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Optimization Methodology for Modulo Multiplication
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Abstract—A novel hardware algorithm, a VLSI architecture,
and an optimization methodology for residue multipliers are in-
troduced in this paper. The proposed design approach identifies
certain properties of the bit products that participate in the residue
product computation and subsequently exploits them to reduce the
complexity of the implementation. A set of introduced theorems
is used to identify the particular properties. The introduced the-
orems are of significant practical importance because they allow
the definition of a graph-based design methodology. In addition, a
bit-product weight encoding scheme is investigated in a systematic
way, and exploited in order to minimize the number of bit prod-
ucts processed in the proposed multiplier. Performance data reveal
that the introduced architecture achieves area time complexity
reduction of up to 55%, when compared to the most efficient pre-
viously reported design.

Index Terms—Computer arithmetic, design methodology,
modulo multiplication, residue multiplier, residue number system
(RNS).

I. INTRODUCTION

RESIDUE or equivalently modulo multiplication plays an
essential role in residue number system (RNS) applica-

tions [1]–[3], and in cryptographic systems [4]. Several very-
large-scale-integration (VLSI) architectures have been proposed
for the design of residue multipliers, implemented, by memory
table lookup techniques, combinatorial logic, or a combination
of both.

For small moduli, ROM-based architectures result in effi-
cient implementations. However, the particular architectures be-
come inefficient for larger moduli since the table-lookup size
grows exponentially with the input word length. The cost of
the memory storage for residue multiplication can be reduced
by restricting the allowed moduli to be prime numbers thus al-
lowing the application of the index transform [5] or the submod-
ular index transform [6].

A variety of adder-based architectures have been proposed
in the literature, offering low area time complexity compared
to the ROM-based structures. In particular, DiClaudio et al.
introduced the pseudoRNS representation, which enables
building reprogrammable modulus multipliers and simplifies
the computation of DSP algorithms such as finite-impulse
response (FIR) filtering, correlations, and discrete Fourier
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transform (DFT) [7]. Elleithy and Bayoumi presented an
architecture for modular multiplication, which consists mainly
of modular adders and is suitable for medium and large
moduli [8]. Stouraitis et al. [9] introduced full-adder (FA)
based architectures for RNS multiply–add operations, which
adopt the carry–save array paradigm, while the same archi-
tecture has been refined by Soudris et al. in [10]. In [11],
Paliouras and Stouraitis introduced the multifunction RNS
architectures, which enable adder-based structures to perform
several residue-arithmetic operations and conversions for
various moduli simultaneously. Multifunction architectures
are based on the concept of sharing hardware among units,
which perform an operation with regard to different moduli,
while nonoccuring input combinations are exploited to reduce
the hardware complexity of the architecture. In particular,
hardware simplification is achieved by reducing certain 1-bit
adders to logic OR gates. The particular simplification has
been applied by Paliouras et al. to the design of adder-based
single-modulus residue multipliers [12]. The main drawback of
the methodology applied in both [11] and [12] is that it relies
on exhaustive simulations of all possible input combinations
to identify input bit-product pairs or triplets that cannot be
asserted simultaneously. Additionally, the corresponding archi-
tectures include a recursive modulo-reduction stage, formed by
cascaded adders, which significantly affects the overall delay.
Finally, Hiasat introduced a modular multiplication architecture
highly efficient in terms of area and time performance [13].

Additionally, signed-digit based architectures have been pro-
posed to achieve higher performance for adder-based arithmetic
circuits [14]. The signed-digit notation allows several encodings
of a given number among which the canonic-signed-digit (CSD)
representation, which uses the digit set , where ,
requires the minimal number of nonzero digits [15]. Recently,
Hartley applied the particular property in the design of fixed-co-
efficient digital filters [16], while Wrzyszcz et al. introduced a
technique to derive fixed-coefficient RNS filters [17]. The par-
ticular technique exploits the cyclic properties of residue arith-
metic and its efficiency depends on the modulus of operation. In
the same direction, Piestrak has proposed the design of multi-
operand modulo adders that exploit the periodicity of the
bit-weight sequence [18].

This paper introduces an architecture that exploits both the
signed-digit representation of the bit-product weight sequence

and newly found properties of the bit products in order to
reduce the hardware complexity of the residue multiplier. In par-
ticular, the bit-weight sequence , which dictates the dig-
ital positions to which input bit products should be added, is en-
coded in an innovative way that minimizes the number of input
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bit products processed by the residue multiplier. The final en-
coding of the weights is selected by means of a proposed
biased-signed-digit encoding (BSDE) technique. Furthermore,
the introduced architecture does not require recursive modulo
decomposition, achieving in this way a significant acceleration
over previously reported designs [11], [12].

Additionally, this paper introduces a systematic optimiza-
tion procedure, called the bit-products compatibility analysis
(BPCA), which replaces the simulation-based design approach
applied in [11] and [12]. BPCA exploits a set of introduced
theorems that reveal several properties of the bit products
processed in a modulo multiplier. In particular, the problem
of identifying disjoint sets of bit products, that their sum is
less or equal to one, for all legitimate input combinations, is
formulated using an introduced graph, called the bit-product
compatibility graph (BPCG), that enables exact solutions to
be reached in efficient computational time. To the authors’
knowledge the particular simplification was only partially
possible until now, and only by means of exhaustive simulation.
An innovative feature of the proposed methodology is also
the exploitation of triplets of inverted bit products, the sum
of which can only assume values in the set {2,3}, with the
objective to reduce the complexity of certain 1-bit adder cells.
The combined application of the proposed bit-weight encoding
and the proposed BPCG-based optimization leads to residue
multipliers of significantly reduced complexity when compared
to existing designs. Area time complexity savings of up to
55% are achieved, when compared to the most competitive
residue multiplier [13].

The remainder of the paper is organized as follows. Section II
describes the proposed residue multiplication algorithm, while
Section III introduces particular properties of bit products
that appear in residue multiplication. Section IV describes the
proposed hardware organization. In Section V, an optimization
methodology is introduced, which reduces the complexity of
the multiplier. The hardware complexity of the proposed multi-
plier is analyzed in Section VI, and the obtained performance
is compared against previously reported results in Section VII.
Finally, conclusions are drawn in Section VIII.

II. PROPOSED RESIDUE MULTIPLICATION ALGORITHM

Let , , and be -bit residues modulo ,
with . Considering that

and can be written in binary form as and
, with , the residue multiplica-

tion operation is performed as

(1)

and denotes the operation modulo . Assuming that
denotes the nested summations in (1), i.e.,

(2)

the residue product equals to . Hence, due to
(1) and (2), the product can be derived by mapping to its
residue modulo . The value of , as defined in (2), can be
expressed in binary form as

(3)

where is the word length of the maximum value as-
sumed by , , and denotes
the th bit of . The bits of to which the bit product
contributes depend on the encoding scheme selected for the bit-
product weight . Particularly, the bit-product weights

can be encoded as follows:

(4)

where and denotes the required word length
for the encoding of , with . The word length
can be greater than in the case that a signed-digit encoding is
assumed for . By replacing (4) in (2), it is obtained that

can be expressed as

(5)

Expression (5) reveals that depending on the value of
being , 0, or 1, the bit product should be subtracted, ig-
nored, or added to the th bit of .

Assume that the bit product is asserted, i.e., ,
and that it should be subtracted from the th digital position, i.e.,

. In this case, the partial result
is a term of the multiple summations in (5) and it is written

in -bit two’s complement format as follows:

(6)

Due to (6), in case that and , based on the
properties of -bit two’s complement arithmetic, the contribu-
tion of the term to the sum (5) is equivalent to the modulo-
addition of the value . Therefore the addition of
is equivalent to the -bit two’s complement addition of de-
fined as

(7)

since the following two cases can be distinguished.

1) If , of (7) is reduced to , which
represents .

2) If , of (7) is reduced to
, which represents zero, because the bit weight is

ignored in -bit two’s complement addition.
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Therefore, in order to evaluate (5) using two’s complement
arithmetic, the term is encoded according to the
three possible values assumed by , as

if
if
if

(8)

where . Due to (5) and (8), can be computed by

(9)
where is a cumulative additive constant, computed as

(10)

and or denotes the values of such
that or , respectively. It should be noted that when
the bit-product weights are encoded using the digit set
{0,1}, i.e., , for each and

, then, the cumulative constant is zero, implying
that no correction needs to be performed. Equation (9) reveals
that the number of bit products that contribute to each is
directly dependent on the number of the nonzero digits in
the encoding of the bit weights . Therefore, the number
of bit products and/or inverses that need to be added
to compute , can be minimized by properly encoding the bit
weights . A procedure to select the encoding scheme for

that minimizes the nonzero digits , is introduced
in Section V.

Equation (9) can be expressed as

(11)

where is defined by

(12)

Equation (11) is computed as follows. Initially the -bit
quantities and are decomposed into the -bit lower parts

and , and the -bit upper parts, and ,
respectively, as follows:

(13)

(14)

which, when replaced in (11), give

(15)

It holds that

(16)

where is a 1-bit carry due to the -bit addition of
and . Due to (16) and since both and are -bit

quantities, (15) is written as

(17)

(18)

where is the carry bit generated by the
-bit addition of , , and . The term

of (18) is written as

(19)

where is a single-bit carry and is an -bit

quantity, . Equivalently,

. Since

then , hence it follows that:

(20)

Therefore, since and due to (20),
it follows that:

(21)

which implies that (18) can be written as

(22)

Equation (22) reveals that can be evaluated as a simple ad-
dition, without the need for an external modulo operation, as in
(11). Therefore, the sought residue product , with ,
can be expressed as

(23)

where

(24)

(25)

The value of is only dependent on the most sig-
nificant bits of and the carry bit , since is a constant.
A simple combinational circuit can be designed to receive the

most significant bits of and the bit and compute the
-bit value of (24). Based on the modulo arithmetic property

, the value of is selected to be negative
and encoded in -bit two’s complement format. There-
fore, since and , it is derived
that , which implies that

(26)
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Fig. 1. Three-stage residue multiplier.

Inequalities (26) dictate that three cases can be distinguished
in the computation of the residue product , depending on the
value of

if
if
if

(27)

Therefore, the computation of the residue product initially re-
quires the computation of using (12), followed by the com-
putation of (24) and (25). The final result is then obtained using
(27). An implementation of the proposed algorithm is shown in
Fig. 1.

III. PROPERTIES OF BIT PRODUCTS IN A RESIDUE MULTIPLIER

This section introduces a set of theorems that organize the
bit products involved in a residue product computation into sets
which can be processed by simple gates instead of adders. In
addition, in this section, a new property of inverted bit products
in a residue multiplier is identified and a corresponding theorem
is introduced.

In the following, it is assumed that the legitimate values of the
input residues and are bounded by the value of the modulo

. Therefore, the combinations of the -bit input operands that
comprise at least one of the values do
not occur. In the following, it is shown that the bit products

or that contribute to an output bit exhibit specific
relationships, which can be exploited to lead to low-complexity
residue multipliers. Definitions 1 and 2 introduce the concept
of compatible and incompatible bit products and the subsequent
Theorems 1 and 2 reveal the conditions that should be satisfied
in order two bit products to be compatible.

Definition 1: The bit products and are called com-
patible bit products when , for all legitimate
input combinations of the residues and with

and .
Definition 2: Any bit products

such that , for at least one valid input combi-
nation, , are called incompatible bit products.

Compatible bit products are of practical interest since they
can be added by means of a 2-input OR gate instead of a 1-bit
adder, thus, directly reducing the cost of addition and preventing
the generation of a carry bit that would contribute to more signif-
icant output bits. In the following, theorems are introduced that
can be used to directly identify compatible bit products without
the need to perform an exhaustive simulation as done in [11]
and[12].

Theorem 1: The bit products and are compatible if
and only if and .

Theorem 2: If and are compatible bit products then
the bit products and are also compatible.

In order to clarify the compatibility property assume, for ex-
ample, the bit products and , in case of a modulo-11
residue multiplier. Since, , then according
to Theorem 1 , the bit products and are compatible.
Therefore, for all possible combinations of the input operands

it holds that . On the
contrary, assume the bit products and . In this case, it
holds that and . There-
fore, the bit products and are incompatible. The sum
of the incompatible bit products and can assume all
possible values from the set {0, 1, 2} and, thus, they must be
added using a 1-bit adder cell. In case that and

it holds that , but this
is not sufficient for the two bit products to be compatible, since
in case that and , it holds that

, which violates the condition of
Definition 1.

To exploit the property of compatibility between two bit prod-
ucts, an efficient method for the identification of compatible bit
products is introduced. Particularly, for each , bit products
of the form and that are compatible to ,
are sought by constraining the values assumed by and so that
the index values , , and are legitimate. The vari-
ables and are used to span the complete index space of
and for each . It is noted that due to Theorem 2 for each
bit product of the form or identified to be
compatible to , the bit products or are
also compatible to . For each of the two forms of candidate
bit products, the upper and lower bounds of and are defined
by Propositions 1 and 2.

Proposition 1: The bit products and are com-
patible when and

, with and .
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Proposition 2: The bit products and are com-
patible when and

, with and .
The identification of all compatible bit-product pairs in case

of a modulo-11 residue multiplier, is clarified via the following
example.

Example 1: Since , then, the number of bits required
to represent the input operands is bits. First, the compat-
ible bit-product pairs of the form ( ) are investi-
gated. Due to Proposition 1 , the values that the variables and

can assume are and . For each
combination of and the legitimate values of the indexes ,
of the compatible bit-product pairs are obtained as follows.

• : Due to Proposition 1, the values of
and are bounded by and . Thus,

and , and the resulting compatible
bit product pairs are

• : The values of and are bounded by
and . Thus and ,

and the resulting compatible bit product pairs are

• : The values of and are bounded by
and . Thus, and ,

and the resulting compatible bit product pairs are

• : The values of and are bounded by
and . Thus and , and

the resulting compatible bit product pair is

In case that , it follows that , which is false;
hence, it does not allow the existence of a legitimate index for
a compatible bit-product pair irrespectively of the values of .
The same holds for , since according to Proposition 1,
it is derived that . Therefore, the following set of
compatible bit-product pairs is identified via Proposition 1

In a similar manner, the following compatible bit-product
pairs of the form are identified by means of
Proposition 2

The unique compatible bit-product pairs of both sets and
are as follows:

Due to Theorem 2, the following set of bit-product pairs are also
compatible:

Thus, the complete set of compatible bit products, in case
that , is

(28)

The identification of compatible bit products is depended on
the value of the modulo , according to Theorems 1 and 2. The
existence of compatible bit products is found to be limited to
certain values of . In particular, the values of -bit moduli that
allow the existence of compatible bit products are identified by
Proposition 3.

Proposition 3: At least one compatible bit-product pair ex-
ists, for every legitimate combination of input residues if and
only if -bit modulo is in the range

.
Consider for example, all possible 4-bit moduli

. When belongs to the set {8, 9, 10,
11, 12}, the identification of compatible bit products is
possible. However, according to Proposition 3, in case that

no compatible bit products exist.
The definition of compatible bit-product pairs can be gener-

alized to compatible -tuples of bit products, the sum of which
is always less or equal to one.

Definition 3: An -tuple of bit products
is called a compatible -tuple, when ,
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for all legitimate input combinations of the residues and
with .

A compatible -tuple of bit products can be processed by an
-input OR gate, thus significantly reducing the cost of -bit

addition and eliminating the generation of the corresponding
carries. In the following, a theorem is introduced that directly
identifies compatible -tuples, by exploiting the existence
of particular compatible bit-product pairs, found by means of
Propositions 1 and 2.

Theorem 3: Let such that for
each . Then, if and only if
for all possible pairs with and holds
that .

Example 2: Assume that we need to check if the bit prod-
ucts constitute a compatible triplet, i.e.,

, in case of a modulo-11 residue multiplier.
Instead of trying to identify separate conditions or to rely on
exhaustive simulations, the existence of compatible bit-product
pairs will be exploited. From the set of (28) in Example
1, it can be verified that the three possible bit-product pairs

, , are compatible, that is

Therefore, according to Theorem 3 it follows that
.

Definition 4: A -tuple of inverted bit products
is called a constraint -tuple

when , for all legitimate input
combinations of the residues and with .

The proposed residue multiplication algorithm requires the
computation of using (12), which includes the summation
of inverted bit products . Therefore, properties of inverted
bit products are investigated, with the objective to minimize the
cost of their addition. Definition 4 describes a property of in-
verted bit-product -tuples, which resembles the compatibility
property of Definition 3, in the sense that the sum of particular
inverted bit products can only assume a limited set of values.
Furthermore, the introduced Theorem 4 transforms the problem
of identifying an inverted bit-product -tuple, the sum of which
assumes a limited set of values, i.e., a constraint -tuple, to the
problem of identifying a corresponding compatible bit-product

-tuple.
Theorem 4: Let such that for

each . If then
.

Example 3 describes the identification of constraint -tuples
by means of Theorems 3 and 4.

Example 3: Consider the following three inverted bits prod-
ucts , , and , in case of a modulo-11 residue mul-
tiplier. In order to examine whether the three inverted bit prod-
ucts constitute a constraint triplet the corresponding noninverted
bit products , , and are assumed. Since all pos-
sible bit-product pairs
are identified to be compatible, according to (28) of Example 1,
then, due to Theorem 3, it follows that .

Following Theorem 4, it is derived that
, and hence, , , and form a constraint

triplet.
An efficient methodology for the identification of compatible

and constraint -tuples is presented in Section V.

IV. ORGANIZATION OF PROPOSED RESIDUE MULTIPLIER

This section describes a hardware architecture that imple-
ments the algorithm presented in Section II. The proposed
residue multiplier is organized in three stages as shown in
Fig. 1. The first stage computes defined by (12), using
cascaded columns of 1-bit adders, organized in a way such that
the th column returns the th output bit of . The second
stage processes the bits of and the cumulative constant
to calculate and , using (24) and (25), while the third
stage performs the final residue mapping via the conditional
correction described by (27).

In particular, to design the th output column of the first stage,
, two sets and are constructed that consist

of the bit products of the form and respectively, that
contribute to the th bit of . Formally stated

(29)

(30)

where . The cardinality of and ,
denoted as and respectively, directly depends on the
number of nonzero elements, i.e., , that appear in the en-
coding of the bit-product weights as defined in (4). The
total number of bit products that participate in the th output
column equals to . In Section V, an optimization
methodology is introduced, according to which the encoding
of is selected so that the number of bit products to be
added on the th output column is minimized. Additionally, ex-
ploiting the data-dependent properties of the bit products of the
sets and , as described in Section III, allows the use of
simple gates to implement the multibit addition on each output
column. The organization of the multioperand addition of the
bits per output column is independent of the proposed architec-
ture and can be derived using existing methodologies, including
carry–save adder arrays [19], Wallace [20], and Dadda trees
[21]. In the following, the discussion is limited to the carry–save
array organization that imposes the carries produced by a certain
output column to be processed by the subsequent more signif-
icant column. In particular, on the th output column, the bit
products of the sets and are added along with the carries
generated from the st output column according to the
following design rules.

• The -bit products identified
to be compatible are added with an -input OR gate.

• Every triplet of inverted bit products that their sum as-
sumes the values two or three, i.e.,

are added using a three-input AND gate. Since
the addition of the bit products , , and
on the th output column always generates a carry bit, the
weight is added to the cumulative constant . In case
that more than three inverted bit products are identified
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Fig. 2. Hardware reduction of the kth output column. Following the proposed
optimization, the cumulative constant Q has to be augmented with 2 .

using the property of Theorem 4, the proposed architec-
ture uses the maximal number of three-input AND gates to
add them in order to limit the corresponding carry propa-
gation to the next more significant column only.

• The output of the OR gates and the AND gates along with
the remaining bit products and the carry bits are added
using 1-bit FA and half-adder (HA) cells. The carries of
the st column are added as close as possible to the
output of the th column so that the delay of the carry–save
array is minimized.

An example column organization is shown in Fig. 2, where
for the contributing bits holds that ,

, and . The exploitation of the
data-dependent properties of the bits has eliminated two FA
and one HA cells needed to add the eight bits in a conventional
organization.

In the second stage of computation a -bit ripple-carry adder
adds the least significant bits of the cumulative constant to
the least significant bits of . Since the bits of are prede-
termined due to (10), the addition is performed using simplified
FA cells and HA cells [22, p. 83]. The carry bit produced from
the st bit position is processed along with the most
significant bits of by a simple combinational-logic network,
which computes the value of as defined by (24). The third
stage of the proposed multiplication architecture computes the
final residue product . It consists of two -bit ripple-carry
adders and two -bit multiplexers that perform the final correc-
tive step described by (27).

V. PROPOSED OPTIMIZATION METHODOLOGY

This section introduces a novel graph-based optimization
methodology, which aims to the overall reduction of the hard-
ware complexity of the residue multiplier. Since the complexity
of the second and the third stage of the proposed residue multi-
plier’s organization is constant, the reduction of the complexity
of the first stage is sought, which is directly dependent to
the cardinality of the sets and , . The
proposed optimization methodology is twofold. At first, the
biased signed-digit encoding (BSDE) is applied on the weights

in order to minimize the number of bit products of
both forms and that are distributed on the th output
column. Subsequently large compatible tuples are efficiently
identified via an introduced graph-theoretic approach, called
BPCA.

A. Biased Signed Digit Encoding

Assume that is such that , where
, for each bit product . Then it follows that:

(31)

which reveals that in the summation either
negative terms or positive terms can
be added without affecting the sought residue product value.
Therefore, separate encodings can be assumed for each case,
respectively. In particular, for each bit product , according
to (31) and (4), four cases are distinguished.

• The weight is written as and
it is encoded using positive binary digits, i.e.,

. In this case, the number of bits required for the
encoding is .

• The weight is written as and it
is encoded using negative binary digits only, i.e.,

. Equivalently, the number of bits required for the
encoding is .

• The weight is written as and
it is encoded using the CSD representation. In this case,
the terms can assume every value of the digit set

and the encoding requires up to bits to
represent the otherwise -bit value .

• The weight is written as and it is
encoded using the CSD representation. At first the value

is expressed in -bit two’s complement format, which
is subsequently transformed to its equivalent CSD repre-
sentation.

The CSD representation of the weights is of particular
interest since it requires the minimal number of nonzero digits
to represent a value, thus enabling the distribution of the bit
products to the minimal number of output columns. CSD
encoding of a given number is unique and a simple algorithm
can be employed to convert conventional binary representation
to CSD representation, as the one given by Parhi [15, p. 507].

Let denote the number of , , such that
in the encoding of and be the number of

, , , respectively. Therefore, for
each weight, the encoding that minimizes the sum is
sought, , because in this case the number of
bit products to be processed by the proposed residue multiplier
is minimized. In case that several encodings achieve an identical
minimal sum , the encoding with maximum number of pos-
itive nonzero digits, i.e., , is preferred, as it facilitates
the use of OR gates. OR-gate based optimization is preferable be-
cause it is more effective as it requires the existence of at least
a compatible bit-product pair, while the AND-gate optimization
requires the existence of an inverted bit-product triplet, with the
property .
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Fig. 3. Example BPCG and the resulting column organization due to the clique
partitioning.

B. Bit-Products Compatibility Analysis

The proposed BPCA methodology organizes the bit products
of the th column of into disjoint sets, the sum of the el-
ements of which assumes a limited set of values. Hence, the
corresponding multibit addition can be performed by simple
gates instead of 1-bit adder cells. In particular, the compatible
bit-product pairs, identified by means of Propositions 1 and 2
that participate on the th output column, are organized into
triplets, quadruples, or -tuples in general, in a way, such that
the number of terms added to the th bit of is minimized.

The identification of the maximal -tuples that exist in each
is achieved by a graph-theoretic formulation. Specifically,

for the th output column an undirected graph is
constructed, called the BPCG. The set of bit products that partic-
ipate in constitute the vertex set of , while an edge
belongs in when the bit products that correspond to the ver-
tices and are compatible.

After constructing the BPCG for each output column, the
identification of -tuples is equivalent to a graph partitioning
problem. Specifically, the BPCG is partitioned in a way such
that each partition forms a complete subgraph (clique) and the
number of disjoint partitions is minimal [23]. The identification
of compatible bit-product -tuples is equivalent to the clique
partitioning problem on the BPCG. Assume that a complete
subgraph with and is identi-
fied on the BPCG . Then, for each vertex , there
exist edges connecting to the remainder of the ver-
tices , with . Based on the way graph is
constructed, it follows that each bit product represented by the
vertex , is compatible to all the other bit products that
their equivalent vertices appear in . Hence, for all possible
bit-product pairs with and

, that have their representative vertices and in the
clique , it holds that . So, from Theorem 3
it follows that . Thus, the bit-product
terms , form a compatible -tuple. Finally, since
the graph partitioning procedure seeks the minimum number of
cliques in then the number of the formed -tuples is min-
imal too. Fig. 3 shows the relationship between the compatible
bit products identified via clique partitioning on the BPCG and
the resulting output column organization.

In general, clique partitioning of a graph is a NP-complete
problem. However, based on the assumptions presented by De
Michelli [23, pp. 64–67], an exact solution is reached in poly-

TABLE I
(a) POWERS OF TWO AND THE CSD ENCODING OF THE POSITIVE VALUE OF

THE WEIGHTS h2 i AND THE SIGNED POWERS OF TWO AND THE CSD
ENCODING OF THE NEGATIVE VALUE OF THE WEIGHTS h2 i .

(b) FINAL SELECTED ENCODING FOR EACH BIT-PRODUCT

WEIGHT h2 i , 0 � i + j � 6

(a)

(b)

nomial time by finding the minimum number of colors required
to color the complement graph of , denoted as . In this
case, the vertices of that are assigned the same color, form
a complete subgraph in , and thus correspond to bit products
that form an -tuple. Therefore, the maximum number of in-
dependent terms of that are finally added in the th output
column, is equal to the total number of cliques in the BPCG ,
or, equivalently, is equal to the total number of distinct colors
needed to color the vertices of .

To identify constraint -tuples of inverted bit products
, , , the sum of which assumes

a limited set of values, the following procedure is proposed.
The BPCG that corresponds to the bit products , such
that and , is initially constructed. The
solution of clique partitioning on , derives -tuples with
the property , with . Therefore,
due to Theorem 4, it follows that ,
which implies that any three inverted bit products of the
constraint -tuples can be processed by an AND gate.

C. The Proposed Modulo-11 Residue Multiplier

The proposed multiplier architecture along with the applica-
tion of the introduced optimization techniques are clarified via
the design of a modulo-11 residue multiplier. Since ,
then bits are required to represent the input operands.
The sum of the indexes , of a bit product can as-
sume values that range from 0 to .

Application of BSDE: Table I(a) presents the candidate en-
codings of and for all possible
values of the sum of the indexes and of a bit product .
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TABLE II
DISTRIBUTION OF THE BIT PRODUCTS TO THE SETS S AND N

TABLE III
(a) COMPATIBLE BIT-PRODUCT PAIRS IDENTIFIED ON THE kTH OUTPUT

COLUMN AND (b) CORRESPONDING BIT-PRODUCT COMPATIBILITY

GRAPHS G OF THE PROPOSED MODULO-11 RESIDUE MULTIPLIER

(a)

(b)

Table I(b) presents the final selected encoding scheme for each
. In each case the selected encoding is the one that con-

tains the minimum number of nonzero digits. In case that two or
more encodings contain the same number of nonzero elements,
the one with the largest number of positive digits is selected.

Distribution of Bit Products: In the following, the sets
and are derived for each output column , with .
The bit products that participate on each and are shown
in Table II.

Application of BPCA: As obtained in (28) of Example 1,
the set of all compatible bit-product pairs that appear in
a modulo-11 residue multiplier, is

Therefore, based on the set , the compatible bit-product
pairs identified among the bit products that participate on the th
output column, are tabulated in Table III(a). For the bit products

(a)

(b)

Fig. 4. (a) Final organization of the output columns of the proposed modulo-11
residue multiplier. (b) Resulting design.

and their noninverted equiva-
lents are assumed, see Example 3.

The compatible bit-product pairs of Table III(a) allow the
construction of the corresponding BPCGs , . It
is noted that for the sets and and the sets and no
graph is constructed, since , while the number of
the bit products and are less
than three on each column and thus the AND-based optimization
cannot be applied. The corresponding BPCGs , are shown in
Table III(b) and the cliques identified on each are depicted
as shaded regions. The final organization of the output columns
of the proposed modulo-11 residue multiplier, along with the
derived sets of compatible bit products is depicted in Fig. 4(a).
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TABLE IV
VALUES OF R ACCORDING TO (24) FOR THE PROPOSED MODULO-11

RESIDUE MULTIPLIER

Final Design Organization: Following the design rules pre-
sented in Section IV for the th output column, ,
it follows that the bit products that belong to a clique in
are added by an OR gate, while the carry bits along with the re-
maining bit products are added using FA and HA cells, as shown
in Fig. 4(b). At this stage, the computation of is completed
and the resulting output word length is bits.

Using (10) the cumulative constant constant can be com-
puted. The value of stems from the distribution of the inverted
bit products and to the columns of weight
and , respectively. Therefore

(32)

According to (11), only the less significant bits of constant Q
are required. Therefore the final value of equals to 60, since

(33)

From (33), it is derived that
, and . The contents of the small lookup table

(LUT) that implements (24) are shown in Table IV. It is noted
that the LUT returns the negative values of (24) and it is imple-
mented with a simple combinational logic circuit.

The addition of to and the final residue mapping stage
according to (27) are shown in Fig. 4(b). Further logic-level op-
timization of the architecture in Fig. 4(b) is possible. In partic-
ular, the FAs with a constant input ’1’ can be reduced to mod-
ified HAs, while the implementation of a HA with a constant
input is trivial [22, p. 83]. Such optimizations are not shown,
since they are out of the scope of the example.

VI. HARDWARE COMPLEXITY

The first stage of the proposed residue multiplier computes
the value of , according to (12). Each bit product is dis-
tributed to the th output column, either in its normal or comple-
mented form, depending on the selected encoding of the weight

. Then, the sets and are constructed for the th
column and the bit products are processed in order
to identify disjoint sets of compatible bit products via the clique
partitioning on the BPCG , as described in Section V.

A. Area Complexity

The bit products that belong to the th clique in , with size
greater than one, are added using a -input OR gate.

Let denote the number of disjoint cliques identified in the
BPCG , with size . Similarly, assume that con-
straint -tuples of inverted bit products are found in the set

. The particular -tuples, are pro-
cessed by AND gates. In order to prevent generation of carries
with weight larger than , the inverted bit products of the
th constraint -tuple are partitioned into disjoint inverted

bit-product triplets. Therefore, each of the -tuples requires

three-input AND gates. It is noted that each of the
constraint -tuples augments the cumulative constant by

a value of .
The number of bits added at the th column is

(34)

Therefore, the numbers of FA and HA cells required to form the
th column, are given by

(35)

(36)

where denotes the number of carries produced at the
st column. Since each FA and HA cell produces a carry bit,

the number of carries, , to the next more significant digital
position, i.e., the st column, is computed as

(37)

with . Additionally, the number of OR gates, with
inputs each, placed at the th column is equal to , where

, while the number of three-input AND gates
is per th constraint -tuple. Hence, the total area
complexity of the first stage is obtained through

(38)

where is the word length of the largest number obtained at
the output of and , , , , and de-
note the area complexity of a FA, a HA, a 2-input AND gate, a
three-input AND gate, and an -input OR gate, respectively.
To quantify the area complexity of the architectures, it is as-
sumed according to [24] that , , ,

, and, gate equivalents.
The second and the third stage of the proposed residue mul-

tiplier maps to the final residue product. The -bit adder,
which adds the -bit least significant part of with the lower
constant bits of has a complexity lower than HA cells
and an inverter, as one of the operands is a constant [22, p. 83].
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Fig. 5. Area performance of the proposed and the FA-based [10] residue multipliers.

The remaining of the second stage comprises a very low-com-
plexity LUT. Therefore, the area complexity of the second stage
is roughly equal to

(39)

The third stage consists of a -bit two-operand adder with a
complexity of FAs and one HA, a -bit adder with
a complexity of FAs and one HA, and an -bit two-to-one
multiplexer, as shown in Fig. 1. Hence, area complexity of the
third stage of the proposed multiplier is

(40)

where denotes the area complexity of an one-bit two-
to-one multiplexer and it is equal to 1.5 gate equivalents.
The overall area complexity equals to the sum of ,

, and , that is

(41)

B. Time Complexity

The delay through the first stage of the proposed multiplier
can be computed by taking into consideration the carry–save or-
ganization and the height of each column. The maximum delay

of the th column is

(42)

where denotes the delay of an OR or an AND gate. Due to
the carry–save organization of the first stage of the proposed
multiplier, the corresponding delay is

(43)

to reflect that the maximum-length critical path ends at the
lowest 1-bit adder of the st column, while it com-
mences from a column of height and comprises a carry
propagation from the th to the st digital position.
The maximum delay through the second stage of the proposed
residue multiplier is computed as follows. Due to the carry–save
organization of the first stage, the critical path commences
from the st bit of to the derivation of the output:

(44)

(45)

where , , , and denote the delay of a HA, a
FA, a LUT, and a 1-bit multiplexer respectively. It is assumed
that , , , and gate delays.

VII. PERFORMANCE EVALUATION

In this section, the performance of the proposed residue mul-
tiplier is compared to that of several previously reported archi-
tectures in terms of area, time, and area time complexities.
First, the performance of the proposed multiplier is compared
to the performance of a FA-based residue multiplier designed
according to the architecture presented by Soudris et al. in [10].
Figs. 5–7 present the area, time and area time performance
of the proposed and the FA-based residue multipliers. In almost
all cases, the proposed architecture is more efficient than the
FA-based residue multiplier since both the number of the bit
products that contribute to each output column is minimized
due to the BSDE and the organization of each output column is
simplified by means of the BPCA methodology. In general, the
area time savings achieved span 22% to 85%. Additionally,
since the proposed architecture eliminates the need of the recur-
sive modulo reduction stages used in [10] the overall delay is
significantly reduced. Since the design of the proposed residue
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Fig. 6. Time performance of the proposed and the FA-based [10] residue multipliers.

Fig. 7. Area � time performance of the proposed and the FA-based [10] residue multipliers.

multipliers and the architecture presented in [10] is modulo de-
pendent, then in case that both designs ex-
hibit almost equal performance. It is noted that the area time
savings is computed as , where

denotes the area time complexity of the previously pre-
sented architectures, while denotes the corresponding
complexity of the proposed residue multipliers.

In the following, the performance of the proposed residue
multiplier is compared to the adder-based architectures

presented in [7], [8], and [13]. The area complexity of
the pseudoRNS multiplier [7] equals the complexity of

-bit multipliers and -bit adders and the overall delay is
. The complexity of the residue multiplier presented

by Hiasat [13] is equal to -bit multipliers and -bit
adders and the corresponding delay is equal to . It is
noted that the area complexity of an -bit multiplier is assumed
equal to the complexity of FAs and AND gates. The
structure presented by Elleithy and Bayoumi [8] consists of
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Fig. 8. Area performance of the proposed residue multiplier compared to the area complexity of [7], [8], and [13].

Fig. 9. Time performance of the proposed residue multiplier compared to the time complexity of [7], [8], and [13].

modular adders and AND gates, with a modular adder being
equal to FAs, while the overall delay is .

Fig. 8 reveals that the proposed residue multiplier is more ef-
ficient than the one proposed by Hiasat [13] when the corre-
sponding -bit modulo is less than as defined by
Proposition 3, while it is slightly worse when
since no BPCA-based optimization can be performed. The area
reduction compared to the residue multipliers presented in [7]
and [8] is 33% to 60% and 63% to 77%, respectively. The pro-
posed residue multiplier is faster compared to the residue multi-

pliers [7] and [13] as depicted in Fig. 9. It is noted that the delay
of the architecture by Elleithy and Bayoumi stems from the tree
organization of the modular adders, a technique, which can also
be applied to all the other adder-based architectures for delay
reduction.

In general, the proposed architecture along with the in-
troduced optimization methodology leads to low-complexity
residue multipliers compared to the most efficient architectures
presented in literature so far to the authors’ knowledge. The
area time savings achieved when compared to the most
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Fig. 10. Area � time performance of the proposed residue multiplier compared to the area � time complexity of [7], [8], and [13].

Fig. 11. Area � time complexity comparison of the proposed multiplier to [6].

competitive residue multiplier [13] range from 18% to 55%, as
shown in Fig. 10

The proposed multiplier is finally compared to the submod-
ular index transform-based multiplier of Radhakrishnan and
Yuan [6] as shown in Fig. 11. In all cases, it is found that the
proposed multiplier is more efficient in terms of area time
complexity achieving complexity savings of more than 55%.
It is noted that the proposed multiplier is not limited to prime
moduli as required by the index-transform multipliers.

VIII. CONCLUSION

A novel residue multiplier is proposed in this paper. Initially,
a bit-level algorithm is introduced, which features the design
option of signed-digit encoding of the bit-product weights. Fur-
thermore, the recursive modulo decomposition procedure used
in previously proposed multipliers is replaced by a constant-
complexity scheme. The complexity of the first stage of the pro-
posed multiplier is minimized via an optimization methodology,
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based on an assortment of introduced theorems and proposi-
tions, which allow the exploitation of data-dependent character-
istics of the bit products, in a computationally efficient manner.
The introduced methodology relies on the solution of the clique
partitioning problem on the introduced BPCG graphs. In addi-
tion, a new property of inverted bit products is described. Com-
plexity comparisons reveal that the derived residue multiplier is
very efficient in the area time sense, compared to previously
reported designs.

APPENDIX

A. Proof of Theorem 1

Initially, assume that and , where ,
, are compatible, i.e., , for

all legitimate values of the input residues and . Therefore,
there are no combinations of and for which

(46)

Due to (46), it follows that

(47)

(48)

Equivalences (47) and (48) show that when for
all legitimate inputs, there are no combinations of and such
that

(49)

for every residue modulo- value of and . Since (49) is
false, it follows that at least one of the conditions in (49) is false,
or both. Hence

(50)

because and . Since the bit products
and do not represent the same term, then the index

cannot be equal to when is equal to and vice versa. There-
fore, it follows that .

Next, suppose that

(51)

with . Since , are residues modulo- then
and . So, for each

with

(52)

In the case that there is a contradiction
between (51) and (52). So, it obvious that (51) and (52) are both
satisfied when there is at least one of the and
respectively, that is zero. In this case, at least one of or
is also equal to zero and thus their sum is , since
it is either zero or one.

B. Proof of Theorem 2

For all legitimate input combinations of input residues and
, assume that it holds that

(53)

due to the commutativity of the multiplication. Since and
span the identical set of legitimate values , by
interchanging the names of the variables and along with
the corresponding bits and , from (53) it follows that

, for all legitimate input values. Hence, the bit products
and are compatible.

C. Proof of Proposition 1

Due to Theorem 1 the sum of bit products
is less or equal to one when

(54)

The first case implies that and
since for each it follows that

(55)

and thus

(56)

since is integer. In addition, in order the indexes and
to assume legitimate values, the following constraints should be
satisfied:

(57)

or, equivalently

(58)

Due to (56) and (58) and the fact that , it follows that:

(59)

and

(60)

Due to Theorem 1, it follows that the indexes of the examined
bit products should satisfy the constraint .
By setting , i.e., , the produced compatible
bit-product pairs remain valid in all cases.

The case is similar to when
the bit products and are considered. Therefore,
since Theorem 2 guarantees that the bit products are
compatible to when , then the case

follows.

D. Proof of Proposition 2

Due to Theorem 1, if then
. The constraints for can be proved in

the same way as in Proposition 1. Additionally, in order for the
index to be legitimate, the following inequality must hold:

(61)

which implies that . Since and
, it follows that . For the case of
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, similar assumptions as in the proof of Proposition 1
can be made and thus needs no further analysis.

E. Proof of Proposition 3

By merging the constraints of Propositions 1 and 2 in order
and to hold, the

indexes have to be constrained as follows:

and

(62)
Since the index spans the whole index space from 0 to ,
no further analysis is needed. Therefore, from (62), it can be
assumed that there exists at least one compatible bit-product pair
when

(63)

in order the constraint for index to be valid. Due to the fact that
, from (63) it follows that:

(64)

Equation (64) implies that

(65)

which can be expressed as

(66)

where . Since for every -bit modulo holds that
, then the values of that allow the existence

of compatible bit products for all legitimate input combinations,
are

(67)

Assume that . Since ,
, it is obtained that

(68)

for and . Equation (68) gives

(69)

since . It holds that

(70)

because (70) is equivalent to

(71)

(72)

(73)

(74)

(75)

which is true. Hence, (69) and (70) reveal that
, when

and , which means that no compatible bit products exist.
In the case where , it can be written that

(76)

hence , and therefore
no compatible bit products exist for .

F. Proof of Theorem 3

First, suppose that , which implies
that there is at most one of all such that . Based on this
conclusion two cases can be distinguished.

• There is no , such that . Hence, for each with
, .

• There is exactly one such that . This implies that
for each and for

each .
Therefore, from both cases it follows that if

then for each with and .
In the following assume that:

(77)

for each with . Therefore, in order the sum of each
pair to be less or equal to one, the following cases are
distinguished.

• For every , with , . In this case
.

• There exists at least one such that . So, in order
(77) to be satisfied, the term must be unique and
thus every with must be equal to zero. In this case

(78)

Thus, in every case, the sum of the integers is
.

G. Proof of Theorem 4

Due to the fact that the sum of the inverted bits
can be expressed as

(79)

Since , it follows that
. Adding to the inequalities, it

follows that:

(80)

Therefore, by substituting (79) to (80), it is derived that
.
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