (mW) Results for the

Diminshed-1 Modulo 2n þ 1 Multipliers

