
Brief Contributions__

High-Speed Parallel-Prefix VLSI Ling Adders

Giorgos Dimitrakopoulos and
Dimitris Nikolos, Member, IEEE

Abstract—Parallel-prefix adders offer a highly efficient solution to the binary

addition problem and are well-suited for VLSI implementations. In this paper, a

novel framework is introduced, which allows the design of parallel-prefix Ling

adders. The proposed approach saves one-logic level of implementation

compared to the parallel-prefix structures proposed for the traditional definition of

carry lookahead equations and reduces the fanout requirements of the design.

Experimental results reveal that the proposed adders achieve delay reductions of

up to 14 percent when compared to the fastest parallel-prefix architectures

presented for the traditional definition of carry equations.

Index Terms—Adders, parallel-prefix carry computation, computer arithmetic,

VLSI design.

�

1 INTRODUCTION

BINARY addition is one of the primitive operations in computer
arithmetic. VLSI integer adders are critical elements in general-
purpose and digital-signal processing processors since they are
employed in the design of Arithmetic-Logic Units, in floating-point
arithmetic datapaths and in address generation units. They are also
employed in encryption and hashing function implementation.

A large variety of algorithms and implementations have been
proposed for binary addition [1], [2], [3]. When high operation
speed is required, tree structures, like parallel-prefix adders, are
used [4], [5], [6], [7], [8], [9]. Parallel-prefix adders are suitable for
VLSI implementation since they rely on the use of simple cells and
maintain regular connections between them. The prefix structures
allow several trade offs among the number of cells used, the
number of required logic levels, and the cells’ fanout. A recent
comparison of the most efficient adder architectures has been
presented in [10].

Several variants of the carry-lookahead equations, like Ling
carries [11], have been presented that simplify carry computation
and can lead to faster structures. The simplified form of Ling
equations has been exploited for the design of multilevel block
carry lookahead adders [11], [12], [13], [14], [15], [16], [17], [18].
Nevertheless, no systematic methodology for designing parallel-
prefix structures for Ling carry computation that takes full
advantage of the simplicity of Ling equations has been presented.
Although, in [19], a method was presented that computes the Ling
carries using a parallel-prefix network, the design proposed
requires an extra OR gate compared to the traditional carry
lookahead parallel-prefix structures and is therefore against the
inherent fast computation of Ling carries. In this work, we propose
the parallel-prefix formulation of Ling addition. The proposed
adders are implemented using one less logic level compared to the
parallel prefix structures proposed for the traditional carry
equations, while they also reduce the fanout requirements of the
design. Following the proposed methodology, any parallel-prefix

architecture can be employed for the design of high-speed Ling

adders. The proposed parallel-prefix adders are compared to the

widely adopted prefix structures proposed for the traditional

definition of carry equations using static CMOS implementations.

In all cases, the proposed adders are the fastest. The delay

reductions achieved range from 10 percent to 14 percent.
The rest of the paper is organized as follows: Section 2 gives a

brief description of the parallel-prefix formulation of binary

addition and the appropriate definitions concerning Ling addition.

Section 3 introduces the proposed parallel-prefix Ling adders,

while, in Section 4, experimental results are given. Finally,

conclusions are drawn in Section 5.

2 BACKGROUND AND DEFINITIONS

2.1 Parallel-Prefix Addition

Assume that A ¼ an�1an�2 . . . a0 and B ¼ bn�1bn�2 . . . b0 represent

the two numbers to be added and S ¼ sn�1sn�2 . . . s0 denotes their

sum. An adder can be considered as a three stage circuit. The

preprocessing stage computes the carry-generate bits gi, the carry-

propagate bits pi, and the half-sum bits di, for every i, 0 � i � n� 1,

according to: gi ¼ ai � bi, pi ¼ ai þ bi, and di ¼ ai � bi, where �, þ,

and � denote the logical AND, OR and exclusive-OR operations,

respectively. The second stage of the adder computes the carry

signals ci using the carry generate and propagate bits gi and pi,

while the final stage computes the sum bits according to,

si ¼ di � ci�1.
A parallel-prefix circuit with n inputs x1; x2; . . . ; xn computes,

in parallel, n outputs y1; y2; . . . ; yn using an arbitrary associative

operator � as follows [2]: y1 ¼ x1, y2 ¼ x1 � x2, y3 ¼ x1 � x2 � x3,

. . . , yn ¼ x1 � x2 � � � � � xn. Carry computation can be transformed

to a prefix problem [6] using the associative operator �, which

associates pairs of generate and propagate bits as follows:

ðg; pÞ � ðg0; p0Þ ¼ ðgþ p � g0; p � p0Þ.
In a series of consecutive associations of generate and

propagate pairs ðg; pÞ, the notation ðGk:j; Pk:jÞ is used to denote

the group generate and propagate term produced out of bits

k; k� 1; . . . ; j, that is,

ðGk:j; Pk:jÞ ¼ ðgk; pkÞ � ðgk�1; pk�1Þ � . . . � ðgjþ1; pjþ1Þ � ðgj; pjÞ: ð1Þ

Following the above definitions, each carry ci is equal to Gi:0.
The prefix operator � is idempotent, i.e., ðg; pÞ � ðg; pÞ ¼ ðg; pÞ.

The generalization of the idempotency property [20] allows a group

term ðGi: j; Pi:jÞ to be derived by the association of two overlapping

terms, ðGi: k; Pi:kÞ and ðGm: j; Pm:jÞ, with i > m � k > j, since

ðGi: j; Pi:jÞ ¼ ðGi: k; Pi:kÞ � ðGm: j; Pm:jÞ: ð2Þ

Representing the operator � as a node and the signal pairs

ðGi:j; Pi:jÞ as the edges of a graph, parallel-prefix carry-computa-

tion units can be represented as directed acyclic graphs. Fig. 1

presents the 8-bit parallel-prefix adders, proposed by Kogge and

Stone [4], Ladner and Fisher [5], and one representative of the

Knowles’ adders [8]. The logic-level implementation of the basic

cells used in a parallel-prefix adder is shown in Fig. 2, while white

nodes � are buffering nodes. The last node of each bit column

requires a simpler implementation (one AND-OR gate) since only

a group generate term of the form Gi:0 needs to be produced.

2.2 Ling Adders

Ling proposed a simplified form of carry lookahead equations that

rely on adjacent bit pairs ðai; biÞ and ðai�1; bi�1Þ. The ith Ling carry

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005 225

. The authors are with the Computer Engineering and Informatics
Department, University of Patras, 26500 Patras, Greece.
E-mail: dimitrak@ceid.upatras.gr, nikolosd@cti.gr.

Manuscript received 9 Dec. 1003; revised 14 Oct. 2004; accepted 21 Oct.
2004; published online 15 Dec. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0275-1203.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Hi was defined in [11] as Hi ¼ ci þ ci�1. In this way, each Hi can be

expressed as

Hi ¼ gi þ gi�1 þ pi�1 � gi�2 þ . . .þ pi�1 � pi�2 � . . . � p1 � g0: ð3Þ

The Ling carries Hi can be computed faster than the corresponding

carries ci since they rely on a simpler Boolean function. Consider,

for example, the case of c3 and H3

c3 ¼ g3 þ p3 � g2 þ p3 � p2 � g1 þ p3 � p2 � p1 � g0
H3 ¼ g3 þ g2 þ p2 � g1 þ p2 � p1 � g0:

Assuming the use of two-input logic gates, the calculation of c3
requires four logic levels for the fastest implementation, while, for

H3, only three logic levels suffice.
Although the computation of the bits Hi is simpler, the

derivation of the final sum bits si using the Ling carries is

complicated compared to the case where the traditional carries

are used, i.e., si ¼ di � ci�1. Since ci ¼ pi �Hi, it holds that

si ¼ di � ci�1 ¼ di � ðpi�1 �Hi�1Þ. According to [13], the computa-

tion of the bits si can be transformed as follows:

si ¼ Hi�1 � di þHi�1 � ðdi � pi�1Þ; ð4Þ

which can be implemented using a multiplexer that selects either

di or ðdi � pi�1Þ according to the value of Hi�1. The notation x

denotes the complement of bit x. Taking into account that, in

general, an XOR gate is of almost equal delay to a multiplexer and

that both di and ðdi � pi�1Þ are computed in fewer logic levels than

Hi�1, then no extra delay is imposed by the use of Ling carries for

the computation of the sum bits si. In fact, the sum bits are

computed faster because of the faster computation of Ling carries.

3 PARALLEL-PREFIX FORMULATION OF LING ADDITION

In the following, we will present a systematic methodology that

allows the parallel-prefix computation of Ling carries. In order to

describe the proposed approach, at first an 8-bit adder will be used

as an example. The Ling carries at the fourth and the fifth bit

positions are equal to

H4 ¼ g4 þ g3 þ p3 � g2 þ p3 � p2 � g1 þ p3 � p2 � p1 � g0; ð5Þ

H5 ¼ g5 þ g4 þ p4 � g3 þ p4 � p3 � g2
þ p4 � p3 � p2 � g1 þ p4 � p3 � p2 � p1 � g0:

ð6Þ

Since gi � pi ¼ gi, then (5) and (6) can be written as

H4 ¼ g4 þ g3 þ p3 � p2 � ðg2 þ g1Þ þ p3 � p2 � p1 � p0 � g0; ð7Þ

H5 ¼ g5 þ g4 þ p4 � p3 � ðg3 þ g2Þ þ p4 � p3 � p2 � p1 � ðg1 þ g0Þ: ð8Þ

Assuming that

G	
i ¼ gi þ gi�1 and P 	

i ¼ pi � pi�1; ð9Þ

0 � i � n� 1, with g�1 ¼ p�1 ¼ 0, G	
k ¼ P 	

k ¼ 0, for k < 0, then (7),

(8) can be expressed as

H4 ¼ G	
4 þ P 	

3 �G	
2 þ P 	

3 � P 	
1 �G	

0 ð10Þ

H5 ¼ G	
5 þ P 	

4 �G	
3 þ P 	

4 � P 	
2 �G	

1: ð11Þ

Equations (10) and (11) can be written, using the � operator, as

H4 ¼ ðG	
4; P

	
3 Þ � ðG	

2; P
	
1 Þ � ðG	

0; P
	
�1Þ

H5 ¼ ðG	
5; P

	
4 Þ � ðG	

3; P
	
2 Þ � ðG	

1; P
	
0 Þ:

Therefore, by using the intermediate generate and propagate

pairs ðG	
i ; P

	
i�1Þ and by treating separately the Ling carries of the

even and the odd-indexed bit positions, each carry Hi, in the case

of an 8-bit adder, can be derived using the operator � as follows:

226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

Fig. 1. The (a) Kogge-Stone, (b) Ladner-Fischer, and (c) one representative of Knowles’ adders.

Fig. 2. The logic-level implementation of the basic cells used in parallel-prefix carry computation.

H0 ¼ ðG	
0; P

	
�1Þ;

H2 ¼ ðG	
2; P

	
1 Þ � ðG	

0; P
	
�1Þ;

H4 ¼ ðG	
4; P

	
3 Þ � ðG	

2; P
	
1 Þ � ðG	

0; P
	
�1Þ;

H6 ¼ ðG	
6; P

	
5 Þ � ðG	

4; P
	
3 Þ � ðG	

2; P
	
1 Þ � ðG	

0; P
	
�1Þ;

H1 ¼ ðG	
1; P

	
0 Þ;

H3 ¼ ðG	
3; P

	
2 Þ � ðG	

1; P
	
0 Þ;

H5 ¼ ðG	
5; P

	
4 Þ � ðG	

3; P
	
2 Þ � ðG	

1; P
	
0 Þ;

H7 ¼ ðG	
7; P

	
6 Þ � ðG	

5; P
	
4 Þ � ðG	

3; P
	
2 Þ � ðG	

1; P
	
0 Þ:

This formulation allows the parallel-prefix computation of the

Ling carries Hi using separate prefix trees for the even and the

odd-indexed bit positions. As shown in Fig. 3, after the generation

of the pairs ðG	
i ; P

	
i�1Þ, at most two prefix levels are required for the

computation of each Hi.
Based on the form of the equations that compute the Ling

carries Hi, in the case of the 8-bit adder, the following observations

can be made: The new preprocessing stage that computes the pairs

ðG	
i ; P

	
i�1Þ requires one extra logic level compared to the logic-

levels needed to derive the bits ðg; pÞ in the traditional case.

However, the number of terms ðG	
i ; P

	
i�1Þ that need to be associated

is reduced to half compared to the traditional approach, where the

pairs ðg; pÞ are used. Therefore, one less prefix level (two logic

levels) is required for the computation of the bits Hi, which leads

to a reduction by one logic level in total. Also, the terms Hi of the

odd and the even-indexed bit positions are computed indepen-

dently, thus directly reducing the fanout of the parallel-prefix

structure, a fact that also contributes to the reduction of the delay.
It can be easily proven by induction that, in case of an n-bit

adder, the Ling carries Hi and Hiþ1 of consecutive even and odd

bit positions i and iþ 1, respectively, are given by

Hi ¼ ðG	
i ; P

	
i�1Þ � ðG	

i�2; P
	
i�3Þ � . . . � ðG	

0; P
	
�1Þ ð12Þ

Hiþ1 ¼ ðG	
iþ1; P

	
i Þ � ðG	

i�1; P
	
i�2Þ � . . . � ðG	

1; P
	
0 Þ: ð13Þ

The design of parallel-prefix Ling adders is summarized in the

following steps:

. Generate the intermediate generate and propagate pairs
ðG	

i ; P
	
i�1Þ either by combining the carry generate bits gi and

the carry propagate bits pi according to (9) (Fig. 4a) or
directly from the input bits ðai; biÞ and ðai�1; bi�1Þ using
AND-OR and OR-AND gates that implement the equations
G	

i ¼ ðai � biÞ þ ðai�1 � bi�1Þ and P 	
i ¼ ðai þ biÞ � ðai�1 þ bi�1Þ,

respectively. The second method reduces the number of in-
series transistors that appear on the critical path.

. Using the pairs ðG	
i ; P

	
i�1Þ, produce two separate prefix-

trees, one for the even and one for the odd-indexed bit
positions that compute the Ling carries Hi and Hiþ1. Any
parallel-prefix structure can be employed for the genera-
tion of the bits Hi, in log2 n� 1 prefix levels.

. Derive the sum bits si according to (4). The cell that
implements (4) is shown in Fig. 4b. The Ling carry Hn�1

produced from the most-significant bit position does not
represent a valid carry output. In order to get the carry-out
cn�1, one extra AND gate should be added that computes
cn�1 ¼ pn�1 �Hn�1, without affecting the critical path.

In Fig. 5, several architectures for the case of a 16-bit adder are

presented. It can be easily verified that the proposed adders

maintain all the benefits of the parallel-prefix structures, while, at

the same time, they offer reduced delay and fanout requirements.

Since there is no interference between the prefix trees of the even

and the odd bit positions, separate prefix architectures can be used

for each one of them. For example, the last prefix structure of Fig. 5

uses the Ladner-Fischer approach for the even bit positions and the

Kogge-Stone structure for the odd bit positions.
The design of any parallel-prefix structure when its width n is

not a power-of-two is based on the idempotency property

presented in [20] (2). We prove that the idempotency property is

valid even if the intermediate pairs ðG	
i ; P

	
i�1Þ are used instead of

the pairs ðg; pÞ. Therefore, idempotency can also be employed in

the case of the proposed Ling adders. Assume that the notation

ðG	
i:j; P

	
i:jÞ is used to denote a group term produced out of

associations of consecutive intermediate generate and propagate

pairs ðG	
k; P

	
k�1Þ and is defined as

ðG	
i:j; P

	
i:jÞ ¼ ðG	

i ; P
	
i�1Þ � ðG	

i�2; P
	
i�3Þ � . . . � ðG	

j ; P
	
j�1Þ; ð14Þ

where i; j are both either odd or even numbers. The idempotency

property for the proposed Ling adders is defined as follows:

Theorem 1. If i, m, k, and j are all either odd or even integers and

i > m � k > j, then ðG	
i:j; P

	
i:jÞ ¼ ðG	

i:k; P
	
i:kÞ � ðG	

m:j; P
	
m:jÞ.

Proof. Since m � k and k > j, it holds that

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005 227

Fig. 3. The (a) Lander-Fischer and (b) Kogge-Stone parallel-prefix structure, using

the pairs ðG	
i ; P

	
i�1Þ, for the computation of the Ling carries, in the case of an 8-bit

adder.

Fig. 4. The generation of the intermediate generate and propagate pairs ðG	
i ; P

	
i�1Þ and the new cell used for the computation of the sum bits in the case of a Ling adder.

ðG	
i:k; P

	
i:kÞ � ðG	

m:j; P
	
m:jÞ ¼

¼ ½ðG	
i:m�2; P

	
i:m�2Þ � ðG	

m:k; P
	
m:kÞ
 � ½ðG	

m:k; P
	
m:kÞ � ðG	

k�2:j; P
	
k�2:jÞ

¼ ðG	
i:m�2; P

	
i:m�2Þ � ðG	

m:k þ P 	
m:k �G	

m:k; P
	
m:k � P 	

m:kÞ � ðG	
k�2:j; P

	
k�2:jÞ

¼ ðG	
i:m�2; P

	
i:m�2Þ � ðG	

m:k; P
	
m:kÞ � ðG	

k�2:j; P
	
k�2:jÞ

¼ ðG	
i:k; P

	
i:kÞ � ðG	

k�2:j; P
	
k�2:jÞ ¼ ðG	

i:j; P
	
i:jÞ:

ut

Finally, we investigate ways for incorporating a carry-input

signal to a Ling parallel-prefix structure. A discussion of the most

efficient approaches for the traditional carries can be found in [21].

The carry-in bit can be included either by adding a fast carry

increment stage or by treating cin as an extra bit of the

preprocessing stage of the adder. The first case in shown in

Fig. 6a. The second case can be derived by setting g�1 ¼ cin and,

according to (9), it follows that G	
�1 ¼ cin, G

	
0 ¼ g0 þ cin. Fig. 6b

illustrates this approach for an 8-bit Ling adder.

3.1 Hybrid Parallel-Prefix/Carry-Select Ling Adders

The goal for high-speed adder architectures with reduced area and

wiring has led to the design of hybrid parallel-prefix/carry-select

adders. Fig. 7 illustrates a hybrid 32-bit adder which employs a

Kogge-Stone parallel-prefix structure for the generation of the

carries c4k, k ¼ 1; 2; . . . ; n=4, and 4-bit carry select blocks. The carry-

select block computes two sets of sum bits, i.e., s0i , s
1
i , and the final

sums are selected via a multiplexer according to the value of c4k.

The goal of such hybrid structures is to overlap the time required

for the computation of the carries at the boundaries of the carry-

select blocks with the time needed to derive the sum bits.

The design of hybrid parallel-prefix/carry-select Ling adders

requires some minor modifications to the carry-select block. This is

required since

228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

Fig. 5. Sixteen-bit minimum depth parallel-prefix Ling adders.

. The proposed prefix structures generate the Ling pseudo-

carries Hi instead of the real carries ci and, thus, a sum bit

cannot be directly selected according to the value of Hi.
. The carries and the sum bits of the even and odd bit

positions are generated separately.
. The carry-select blocks take as inputs the pairs ðG	

i ; P
	
i�1Þ

and not the traditional ðg; pÞ pairs.
The equivalent 32-bit hybrid Ling adder is shown in Fig. 8. The Ling

carriesH4k andH4k�1 are computed on the corresponding even and

odd bit positions and used to select the final sum bits that have been

concurrently produced by the 4-bit Modified Carry-Select Adders

(MCSA). The design of the MCSA blocks will be explained via the

following example.
Assume the case of the 4-bit MCSA that produces the sum bits

s30, s28, s26, and s24 using as select signal the Ling carry H23. For the

sum bit s28, it holds that

s28 ¼ ðp27 � ðG	
27 þ P 	

26 �G	
25 þ P 	

26 � P 	
24 �H23ÞÞ � d28:

According to the value of H23, being 0 or 1, a set of two sum bits

fs028; s128g is derived

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005 229

Fig. 6. Eight-bit Ling adders with a carry-in signal. Fig. 7. Thirty-two-bit hybrid parallel-prefix/carry-select adder.

Fig. 9. The modified 4-bit carry-select block used for the design of hybrid Ling adders.

Fig. 8. A 32-bit hybrid parallel-prefix/carry-select Ling adder.

s028 ¼ ½p27 � ðG	
27 þ P 	

26 �G	
25Þ
 � d28

¼ ðG	
27 þ P 	

26 �G	
25Þ � d28 þ ðG	

27 þ P 	
26 �G	

25Þ � ðp27 � d28Þ;
s128 ¼ ½p27 � ðG	

27 þ P 	
26 � ðG	

25 þ P 	
24ÞÞ
 � d28

¼ ðG	
27 þ P 	

26 � ðG	
25 þ P 	

24ÞÞ � d28
þ ðG	

27 þ P 	
26 � ðG	

25 þ P 	
24ÞÞ � ðp27 � d28Þ:

Based on the above formulation, both s028 and s128 can be
computed using two-input multiplexers that select d28 or ðp27 �
d28Þ according to the value of the terms ðG	

27 þ P 	
26 �G	

25Þ and
ðG	

27 þ P 	
26 � ðG	

25 þ P 	
24ÞÞ, respectively. Finally, an additional

multiplexer produces the correct value of s28 using the incoming
carry H23, as shown in Fig. 9. Since the bits fs028; s128g are computed
earlier than H23, the critical path remains in the carry computation
unit and the delay of a multiplexer is added to it. The computation
of the rest sum bits is performed using an equivalent formulation.
Finally, the early derived less significant carries H6, H7, H14, and
H15 are buffered so as to match the delay required for the
computation of the prospective sum bits of the MCSAs and to
equalize the paths of the circuit for achieving minimum delay [22].

4 EXPERIMENTAL RESULTS

The proposed adders are compared against the parallel-prefix
structures proposed by Ladner and Fischer [5] and Kogge and Stone
[4] for the traditional definition of carry equations. The two
architectures represent the two extremes of Knowles adders [8].
The results, for the rest of the structures that Knowles proposed, are
expected to be between the area-efficient Ladner-Fischer structure
and the high-speed approach proposed by Kogge and Stone.

Each adder was described in Verilog HDL and mapped on a
0:18�m technology library [23] under typical conditions (1.8V,
25�C), using the Synopsys Design Compiler v.2003.06. Each design
was recursively optimized for speed targeting the minimum
possible delay. Then, the derived netlists and the design con-
straints were passed to Cadence Silicon Ensemble v.5.3 in order to
perform the final placement and routing of the design. All design
constraints, such as output load, floorplan initialization informa-
tion (each n-bit adder is placed in 2n fixed-height rows), and pin
placement, were held constant for each architecture. Final timing

analysis was performed using PrimeTime of Synopsys after all
RC parasitic information was extracted from the layout and back-
annotated to the gate-level netlist. It should be noted that the
proposed adders utilize the AND-OR and OR-AND complex gates
of the library for the generation of the pairs ðG	

i ; P
	
i�1Þ.

The first part of Table 1 presents the area and delay estimates
for the traditional and the proposed Ling adders, both using a
Ladner-Fischer [5] parallel-prefix structure. The proposed adders
have the minimum propagation delay in all examined cases. The
proposed adders outperform the traditional Ladner-Fischer adders
due to the half fanout requirements and the one-less logic level of
implementation. When both the adders that implement the
traditional carry-lookahead equations and the ones that compute
the Ling carries have equal fanout, the proposed adders are faster
in all cases, as shown in the second part of Table 1. The average
delay reduction achieved for both parallel-prefix architectures is
13.1 percent.

Also, the traditional and the proposed hybrid adders are
compared using a Kogge-Stone and a Ladner-Fischer parallel-
prefix tree for the computation of the carries at the boundaries of
the carry-select blocks. The experimental results gathered for the
64-bit hybrid adders are shown in Table 2. Again, the proposed
adders are faster than the corresponding traditional hybrid adders
by 8.8 percent.

For completeness, the adders proposed in [19] have been
implemented using a Ladner-Fischer and a Kogge-Stone parallel-
prefix structure. The results obtained are shown in Table 3. The
proposed adders require two less logic levels than the adders of
[19] and, according to Table 3, are faster by 13.8 percent on
average. Finally, we remind the reader that the methodology
presented in [19] cannot be applied to the design of hybrid parallel-
prefix/carry-select adders.

5 CONCLUSIONS

A systematic methodology for designing parallel-prefix Ling
adders has been introduced in this paper. The proposed adders
preserve all the benefits of the traditional parallel-prefix carry-
computation units, while, at the same time, offering reduced delay
and fanout requirements. Hence, high-speed datapaths of modern
microprocessors can truly benefit from the adoption of the
proposed adder architecture.

ACKNOWLEDGMENTS

G. Dimitrakopoulos has been supported by the “D. Maritsas”
Graduate Scholarship.

REFERENCES

[1] I. Koren, Computer Arithmetic Algorithms. A.K. Peters, Ltd., 2002.
[2] B. Parhami, Computer Arithmetic—Algorithms and Hardware Designs. Oxford

Univ. Press, 2000.

230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

TABLE 1
The Area and Delay Estimates for the Traditional and the Proposed Ling Adders
Both Using a Ladner-Fischer [5] and a Kogge-Stone [4] Parallel-Prefix Structure

TABLE 2
The Area and Delay Estimates for 64-Bit Hybrid Adders

Assuming 4-Bit Carry-Select Blocks

[3] M. Ergecovac and T. Lang, Digital Arithmetic. Morgan-Kauffman, 2003.
[4] P.M. Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient Solution

of a General Class of Recurrence Equations,” IEEE Trans. Computers, vol. 22,
no. 8, pp. 786-792, Aug. 1973.

[5] R.E. Ladner and M.J. Fisher, “Parallel Prefix Computation,” J. ACM, vol. 27,
no. 4, pp. 831-838, Oct. 1980.

[6] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel Adders,” IEEE
Trans. Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982.

[7] T. Han and D. Carlson, “Fast Area-Efficient VLSI Adders,” Proc. Symp.
Computer Arithmetic, pp. 49-56, May 1987.

[8] S. Knowles, “A Family of Adders,” Proc. 14th Symp. Computer Arithmetic,
pp. 30-34, Apr. 1999. Reprinted in ARITH-15, pp. 277-281.

[9] A. Beaumont-Smith and C.C. Lim, “Parallel-Prefix Adder Design,” Proc.
15th Symp. Computer Arithmetic, pp. 218-225, June 2001.

[10] V.G. Oklobdzija et al., “Energy-Delay Estimation Technique for High-
Performance Microprocessor VLSI Adders,” Proc. 16th Symp. Computer
Arithmetic, pp. 15-22, June 2003.

[11] H. Ling, “High-Speed Binary Adder,” IBM J. R&D, vol. 25, pp. 156-166,
May 1981.

[12] R.W. Doran, “Variants of an Improved Carry-Lookahead Adder,” IEEE
Trans. Computers, vol. 37, pp. 1110-1113, 1988.

[13] S. Vassiliadis, “Recursive Equations for Hardwired Binary Adders,”
J. Electronics, vol. 67, no. 2, pp. 201-213, Aug. 1989.

[14] N.T. Quach and M.J. Flynn, “High-Speed Addition in CMOS,” IEEE Trans.
Computers, vol. 41, no. 12, pp. 1612-1615, Dec. 1992.

[15] S. Naffziger, “A Sub-Nanosecond 0.5mum 64b Adder Design,” Proc. IEEE
Solid-State Circuits Conf., pp. 362-363, Feb. 1996.

[16] D. Phatak and I. Koren, “Intermediate Variable Encodings that Enable
Multiplexor Based Implementations of Two Operand Addition,” Proc.
Symp. Computer Arithmetic, pp. 22-29, Apr. 1999.

[17] O. Kwon, E. Swartzlander, and K. Nowka, “A Fast Hybrid Carry-
Lookahead/Carry-Select Adder Design,” Proc. Great Lakes Symp. VLSI,
pp. 149-152, Apr. 2001.

[18] Y. Wang, C. Pai, and X. Song, “The Design of Hybrid Carry-Lookahead/
Carry-Select Adders,” IEEE Trans. Circuits and Systems II, vol. 49, no. 1, Jan.
2002.

[19] C. Efstathiou, H.T. Vergos, and D. Nikolos, “Ling Adders in Standard
CMOS Technologies,” Proc. IEEE Int’l Conf. Electronics, Circuits, and Systems
(ICECS), vol. 2, pp. 485-488, Sept. 2002.

[20] T. Lynch and E. Swartzlander, “A Spanning Tree Carry Lookahead Adder,”
IEEE Trans. Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[21] A. Goldovsky et al., “A 1.0-nsec 32-bit Prefix Tree Adder in 0. 25-mum
Static CMOS,” Proc. Midwest Symp. Circuits and Systems, vol. 2, pp. 608-612,
Aug. 1999.

[22] I. Sutherland, R. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS
Circuits. Morgan Kaufmann, 1999.

[23] UMC-18, eSi-Route/11 0.8 Standard Cell Library, Virtual Silicon Technology,
Jan. 2001.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005 231

TABLE 3
The Area and Delay Estimates for the Adders Proposed in [19] and the Proposed Ling Adders

Both Using a Ladner-Fischer [5] and a Kogge-Stone [4] Parallel-Prefix Structure

