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Autonomous Application of Netlist Transformations
inside Lagrangian Relaxation-based Optimization

Apostolos Stefanidis, Dimitrios Mangiras, Chrysostomos Nicopoulos, David Chinnery, Giorgos Dimitrakopoulos

Abstract—Timing closure is a complex process that involves
many iterative optimization steps applied in various phases
of the physical design flow. Lagrangian Relaxation (LR)-based
optimization has been established as a viable approach for
this. We extend LR-based optimization by interleaving in each
iteration various techniques, such as: gate and flip-flop sizing;
buffering to fix late and early timing violations; pin swapping;
gate merge/split transformations; and useful clock skew. In all
cases, locally optimal decisions are made using LR-based cost
functions. In each iteration of LR-based optimization, we leverage
the Multi-Armed Bandit (MAB) model to automatically pick
which optimization heuristic should be applied to the design. The
goal is to improve the performance metrics based on the rewards
learned from the previous applications of each heuristic and
the runtime cost paid for the received reward. The fine-grained
combination of an LR-based optimization flow with a statistical
recommendation system allows for the autonomous execution of
the optimization flow and results in significant quality-of-results
improvement relative to the state-of-the-art. More specifically,
our flow achieves 17% lower clock period, while also saving 15%
power and 6% area, on average, on the TAU2019 benchmarks,
as compared to the TAU2019 contest winner, and 25% better
leakage power on the ISPD13 benchmarks, as compared to the
best reported results.

Index Terms—Power and Timing Optimization, Lagrangian
Relaxation, Autonomous Optimization, Multi armed bandits

I. INTRODUCTION

Multimode multi-corner timing-driven design optimization
aims at satisfying timing constraints in all modes and corners,
while improving the area and power performance of the design
[1]. Fixing a violation in one timing scenario is likely to
cause a new violation in another. This problematic behavior is
accentuated when power also needs to be optimized, since the
worst-case power corner could be different from the worst-case
timing corner. Such a multi-objective problem is inherently
complex and computationally challenging, when considering
the highly increasing number of mode/corner combinations.
Over the years, multiple optimization methods have been intro-
duced to achieve significant Power-Performance-Area (PPA)
improvement. Cell sizing, transistor voltage threshold selection
(VT-swap), netlist restructuring, timing-driven cell relocation,
useful clock skew, and buffer insertion/deletion are just a
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few examples of optimization methods supported by modern
physical design tools [2].

Even if each algorithm is effective in optimizing the design,
the order of the application of the various algorithms is equally
important to the final result. Currently, the order of applying
the available design optimization methods is organized in
reference flows based on human experience and on how well
the flow has performed so far on other designs. If closure is
not achieved by the reference flow, the flow is customized
for the specific needs of the current design. Deciding on a
new customization faces the exploitation versus exploration
dilemma: exploit the same heuristics that have so far yielded
high Quality-of-Results (QoR), or explore new heuristics with
more uncertain QoR to gather more information and hope to
reach a better overall solution in the end. Even if this dilemma
can be answered optimally for a certain design and a fixed
set of optimization heuristics, the answer cannot be directly
transferred to a new design, nor can it be adapted to a different
set of heuristics.

This work tackles this problem by leveraging a modified
version of Multi-Armed Bandits (MABs) [3] to autonomously
optimize unknown designs by choosing in each iteration of a
Langrangian Relaxation (LR)-based optimizer which method
to apply among a wide range of incremental optimization
heuristics. Each heuristic is smoothly integrated without being
disruptive to the overall optimization process, thus allowing
the solution produced by one heuristic to gradually adapt to
the solution produced by a previously applied heuristic. In all
cases, the locally optimal decisions needed by each heuristic
are taken using LR-based cost functions. This increases the
modularity of the proposed approach, since any other local
optimization heuristic with similar cost function could be
included in the set of available optimizations.

The order of applying the optimization heuristics inside the
LR-based optimizer is done autonomously by the proposed
recommendation engine. For each one of the applied optimiza-
tion algorithms, a reward is recorded based on a combination
of PPA metrics and runtime. Improvements in PPA increase the
reward given to each heuristic, while its increased execution
time relative to a runtime target penalizes its future selec-
tion. The recommendation engine decides which optimization
method to select next, following a balanced exploitation-
exploration approach. Thus, the optimization of each design,
even if enclosed in the same LR-based optimization loop,
evolves autonomously by adapting both to the design’s unique
characteristics and to the phase of the overall optimization.

The contributions of this work are summarized as follows:
• A multi-corner LR-based global optimizer that applies a

different local optimization heuristic in each iteration.
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• The elaboration of well-known netlist transformations,
such as gate sizing, buffering, useful clock skew, gate
merging and splitting, and pin swapping to operate using
similar local-cost functions that include only Lagrangian
Multipliers (LMs) as weights.

• A MAB-based selection policy that decides, based on a
newly defined reward mechanism, which netlist transfor-
mation should be applied in each iteration of the LR-
based optimization loop.

The proposed approach has been successfully applied to the
TAU 2019 multi-corner design optimization contest bench-
marks [4] and, for completeness, to the benchmarks of the
ISPD13 gate sizing contest [5]. The introduced recommen-
dation engine is demonstrated to be a very effective orches-
trator of the overall optimization process. In all cases, the
proposed approach successfully optimizes the designs and
achieves significantly better results than state-of-the-art. Most
importantly, the recommendation engine allows the addition
of new heuristics that will be autonomously applied inside the
LR-optimization loop, without requiring any manual tuning
and without degrading the already achieved QoR.

The rest of the paper is organized as follows: Section II
reviews state-of-the-art in design optimization. Section III
presents the proposed flow that employs an autonomous rec-
ommendation engine inside an LR-based global optimizer. The
reward functions that guide the recommendations are described
in Section IV. The applied heuristics that use LR-based cost
functions are presented in Section V. The experimental results
are presented in Section VI, while conclusions are drawn in
Section VII.

II. RELATED WORK

Design optimization includes a multitude of different tech-
niques. A standard industry approach is to iteratively select the
targets on timing-critical paths and try different optimizations
on each cell, picking the best alternative, before optimizing
the next target. This can be quite runtime expensive, and
such greedy approaches can be sub-optimal from a global per-
spective. Typical optimization techniques include gate sizing,
buffering, useful skew, remapping and swapping connections
to logically equivalent pins of a gate.

Early work on gate sizing proposed convex optimization
with a continuous range of transistor sizes [6]. Subsequent
work suggested use of more accurate polynomial models
to provide a convex formulation to ensure optimality [7].
However, convex delay models are too inaccurate for mod-
ern technologies and do not adequately model standard-cell
libraries with discrete cell sizes. Discrete gate sizing has histor-
ically been solved with greedy gate-sizing approaches, such as
proposed by Coudert [8], focusing on timing-critical portions
of the circuit and the best delay vs. power sensitivity trade-
off, or vice versa, when trying to reduce power in portions of
the circuit with timing slack. Greedy gate-sizing, which is still
commonly used in commercial EDA tools, has been shown to
be suboptimal in comparison to global optimization [9].

Several global optimization approaches for discrete gate
sizing have been proposed, resizing gates to the discrete

version that achieves the closest slack-slew values to those
optimally calculated. Nguyen et al. [10] used inaccurate timing
models for standard-cell delays, ignoring slew dependence
and wire loads, and used Linear Programming (LP) to assign
timing slack to resize gates for maximizing power savings
subject to timing constraints. Chinnery et al. [9] improved
this by accurately accounting for the delay changes on the
neighboring gates due to a resize, but the runtime of this
timing-accurate LP approach was prohibitive on larger designs,
due to roughly quadratic runtime growth with design size.
Held et al. [11] assigned slew targets, instead of delay targets.
Fatemi et al. [12] presented sensitivities that can be used for
timing, power, area, and slew optimization across multiple
corners. The core algorithm in these papers can be sped up by
relaxing the timing constraints with Lagrangian relaxation.

LR has been widely used for design optimization in recent
years. It was first used by Chen et al. [13] for continuous
wire and gate sizing. Hu et al. [14] used LR to define optimal
continuous gate sizes that are then clustered to discrete sizes
based on proximity to the optimal size. Ozdal et al. [15]
formulated the LR sub-problem to trade off leakage power
and fix timing violations, choosing gate sizes with Dynamic
Programming (DP). Flach et al. [16] sized each gate to
locally minimize the LR cost. This provided great leakage
power savings, with faster runtime than other approaches,
achieving the best results to date on the ISPD 2012 and 2013
benchmarks. Sharma et al. [17] extended this work with multi-
threading and a new LM update method to reduce the number
of iterations to converge, achieving a 15× speedup at the
cost of 2.5% higher leakage power compared to [16]. We use
essentially the same LR gate-sizing approach as in [16] and
[17], extending it for register resizing and for handling sizing
when facing conflicting late/early timing violations.

Roy et al. [18] extended the LR formulation to handle
multiple modes and corners. Daboul et al. [19] used a resource
sharing formulation, which is a specialization of LR. Shklover
et al. [20] added clock skew to the LR formulation and resized
both gates and clock buffers. Sharma et al. [21] combined
LR gate sizing and slack-based clock skew assignment, while,
more recently, Mangiras et al. [22] extended the LR formu-
lation for timing-driven placement to include flip-flops, gates,
and local clock buffers, leading to efficient placements. Our
LR formulation in this paper includes multi-mode/multi-corner
timing constraints and various optimizations.

Delay buffer insertion is a standard technique to fix early
timing violations by increasing the path delay. Huang et al.
[23] used an LP formulation to minimize the number of added
hold buffers. Tu et al. [24] tackled hold violations across
different power modes in ultra-low voltage designs. Wu et
al. [25] presented an LP approach to model setup and hold
constraints and assign delays that should be inserted on each
node to solve hold violations. They then used DP to perform
buffer insertion. Han et al. [26] proposed an integer LP hold-
buffer insertion approach that achieves hold timing closure
across multiple corners. Similarly, our framework has a delay
buffer insertion transform that is used to fix hold violations.

Buffers can also be used to increase the drive strength
and speed up timing on nets with high fanout and significant
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load capacitance. Van Ginneken [27] found the optimal buffer
positions along the route of a net given a set of arrival
timing constraints. Lillis et al. [28] extended this to account
for multiple buffer types; while Wang et al. [29] presented
a lower complexity buffering algorithm. Jiang et al. [30]
formulated simultaneous transistor sizing and buffer insertion
used for late critical path isolation. Liu et al. [31] used an
LR-based cost function for buffer insertion on each net using
only one buffer size from the library, while Ho et al. [32]
allowed for multiple buffer options. Finally, Hu et al. [33]
proposed an approximation method that reduces runtime with
minimum impact on the result. For the TAU 2019 contest, the
benchmarks of which we used in our evaluations, buffering is
restricted to be either at the driver, or directly on the input pin
of a cell. So, our buffering approach is simplistic, and, while
permitting multiple buffers to be placed next to each other, we
do not consider buffering at different locations along a net.

In our previous work [34], we extended the LR-based
framework to include a set of various netlist transformations.
In this work, we enhance and generalize our previous work
by building an automatic recommendation system [3] to select
which transformation would be applied in each iteration of the
LR-optimization loop, thereby offering improved QoR. A pre-
liminary approach of using traditional MAB algorithms [35]
to coordinate optimization was presented in [36]. However,
said work took a reverse approach: a MAB-guided global
loop, with both LR and timing-based heuristics within each
loop. In each round, one optimization algorithm is selected
and applied to the design. When the algorithm finishes, a
reward is recorded, in order to guide the selection of the
following rounds using a traditional MAB algorithm that
operates optimally in a stationary context, even though the
problem at hand is dynamic, i.e., the design changes as
it gets optimized and the same optimization would yield a
different reward when applied in a different round. Therefore,
the overall optimization followed in [36] is purely statistical,
without guarantees of convergence. On the contrary, this
work employs a LR-based global optimizer that operates on
a uniform cost function that is minimized locally by each
selected optimization method. Also, the proposed rewarding
mechanism and recommendation system are more elaborate
and calibrated appropriately for the dynamic nature of the
optimization process. Moreover, while the results of [36]
were promising, they could not surpass the QoR obtained with
deterministic approaches. In contrast, the proposed approach
in this article substantially improves the QoR over existing
state-of-the-art.

In a similar vein to our proposed work, but in a different
context, adaptive optimization flows were explored in the
context of compilers [37] [38], high-level synthesis for FPGAs
[39], logic synthesis [40], and dynamic clock and voltage
scaling for run-time power optimization [41].

III. ORCHESTRATING LR OPTIMIZATION WITH
AUTONOMOUS RECOMMENDATIONS

Formulating a design optimization problem can consider
timing, power, and area objectives, or constraints in various
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Fig. 1. Example design for demonstrating LM distribution and local cost
calculation.

combinations. In this work, we aim at minimizing the sum
of power, area, and Total Negative Slack (TNS) of the design
(TNS is the sum of timing violations at the timing endpoints),
such that the timing constraints are met.

min :
∑

c∈cells

P (c)+ A(c)−
∑
j∈POs

slkLj −
∑
j∈POs

slkEj (1)

s.t.: slkLj ≤ 0 and slkEj ≤ 0,∀j ∈ POs

slkLj ≤ rLj − aLj and slkEj ≤ aEj − rEj ,∀j ∈ POs

aLi + dLi→j ≤ aLj and aEi + dEi→j ≥ aEj ,∀arcs i → j

P (c), A(c) are the leakage power and area of cell c; slkj
is endpoint js negative slack; aj and rj are pin js arrival
and required times; and di→j is the arc delay from pin i to
pin j. The arc delays include both cell input pin to output
pin delays (cell arc delays), and the wire delay from a cell
output pin to the input pin of another cell. The indices E
and L represent early and late timing, respectively, and timing
endpoint primary outputs (POs) include the input-D pins of
all flip flops and the primary outputs of the design.

Lagrangian relaxation is applied on the formulated problem
to incorporate the constraints into the cost function and sim-
plify the cost function [13]. Each constraint is multiplied by
λ weights called Lagrangian Multipliers (LMs), as shown in
(2). The higher the LM value, the more critical the respective
constraint is.

min :
∑

c∈cells

P (c)+ A(c)−
∑
j∈POs

slkLj −
∑
j∈POs

slkEj +∑
j∈POs

(
λL
j0slk

L
j + λE

j0slk
E
j

)
+∑

j∈POs

(
λL
j1(slk

L
j − rLj + aLj ) + λE

j1(slk
E
j − aEj + rEj )

)
+∑

i→j∈arcs

λL
i→j(a

L
i + dLi→j − aLj ) + λE

i→j(a
E
j − aEi − dEi→j) (2)

By differentiating (2) with respect to the arrival times, accord-
ing to the Karush-Kuhn-Tucker optimality conditions, we end
up with the following LM flow-conservation rules [13]:∑

i∈fanin(j)

λL
i→j =

∑
k∈fanout(j)

λL
j→k and

∑
i∈fanin(j)

λE
i→j =

∑
k∈fanout(j)

λE
j→k (3)

The LMs for the output pin of a cell are proportion-
ally distributed to the LMs of the cells input-output arcs.
For example for gate G in Fig. 1, net 6s outgoing LM is
propagated to the LMs into net 6, preserving the equalities:
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λL
4→6 + λL

5→6 = λL
6→7, λ

E
4→6 + λE

5→6 = λE
6→7. For flip-

flops (FFs), following [22], the LMs added at their output
Q pin are distributed to the clock-to-Q timing arc. For the
example shown in Fig. 1, this translates to λL

13→9 = λL
9→11 +

λL
9→12, λ

E
13→9 = λE

9→11 + λE
9→12.

Substituting (3) into (2) simplifies the objective function
to (4). In the final simplified cost function (4), leakage power,
area and delay are scaled by η, β and θ, respectively, to tackle
the issue of power, area, and delay having different units. The
scaling factors are derived according to the method proposed
in [42].

min
∑

c∈cells

ηP (c) +βA(c) +θ
∑
i→j

(λL
i→jd

L
i→j −λE

i→jd
E
i→j) (4)

In this work, we follow an iterative optimization approach,
where each iteration tries to optimize the global cost func-
tion (4) using one out of a set of eight netlist transformations,
i.e., netlist change or restructuring optimization heuristics that
try to minimize localized versions of the global cost function.

The overall LR-based design optimization loop is shown in
Fig. 2. Initially, all cells are sized to the smallest size that does
not violate any maximum load or slew constraints [43]. Then,
the LMs for every arc are initialized to 1, and the LR-based
optimization begins.

At the beginning of each iteration, and before applying the
selected transformation, timing and LMs are updated using the
process described in Sections III-A and III-B, respectively. The
netlist transformation that is applied on the design uses the
updated LM values for all local optimum decisions. Which
netlist transformation is applied to the design is decided
using an autonomous recommendation engine that operates
according to the rules described in Section III-C.

The optimization loop stops when the solution quality does
not improve for a number of consecutive iterations. If timing
constraints are satisfied, the quality of the solution is equal
to the area/power improvement. On the contrary, if timing
violations are still present, termination is judged by TNS
improvement. In the end, a set of brute-force recovery steps
are executed.

To provide the recommendation engine the opportunity to
run many different transformations before deeming that the
design can no longer be optimized, the number of iterations
that we wait before stopping the optimization is arbitrarily set
to be 25% higher than the number of available transformations,
i.e., 10 iterations for 8 netlist transformations.

A. Incremental Timing Updates Critical corners

At the start of each iteration, we should be aware of the tim-
ing of the design for all corners under consideration. Initially,
an incremental timing update for all corners is performed and
the two critical corners are selected: the most critical early
and late corner. The critical late corner is the one with the
worst late TNS, or the corner with the lowest late total slack,
if no corner has late violations. The same applies for the most
critical early corner.

To save runtime during optimization, incremental timing
update on all corners is performed once every five iterations. In

Fig. 2. The overall design optimization flow. Netlist transformations are
applied sequentially on the design, as selected autonomously by the recom-
mendation/rewarding system. Each transformation relies on LM weights, thus
contributing to the convergence of the global LR-based optimization loop.

the other iterations, timing updates are performed only on the
already identified critical corners. The critical corners are not
statically determined throughout the optimization, but they are
re-evaluated every five iterations of the LR optimization loop.
Our experimental results show that updating the most critical
corners more often introduces unnecessary runtime overhead
without significant improvement of the overall QoR.

B. LM Updates

LMs are updated using the modified sub-gradient method
proposed in [44]:

λL
j0=λL

j0

(
aLj
rLj

)
, λE

j0=λE
j0

(
rEj
aEj

)
∀i ∈ POs

λL
i→j=λL

i→j

(
aLi +dLi→j

aLj

)
, λE

i→j=λE
i→j

(
aEj

aEi +dEi→j

)
∀arci→j

The delays, the arrival times, and the required arrival times for
early-late timing modes are calculated from the corresponding
critical corner. Gate sizing methods like [16] and [17] utilized
exponential LM updates for faster convergence. Even if this
is the proper choice for gate-sizing only transformations, it
does not fit well in our flow that utilizes many different netlist
transformations. In this case, the LMs should adapt smoothly
to the changes in the designs timing, allowing for better co-
operation across the various optimization heuristics.

The updated values of output LMs should be distributed to
all nets satisfying the flow conservation conditions (3). The
distribution is performed by traversing the circuit in reverse
topological order. At each visited cell, the sum of LMs at the
output pins is distributed to the LMs of the input pins. When
an LM value needs to be distributed to multiple incoming
arcs, this distribution is done based on the ratio of the LMs of
the corresponding timing arcs. Such distribution increases the
LMs on critical paths, and, therefore, the timing violations are
expected to be minimized. Also, since LMs are accumulated
at each branching point, the higher the number of violating
endpoints affected by an arc, the higher the value of the
corresponding LM.
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Fig. 3. Reward-based relative ranking of the transformations applied in the
last N most recent trials.

C. Automatic Transformation Recommendation

The proposed recommendation engine takes the perfor-
mance observed by each netlist transformation so far and
tries to pick the next transformation. The goal is to exploit
as much as possible the current best transformation, while
maintaining some exploration of the other transformations, in
case one of them becomes more efficient at a later stage of
the optimization. Well known bandit algorithms, such as the
Upper Confidence Bound (UCB) and its variants [35], have
been proven to optimally solve the exploration vs. exploitation
dilemma, albeit in a stationary context [3]. However, the
design optimization problem that we are trying to solve is
inherently dynamic. The design is altered in each iteration,
and successive plays of the same optimization algorithm
would yield different rewards [36]. To bypass this inherent
inefficiency when using bandit algorithms in a dynamic en-
vironment, we make decisions based on differential criteria,
following the approach used in OpenTuner [37].

Score Computation: When transformation k has been
applied on the design in a certain iteration, we record its
earned reward, Rk, using the reward function (7) described
in Section IV. Then, we compute the average payoff for each
one of the transformations, as follows:

1) Sort the transformations applied in the last N trials
according to their received rewards. In the example
shown in Fig. 3, the last five (N = 5) trials are ranked
based on the reward earned when applied to the design.
Transform A had the highest reward of 0.7 and it is
ranked first. Transform C follows with a reward of 0.5.

2) Each transform receives a score according to its position
in the rank. Position 1 receives a score of N , position
2 a score of N − 1, while the last position receives the
lowest score of 1.

3) Compute the total score of each transform by adding
the score of all of its appearances in the rank list. Thus,
in the example of Fig. 3, C receives a total score of 7,
since it occupied the second and the third positions in
the rank with corresponding scores of 4 and 3. The total
score of each transform actually reflects how good the
transform was in the last N trials relative to the others.

The normalized payoff Qk of each transform k is just the

normalized version of its total score:

Qk =
score(k)

1 + 2 + ...+N
(5)

Selection policy: The recommendation engine would select
transformation k to apply in this trial, which maximizes

(1− c)Qk + c

√
2 lnN

Nk
, (6)

where N is the window size and Nk is the number of times
that k has been played in the last N trials. c is a tuning variable
between 0 and 1 that, when increased, favors the exploration
of rarely selected transformations (low values of Nk) versus
exploiting the ones with the best performance so far (high
values of Qk). For the example shown in Fig. 3, (QA, NA) =
(6/15, 2), (QB , NB) = (2/15, 1), and (QC , NC) = (7/15, 2).
Assuming a balanced exploit vs. explore strategy with c = 0.5,
transformation C would be applied in the next trial.

The initial payoffs Q of each transform can be obtained
either by applying each transformation once (no pretraining),
or by using the average scores derived from the previous appli-
cation of this algorithm on various benchmarks (pretraining).

Productivity Rule: Once a transformation is applied on the
design, the changes that it caused are not necessarily kept. If
the quality of the obtained result is worse by more than 10%
in any of the targeted aspects, i.e., timing, leakage power,
and area, then the changes are discarded and the design is
recovered to its previous state. We allow this small degradation
to occur, since it may help the subsequent transformations. For
instance, when timing is closed, meaning that timing violations
are below a certain threshold [45] (arbitrarily chosen to be
10% of the clock period in our experiments), and we are
optimizing for leakage power and area, we allow for small
power degradation, since this can lead to positive timing slack
that would allow us to optimize leakage power later on.

IV. GUIDING THE AUTOMATIC RECOMMENDATION: THE
REWARD FUNCTION

To sort out the relative performance of the most recently
applied transformations, each transformation k applied to the
design in the ith iteration receives a reward Rk(i). The reward
function demonstrates the effect of the chosen optimization
method on the performance metrics that characterize the cir-
cuits behavior, as well as to the runtime cost paid in achieving
such metrics. According to the productivity rule, a reward is
recorded only if the restructured netlist is actually kept, i.e.,
it does not deteriorate any QoR metrics by more than 10%.
Overall, the reward Rk(i) is equal to:

Rk(i) = rk (δRtiming(i) + (1− δ)Rpower-area(i)) (7)

Rtiming(i) and Rpower−area(i) represent how efficient the
selected transformation was in improving TNS, and reducing
leakage power or area, respectively. Factor δ defines the
importance of timing optimization compared to power-area
optimization and it is changed during the flow’s execution.
For instance, in the first iterations, we prioritize timing op-
timizations with δ = 0.8. Once timing closure is achieved,
power-area reduction is prioritized by changing δ to 0.2.
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Parameter rk is a scaling factor that depends solely on the
runtime of transformation k. We include this in the reward
function, so that the recommendation algorithm is able to
distinguish between two methods that have a similar QoR
impact, but different runtime needs. We penalize the reward
received by slow methods with low values for rk. Initially,
rk = 1 for all transformations. On the following iterations,

rk = 1− avg runtimek
runtime target

(8)

A high average runtime for method k will penalize that method
when it is comparable to the runtime target. Setting a strict
runtime target can reduce the total runtime of the optimization,
since faster methods will be picked more often by receiving
higher rewards, possibly at the cost of inferior QoR. When
assigning a relaxed runtime target, rk is used as a tie-breaker
between equally efficient methods in terms of timing and
power/area, but with different runtimes.

A. Timing Reward

The timing reward Rtiming(i) represents the tradeoff between
timing improvement ∆T (i) and power/area overhead ∆PA(i)
achieved in the ith iteration.

Rtiming(i) =

{
∆T (i)

min(∆PA(i),0.01) , if timing is improved

0, if timing is not improved

If timing closure has not been achieved, timing improvement
∆T refers to the average percentage of TNS improvement
between two consecutive iterations i and i − 1 for late and
early mode:

∆T (i) =
1

2

TNSL
i − TNSL

i−1

TNSL
i−1

+
1

2

TNSE
i − TNSE

i−1

TNSE
i−1

(9)

After timing closure, ∆T refers to the percentage of total slack
increase.

Similarly, ∆PA(i) is the percentage increase of the total
sum of scaled leakage power and area of all cells in one
iteration relative to the previous iteration:

∆PA(i) =

∑
(ηP + βA)i −

∑
(ηP + βA)i−1∑

(ηP + βA)i−1
(10)

The definition of the timing reward reflects our strategic
decision to prefer overall efficiency over exclusive TNS im-
provement. For instance, a method that achieves TNS reduction
of 10%, while degrading power and area by 5%, is preferred
over a method that reduces TNS by 20%, but degrades power
and area by 15%.

∆PA(i) is lower-bounded to 0.01 in the denominator of
Rtiming to avoid cases where the power/area difference is too
small and diminishes the impact of timing in the reward. A
very low ∆PA(i), can cause the timing reward to overshoot
regardless of the actual timing improvement. Without this
lower bound, a method that marginally improves timing by
0.1% and degrades leakage power and area by 0.001% would
receive a timing reward of 100, which is unrealistically high
for the small impact the method had. By lower-bounding the
power and area improvement, the reward will be equal to 0.1.

B. Power-Area Reward

The power/area reward has a different meaning depending
on the phase of the optimization. If timing has not closed,
power reward reflects the tradeoff between timing degradation
and power/area improvement. If timing has closed, and the
LR-optimization focuses on power/area reduction, the reward
is simply the percentage of power/area reduction across it-
erations, irrespective of timing. This is safe to do, since,
according to the productivity rule, if the applied transformation
worsens any quality metric by more than 10%, its effect
is not kept and the design is restored to its previous state.
Therefore, once timing has closed in some iteration, any timing
degradation that may appear as a result of the applied power-
area optimizations will be very small due to the 10% per-
iteration limit. Overall,

Rpower-area(i) =


0, if power-area increased

∆PA(i)
min(∆T (i),0.01) , if timing is not closed

∆PA(i), if timing is closed

This time, we bound ∆T (i) to 0.01, in order to avoid meth-
ods that cause a minimal TNS change getting high rewards
regardless of their power and area effect.

V. NETLIST TRANSFORMATIONS

The automatic recommendation engine embedded inside
the LR-based optimization loop utilizes a set of eight netlist
transformations that collectively optimize the design.

Two versions of flip-flop and gate resizing are employed
that choose an appropriate size and threshold voltage for all
cells in the design. The utilized cell resizing algorithm is a
generalized version of previous algorithms proposed in the
context of LR-based sizing [16], [17], while also covering
flip-flop sizing and conflicting cases that cannot be handled
by previous approaches. The arsenal of transformations also
includes two versions of buffering: (a) hold-buffer insertion for
reducing early timing violations, and (b) local late buffering
that conditionally inserts buffers at the output of cells with
high-fanout loads. Pin swapping attempts to swap the sink
pin of the most timing critical net of the gate with another
equivalent pin, in order to help the timing-critical net with its
violations. Simplified gate merging/splitting locally compose
or decompose adjacent gates to trade off number of levels
versus gate complexity per level. Finally, the eighth transfor-
mation involves applying useful clock skew on flip-flops.

All of the above methods are driven by the LM values of
each iteration and try to optimize their LR-based cost functions
using only slack information to ensure that they are not
degrading the timing violations. Any other local optimization
heuristics that operate in a similar manner can be added in the
library of available transformations.

A. Cell Resizing

The cell resizing Algorithm 1 examines all different versions
of each cell and selects the one that minimizes the local cost
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Algorithm 1: Cell resizing algorithm

1 foreach cell c ∈ candidate cells in topological order do
2 best cost← localCost(c) ;
3 best version← cellVersion(c) ;
4 neg slack ← localNegativeSlack(c) ;
5 foreach version v ∈ equivalent versions do
6 resize cell c to v;
7 if (violates load constraints(c) then
8 skip version;
9 end

10 update timing locally;
11 new neg slack ← localNegativeSlack(c) ;
12 if new neg slack < γ · neg slack then
13 skip version;
14 end
15 new cost← localCost(c);
16 if new cost < best cost then
17 best cost← new cost ;
18 best version← new version ;
19 end
20 end
21 resize cell c to best version ;
22 update timing locally ;
23 end

function (11), without introducing load violations and without
degrading the slack of its nets over a threshold γ [16].

ηP (v) + βA(v) + θ
∑

i→j∈local arcs

(
λL
i→jd

L
i→j−λE

i→jd
E
i→j

)
(11)

P (v) and A(v) are the leakage power and area, respectively,
of size v of the examined cell.

The local timing arcs for each cell include the arcs of the
resized cell, its immediate fanin and fanouts, and the arcs that
share a common fanin with the resized cell. For gate G in
Fig. 1, the local arcs include: arcs of G (4 → 6, 5 → 6), the
fanin arcs (1 → 4, 2 → 5), the fanout arcs (6 → 7), and the
common fanin arcs (4 → 8). Flip-flops are handled similarly
to gates. For flip-flop FF in Fig. 1, the local arcs include arcs
(13 → 9), (3 → 8, 4 → 8) and (9 → 11, 9 → 12).

Handling of conflicting constraints: Relying on the local
cost function (11) may lead to contradicting sizing decisions
when a cells output pin has both early and late violations. No
matter which decision the sizer takes, there is no choice that
will reduce both timing violations. The traditional LR-based
sizing algorithm [16], [17] would try to reduce the violations
on the side with the higher LM. For example, if the early LMs
are higher than the late ones, it would try to downsize the
cell. However, this choice worsens late slack. So, eventually,
the algorithm balances the slacks on both (early-late) sides,
without truly solving any violations.

In such cases, we prioritize late timing violations over early
ones, since early violations can possibly be fixed by other
techniques such as hold-buffer insertion. To do this, we omit
the terms λE

i→jd
E
i→j from the cost function (11). Thus, only

late-mode LMs and delays determine the cost function and
guide the sizing decisions.

Full and fast gate sizing: To allow the recommendation
engine to trade off higher sizing quality with lower runtime,
we employ two sizing transformations: full cell sizing that

1 2

3

5

4 1

3

5

426

(a) Attempting buffering on pin 2 (b) After buffer insertion

Fig. 4. Example of late buffer insertion on pin 2. The local cost (11) without
a buffer is computed over the arcs for pin 2: 1 → 2, 2 → 3, 2 → 4, 2 → 5.
The local cost with a buffer inserted is the cost of the arcs around the buffer:
1 → 6, 6 → 2, 2 → 3, 2 → 4, 2 → 5, including the buffer’s power and area.
If the new cost is lower than the original, the buffer is kept provided that no
maximum slew/load violation is introduced.

examines every sequential and combinational cell; and fast
cell sizing that operates on a selected subset of cells.

Specifically, when timing is not closed, fast cell sizing
resizes only cells that either have negative slack on their pins,
or are immediate fanouts of cells with negative slack (i.e., to
downsize a load to speed up the path). When timing has closed,
fast cell sizing picks the cells with the highest power/area
potential that also have positive slack. Power potential refers
to the difference between their current leakage power and
the smallest leakage power they can have without causing
maximum slew and load violations, which is the leakage they
had after the initial downsizing. Area potential is defined
similarly.

B. Local Buffer Insertion

Buffering is a versatile design optimization that can be
efficiently applied for various design targets. In this work, we
employ two forms of local buffering that target early and late
timing violations:

1) Late timing violations: Buffering can reduce the output
load of cells with a large fanout, thus decreasing their delay
and helping reduce late slack violations.

Initially, the gates with negative late slack are sorted by their
output capacitance over input capacitance ratio. Then, buffer
insertion is attempted on the source of the fanout net of the
top 100 gates. All available buffer choices are examined and
the one with the lowest cost is kept. If the lowest cost with
the buffer added is smaller than the cost without the buffer
and buffer insertion does not introduce slew/load violations,
the selected buffer is actually inserted. The local cost around
the buffer is calculated using equation (11) involving all arcs
connected to the net where the buffer will be inserted. An
example of the involved timing arcs is shown in Fig. 4.

2) Early timing violations: Solving early (hold) timing
violations requires slowing down the signal propagation on vi-
olating paths. This can be achieved by appropriate delay buffer
insertion. Hold buffers should be inserted in positions where
they will affect many hold violating paths, thus minimizing
the number of buffers that need to be added. We avoid adding
buffers on paths with both late (setup) and early violations.
Hold buffers are only inserted in pins where there is room to
trade off positive late slack with negative early slack.

For every hold violating endpoint, we store the worst early
path through it and keep in a list of candidates the paths pin
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 through endpoint 15

Fig. 5. Hold buffer insertion example. Pin 10, which is part of the early
critical path, has the highest λE − λL difference and is examined to receive
extra buffers for alleviating hold-time violations.

with the highest difference λE − λL (i.e., critical in early
timing and not critical in late timing) and with positive late
slack. Then, on those candidate pins, we add delay by using a
chain of identical inverters, gradually consuming the available
positive late slack.

Let us assume that, in Fig. 5, the candidate pin for the
worst early path through endpoint 15 could be pin 10. To add
a chain of buffers at pin 10, without the need to resize that
driving cell, we want the cell driving pin 10 to see a similar
output load. If adding a buffer at the output reduces the load,
it would speed up the driver, contrary to our purpose of adding
delay on the path with the early timing violation. In Fig. 5,
the appropriate buffer for adding delay on pin 10 should have
an input capacitance close to C11

in + C12
in , plus any effective

wire capacitance of the net connecting pins 10, 11, and 12.
Since all the buffers of the chain would see the same

load (similar to their input capacitance), we can assume that
they will all have the same delay dE in early mode timing.
Therefore, for a negative early slack of slkE , we need at least
Nmin = −slkE/dE buffers to remove early slack violations.

At the same time, assuming that the available positive late
slack is slkL, we cannot add more than Nmax = slkL/dL

buffers, where dL is the delay of the same buffer in late mode
timing. Since we decided not to consume more than 50%
of the available positive late slack, we limit the maximum
number of buffers allowed to Nmax/2. Overall, the number
of buffers added is equal to min (Nmin, Nmax/2) provided that
buffer addition does not introduce any maximum slew/load
violation.

C. Cell merging and splitting

While gate sizing and buffering transformations are very
effective in improving timing and reducing the area and power
of the design, merge-split transformations can broaden the
solution space by trading off the number of logic levels
with the simplicity of the gates per level. In this work,
we explore simple merge/split options across independent
AND/OR/NAND/NOR gates, while complex cases of merg-
ing/splitting combined AND-OR Boolean functions are not
supported. Both transformations are applied on every cell
eligible for merging or splitting in topological order.

1) Cell merging: Cell merging replaces two serially con-
nected logic gates with a multi-input gate of the same func-
tionality. For example, in Fig. 6, two-input AND gates G1
and G2 are replaced by a three-input AND gate G3. The new
gate is always assumed to replace the end gate, e.g., G2 in

Fig. 6. Merge/Split example highlighting the placement of the replaced gate
and the timing arcs used for local cost calculations.

Fig. 6, and spatially placed in its position. The wire resistance
and capacitance (RC) parasitics of the net connecting the two
gates (net 7 in Fig. 6) are added to the input net parasitics of
the fanin gate, i.e., nets 4 and 5 in Fig. 6. To judge if this
replacement is beneficial, we compute the local LR cost (11)
before and after the merge. If the LR cost after the merge
is lower, the local slack is not degraded, similar to the cell
sizing local slack check in Algorithm 1, and there are no load
violations introduced, the merge is accepted.

For computing the local cost before the merge in the
example shown in Fig. 6, we use the timing arcs of the two
gates that will be merged, the arcs of their fanins and their
immediate fanouts: {1 → 4, 2 → 5, 3 → 5, 4 → 7, 5 →
7, 6 → 8, 7 → 9, 8 → 9, 9 → 11}.

After the merge, some timing arcs inevitably vanish. There-
fore, for the example shown in Fig. 6, the local cost after
the merge is calculated by using arcs 4 → 12, 5 → 12, and
8 → 12, in the place of arcs 4 → 7, 5 → 7, 7 → 9, and
8 → 9. The LM used for these new timing arcs is derived
after redistributing locally the LM values that were already
present on the fanout of the cell to be merged. To compute the
local cost for the merged gate, we need to know its exact size.
Instead of trying various sizes (this is a task of cell sizing),
the new merged cell is assigned the size of the first gate, or
the size that exhibits the closest input capacitance to that gate.

2) Cell splitting: The cell splitting transformation sepa-
rates a multi-input gate to two gates with fewer input pins.
The gate splitting algorithm is applied on every multi-input
AND/OR/NAND/NOR cell that can be split in cells with a
smaller number of inputs.

To limit the possible splitting options, in this work, a cell
is always split to a cell with two inputs, and a second cell
for the rest of the inputs. The sizes of the resulting gates
will be the same as the size of the original gate, or the one
that matches more closely its input capacitance. The two new
cells are connected serially (connected with a net of minimum
length), with the multi-input one driving the two-input cell.
The most critical late net is connected to the two-input cell
and the most critical early net is connected to the multi-input
cell. If the same net is the most critical in both early and
late timing, it will be assigned to the position satisfying the
most critical mode, thus improving the timing of the local
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most critical path. A split actually occurs only when the local
cost after the split (calculated similarly to cell merging) is less
than the cost before the split, without introducing maximum
load/slew violations.

D. Pin Swapping

Cell merging/splitting can be combined with pin swapping
to further improve timing, by taking advantage of cells where
the input-to-output timing differs across pins. When logic
functionality allows, we examine connecting the most timing-
critical input to the fastest input-to-output path of the gate.
The pin swapping algorithm visits every combinational gate
with negative slack, or on the immediate fanout of a cell with
negative slack in topological order. For each gate, the input
pin with the most negative early or late slack is swapped
with the other equivalent pins. After each swap, the timing
is updated locally and the local cost function (11) of the gate
is recalculated. After every swap is done, the swap with the
best local cost which doesn’t violate slew/load constraints is
kept and the next gate is processed.

E. Useful Clock Skew Assignment

To maximize the overall optimization efficiency, we com-
bine the aforementioned datapath-driven optimizations with
clock skew optimizations, which allow for wider-range tim-
ing tuning. Instead of setting up a new linear program to
determine optimal clock skew offsets [46], we decide locally
and incrementally on the clock arrival time of each flip-flop,
thus allowing useful clock skew to adjust smoothly to the
optimizations of the other netlist transformations.

Based on the formulation presented in [22], LMs can be
propagated to the clock pins of the flip-flops as follows:
λL
CLK = λL

Q + λE
D, λE

CLK = λE
Q + λL

D. Thus, the sign of
λL
CLK−λE

CLK determines if we should delay or speed up clock
arrival. If it is positive, a constant delay dclk is subtracted from
clock arrival, favoring slkLQ and slkED; instead, if it is negative,
the same delay is added to clock arrival in favor of slkLD and
slkEQ . In both cases, the update of the useful clock skew is
kept as long as it does not degrade the late/early worst slack
on all data pins of the flip-flop. dclk equals the average delay
of all available clock buffers driving a minimum sized flip-flop
of the library.

Since we operate in a multi-corner environment, the delay
added should be scaled across corners. Since the clock arrival
offsets would be implemented using the available clock buffers
of the library, we compute a scaling factor for each corner
by approximating the ratio of the clock buffer delay of that
corner compared to the buffer delay of the typical corner, for
multiple input slew and output load values. So, when a delay
dclk is added on a clock pin for the typical corner, a delay
dclk ·ratiocr will be added for corner cr, where ratiocr is the
average buffer delay ratio for corner cr and the typical corner.

F. Recovery heuristics after the LR optimization loop

After the LR-based optimization is complete, some recovery
steps are executed as a way to perform minor enhancements to

the QoR and eradicate any small leftover timing violations. In
contrast to the eight previous transformations, these recovery
steps cannot be selected by the recommendation engine.

The power/area reduction step attempts to downsize every
gate in forward topological order [16]. If the downsize de-
grades the local slack, the move is reverted; else it is kept.
After every forward topological pass, an incremental timing
update is performed. The process stops when the TNS is
degraded, or when no more downsizes are possible.

The timing recovery step resizes the driver cell affecting the
most violating endpoints [16]. The sizes tested are the immedi-
ately smaller and bigger size. After either move, we perform
local timing update on the critical corner and calculate the
new local negative slack on the cells output. If it is improved
compared to the initial slack, we perform an incremental
timing update and ensure that the TNS has improved too. If
it has, this cell version is kept, and the process is repeated. If
the timing has not improved, we revert the change and move
on to the next most critical cell. Timing recovery stops if all
timing violations are solved, if the TNS stops improving, or
if a certain number of incremental timing updates is reached.
Timing recovery is performed twice: once for the remaining
late timing violations, and once for the early timing violations.

For the last remaining early timing violations, a buffer chain
is inserted in front of every hold-violating endpoint, until
the violations are fixed. This is the last optimization step
performed, ensuring that the final design is hold-violation-free.

VI. EXPERIMENTAL RESULTS

The proposed method was implemented in C++ inside
RSyn [47] after extending it for multi-corner timing analysis.
The presented results were evaluated using the benchmarks of
TAU 2019 [4] and ISPD 2013 contests [5]. All experiments
were performed on a Linux workstation using a 3.6 GHz Intel
Core i7-4790 with 4 cores and 32 GB of RAM. The results
are validated using OpenTimer [48], which is the reference
timer in the TAU 2019 contest.

A. Setup of the recommendation engine

The recommendation engine operates on a sliding window
of N = 32 rewards (four times the number of available
transformations). A very small window is prone to being
overflowed by one method, which is then repeatedly ranked
highly, not because of its quality but because of its high
presence in the window. On the other hand, a very large
window can give a method a high ranking because of its
performance many iterations ago, even if the timing profile
of the design has completely changed.

To avoid blindly running every heuristic at the start of
the optimization, the recommendation engine was pre-trained
using ten average-sized benchmarks from the TAU 2019 and
ISPD13 benchmark suites. Each one of these benchmarks was
optimized by running every method serially (for example, full
gate sizing on iteration 1, pin swapping on iteration 2, late
buffering on iteration 3, etc.) and storing the rewards of the
32 first iterations. Thus, the initial window included four times
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TABLE I
THE INITIAL AVERAGE REWARDS FOR EACH TRANSFORMATION. WHEN
TIMING IS NOT CLOSED, THE TIMING REDUCTION REWARDS ARE USED.

WHEN TIMING IS CLOSED, REWARDS ARE RE-INITIALIZED TO THE
AVERAGE REWARD OF THE POWER REDUCTION PHASE.

Method Full
sizing

Pin
Swap

Late
Buff.

Hold
Buff.

Clock
Skew

Gate
Merge

Gate
Split

Fast
sizing

Timing
reduction 0.133 0.043 0.129 0.012 0.247 0.078 0.176 0.180

Power
reduction 0.262 0.027 0.020 0.020 0.128 0.182 0.081 0.282

each all eight transformations. The duration of the pre-training
runs was 10 minutes.

During pre-training, we recorded for each transformation
two sets of average rewards. The one refers to the timing
reduction phase (i.e., when timing is not closed) and the other
to the power reduction phase (i.e., when timing is closed and
power-area reduction is targeted). The initial rewards of each
transformation derived in the training phase are shown in Ta-
ble I. At the start of the optimization, the initial sliding window
is populated by the average rewards of the transformations
during the pre-timing closure phase. Once timing closure is
achieved, the sliding window is re-initialized to the average
rewards of each transformation in the power reduction phase.

The behavior of the recommendation engine also depends
on the explore coefficient c in (6). Setting c high will treat
all methods equally, instead of focusing on the most efficient
ones. On the contrary, setting c at a low value will limit the
optimization to only a few methods, failing to reap the benefits
of the combined application of all heuristics. We observed the
best results when c = 0.35 to 0.5. The results presented were
run for c being equal to 0.4.

Finally, the runtime target of the runtime scaling factor (8)
that determines how much each transformation is penalized
due to runtime was set to 40 mins for all designs. This target
actually has no effect in small designs and only constrains the
runtime of large designs. Larger runtime targets improved only
slightly the overall QoR. Note that the runtime target is not a
hard constraint, but just a penalty factor that helps increasing
the rewards of fast transformations relative to equally-good but
slower transformations.

B. Results on the benchmarks of the TAU 2019 contest

The TAU results were compared against the TAU contest
winners results [49], which were extracted by running the
executable that they submitted to the contest (and also pro-
vided to us). Each benchmark includes SPEF and SDC files
for each netlist. The TAU benchmarks provide five different
standard-cell library files, one for each corner. Each library
provides a range of cells of varying complexity. It includes
positive, negative and non unate cells, registers with Set/Reset
pins, and complex combinational cells, such as half and full
adders. Each library cell has a variety of different versions,
ranging from 1 to 6 separate sizes and 1 threshold voltage.
The designs only have timing constraints on register-to-register
paths, leaving primary inputs and outputs unconstrained. There
is also a different transition time constraint for each corner.

Fig. 7. The best clock period achieved for each benchmark of the TAU 2019
contest covering all corners, by the proposed method and the winner of the
contest [49].

Also, all benchmarks include clock trees that are unrealistic,
since they do not have RC parasitics, and the clock arrival
times are highly unbalanced. For this reason, the TAU 2019
contest winner removed the clock buffers from the clock tree
and rebuilt it without including any RC parasitics of the nets
connecting the clock-tree buffers. Note that assuming ideal
wires on the clock tree was permitted by the contest, but not
realistic. To allow for a more realistic comparison (assuming
that designs are compared in a pre-CTS stage before clock tree
synthesis), we removed all clock buffers from both the initial
set of benchmarks fed to our algorithm, and from the final
netlist of the TAU 2019 winner. Nevertheless, for the latter,
we kept the assigned clock pin arrival times (acting as useful
clock skew values), so that the timing performance of the TAU
2019 winner remained unaffected.

Fig. 7 presents the best clock period for which each flow
achieves closure for all corners. Our flow achieves 17% lower
period, on average. We achieve a better clock period for every
design, with the exception of s1196.

Table II depicts the leakage and area achieved when both
flows are constrained by the worst clock period of Fig 7.
Our flow achieves a lower leakage and area for every bench-
mark, resulting in 6% area and 15% power improvements,
on average. Our QoR on the larger benchmarks is much
superior to the result of the contest winner, in exchange
for a longer runtime. The runtime overhead mainly stems
from methods that operate on the entire design, such as full
gate sizing and cell merging/splitting. Even if gate-sizing is
multithreaded using eight threads each time is applied, all the
rest transformations are single-threaded.

The proposed recommendation engine can operate equally
well (albeit with an increased runtime), even if it is not
pre-trained and the average payoff of each transformation
is initialized to 0. Table III depicts the leakage power and
area results, when the designs are optimized for the clock
period of Fig. 7 (the best our flow can achieve), with and
without pretraining (with pr. and w/o pr., respectively). In all
cases, it is evident that the proposed flow, even when applied
blindly, achieves equally good, or better QoR. Pre-training just
improved runtime by favoring faster convergence.

Therefore, the proposed optimization flow not only achieves
timing closure and competitive power/area reductions, but it
also does so autonomously, without relying on any previous
knowledge of the circuits, and without requiring any manual
tuning/intervention.

In order to demonstrate the importance of the proposed
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TABLE II
COMPARISON OF THE LEAKAGE AND AREA AT THE CLOCK PERIOD WHERE BOTH FLOWS ACHIEVE CLOSURE FOR ALL CORNERS

Design #cells
Period

(ps)
Leakage (µW) Area (µm2) Runtime (min)

Ours [49] Save(%) Ours [49] Save(%) Ours # Iters [49]

s1196 584 985 12 13 7.69 552 569 2.99 0.03 24 0.03

systemcdes 2825 1788 74 96 22.92 3368 3975 15.27 0.19 46 0.35

usb funct 10535 2306 370 402 7.96 17599 17812 1.20 0.77 45 0.87

vga lcd 87958 2826 2780 3106 10.50 142153 146257 2.81 6.82 20 0.40

leon3mp iccad 649191 5246 19351 23816 18.75 957947 1030860 7.07 57.25 22 6.03

leon2 iccad 793286 4677 23989 30354 20.97 1203920 1312960 8.30 46.72 19 7.53

average saves - - - - 14.80 - - 6.27 - - -

TABLE III
COMPARISON OF THE LEAKAGE AND AREA AT THE BEST CLOCK PERIOD

ACHIEVED BY OUR FLOW, WITH (WITH PR.) AND WITHOUT (W/O PR.)
USING PRETRAINED REWARD INITIALIZATION.

Design Period
(ps)

Leakage (µW ) Area (µm2) Runtime (min)
with pr. w/o pr. with pr. w/o pr. with pr. w/o pr.

s1196 985 12 12 552 551 0.03 0.03
systemcdes 1754 80 81 3510 3533 0.16 0.17
usb funct 2116 404 412 18412 18654 1.51 2.89
vga lcd 1840 2796 2781 140813 141477 9.42 10.33

leon3mp iccad 3872 19686 19613 963614 962976 92.84 93.68
leon2 iccad 4190 24170 24003 1208100 1206040 91.81 110.35

recommendation engine to the final QoR, we ran additional
experiments, whereby the recommendation engine is disabled
and the transformation executed in each iteration is picked
randomly. The final WNS and the leakage power for 50 ran-
dom experiments on the leon3pm iccad design are presented
in Figure 8, when the designs are optimized for the best clock
period of Fig. 7. The results are sorted by the achieved WNS.

The 4 trials shown on the right-hand side of Fig. 8 managed
to close timing, but with worse leakage power than the
proposed approach, while the other 46 trials achieve a wide
range of worse timing and leakage performance. It should be
noted that, even if the applied transformations are selected
randomly in each iteration, their result is kept only if it
improves the design according to the proposed productivity
rule. Therefore, in the end, only the results of useful trans-
formations are kept. This indicates that, even if the proposed
netlist transformations provided to the LR-based optimizer are
effective, they cannot reach the QoR achieved when these
methods are appropriately rewarded and orchestrated, as done
by the proposed recommendation system.

C. The interaction of netlist transformation with the recom-
mendation engine

In this sub-section, our goal is to demonstrate the behavior
of the recommendation engine, and which transformations it
decided to prioritize in order to achieve the overall results of
Table II. Fig. 9 depicts the percentage that each transformation
is utilized per benchmark during the LR-optimization loop, as
decided independently, by the MAB-based recommendation
engine. In all cases, the lion’s share belongs to useful clock
skew and the two versions of cell sizing, since they are the
strongest methods for both TNS and power reduction. Because

Fig. 8. WNS and leakage power for 50 random experiments on the
leon3mp iccad, without using the proposed recommendation engine and
targeting the best clock period achieved by the proposed flow.

of the runtime scaling factor, the optimization method picks
fast gate sizing as often as full gate sizing.

Hold buffering usually has the lowest pick rate, since the
designs do not originally have early violations, so it can only
be useful around the end of the flow. Even then, since we do
not allow for early TNS to degrade too much, early buffering
cannot receive a high enough reward.

Late buffering is picked infrequently for the opposite reason.
It is very useful in the first iterations to buffer large fanout nets,
but its benefit diminishes later on. This behavior is highlighted
in Fig. 10, which depicts the normalized payoff, calculated on
equation (5) of early and late buffering over time for the design
usb funct. The payoff of late buffering is high at the start of
the flow and gradually decreases, while the payoff of early
buffering increases over time, but still stays low. Recall that
the payoff demonstrates how high or low a method is ranked
compared to the other methods.

Utilizing more elaborate methods for buffering nets with

Fig. 9. How often each transformation is selected per benchmark.
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TABLE IV
THE IMPACT OF OMITTING A TRANSFORMATION ON THE RESULTS FOR

USB FUNCT. IN ALL CASES LISTED BELOW THE “FULL FLOW” ROW IN THE
TABLE, HOLD TIMING WAS CLOSED, AS ENSURED BY THE POST-PASS OF

INSERTING BUFFERS TO FIX ANY REMAINING HOLD VIOLATIONS.

Netlist
TNS
(ns)

WNS
(ns)

Leakage
(µW )

Area
(µm2)

Runtime
(min)

Initial -392.697 -1.104 392 17561 -
Initial downsizing -736.635 -1.678 394 17597 -

Full flow 0 0 404 18412 1.51

Opt
removed

Full sizing -0.010 -0.010 408 18549 1.67
Pin Swap -0.052 -0.052 413 18352 1.36
Late Buff. -0.036 -0.036 399 18466 2.24
Hold Buff. -0.027 -0.027 398 18322 1.54

Clock Skew -1.375 -0.075 426 18908 9.76
Gate merge 0 0 413 18671 1.59
Gate split -0.138 -0.072 395 18234 1.38
Fast sizing -0.027 -0.027 407 18507 1.28

Sizing -0.030 -0.030 455 19490 4.19

timing violations than the local buffering approaches used in
this work could possibly increase the pick rate of buffering
transformations. It is part of our future plans to adapt efficient
dynamic buffering techniques to use LM-based cost functions
and include them in our set of available transformations.

Fig. 10. The normalized payoff of early and late buffering over time for
usb funct.

Gate merging receives higher rewards in the power reduc-
tion phase, since it reduces the total number of cells, while
gate splitting is more effective during the timing reduction
phase. Pin swapping has a low pick rate, since its immediate
effect on the timing is usually small.

In order to better quantify the contribution of each method to
the final QoR, we re-ran our flow by excluding an optimization
method on each run. Table IV presents the results for the
indicative design usb funct for the best achieved period. It
can be observed that clock skew scheduling is the most
efficient method for reducing timing violations, and cell sizing
for reducing leakage power and area. Nevertheless, removing
any method will worsen the QoR or the runtime, as the
optimization framework will need to achieve its effect by
running other methods for potentially more iterations, which
is an overhead that can become prohibitively expensive for
larger designs. Therefore, all methods are required to achieve
the best QoR in the fastest runtime.

The number of netlist transformations employed does not
alter the tuning of the proposed recommendation system.
In fact, appropriate netlist transformations can be added, or
removed, in a plug-and-play manner. To demonstrate this, we
ran experiments with a reduced number of available netlist

TABLE V
AUTONOMOUS OPTIMIZATION USING IN EACH CASE A REDUCED NUMBER

OF HEURISTICS ON THE USB FUNCT DESIGN.

# Opt.
used

Opt. available
TNS
(ns)

WNS
(ns)

Leakage
(µW )

Area
(µm2)

Runtime
(min)

2
Clock Skew
Fast sizing

-0.601 -0.222 390 18118 1.09

4
Previous +
Full sizing
Gate merge

-0.554 -0.153 393 18187 1.75

6
Previous +
Gate split
Pin Swap

-0.042 -0.037 402 18378 1.11

8
Previous +
Late Buff.
Early Buff.

0 0 404 18412 1.51

transformations. Also, to examine if the recommendation
system can still adapt and produce reasonable results, despite
the varying number of available optimization methods, we did
not retune any parameter for those runs.

The results obtained for the same indicative usb funct
design are presented in Table V. In the first scenario, we use
fast cell sizing and clock skew assignment as the only available
transformations. Both represent the two most utilized methods
according to Fig. 9. The following three scenarios each add
two more transformations, following the order of their average
utilization. In every case, the obtained timing, power, area,
and runtime results are reasonable. The quality improves as
more netlist transformations are added, since the proposed
recommendation system can autonomously adapt and combine
the benefits of a wider range of methods, without requiring any
manual calibration.

D. Results on the benchmarks of the ISPD 2013 contest

The presented flow was also applied on the ISPD 2013 gate
sizing contest benchmarks. In this case, each cell in the library
has ten sizes available at three threshold voltages, with a total
of 30 sizes per cell. There is only one setup timing corner,
and registers are actually non-sizeable, since there is only one
version of flip-flop cells available. For each benchmark, two
clock period targets are given: a fast and a slow target. Each
design has a SPEF file describing a set of RC parasitics for
each net. The ISPD library file does not include buffers, so they
are replaced by inverters. Every buffering heuristic ensures that
the number of added inverters is even.

The results obtained after running the proposed optimization
on the benchmarks of the ISPD 2013 contest are depicted in
Table VI. Since timing constraints were met in all cases, only
leakage power is reported together with the measured runtime.
Table VI also includes the results achieved by two state-of-the-
art gate sizing methods [16], [17], which yield the best results
in this benchmark set.

The proposed optimization that includes all eight available
netlist transformations achieves superior results in most cases,
achieving 25% better leakage power, on average, than the most
efficient previous work [16].

The runtime evaluation results in Table VI indicate that
the proposed approach is comparable to the state-of-the-
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TABLE VI
RESULTS FOR THE ISPD 2013 CONTEST BENCHMARKS.

Design #cells Leakage (mW ) Runtime (min)
Ours [16] [17] Ours [16] [17]

usb phy slow 623 1 1 1 0.03 0.49 0.22
usb phy fast 1 2 2 0.06 0.42 0.23

pci bridge32 slow 30763 53 57 58 1.93 10.53 0.97
pci bridge32 fast 60 85 90 1.70 22.62 1.54

fft slow 33792 84 87 88 1.61 25.71 1.37
fft fast 131 194 213 3.30 40.43 1.64

cordic slow 42937 220 267 293 4.24 69.04 2.29
cordic fast 785 980 1080 4.38 117.08 5.66

des perf slow 113346 340 327 332 14.38 132.27 7.27
des perf fast 663 644 639 21.19 347.87 26.16
edit dist slow 129227 428 416 440 5.74 123.90 4.92
edit dist fast 532 535 549 10.44 352.96 6.66

matrix mult slow 159642 451 443 448 7.62 226.13 8.80
matrix mult fast 721 1541 1633 21.56 395.96 13.94

netcard slow 984094 3663 5155 5170 58.36 483.55 24.67
netcard fast 3772 5182 5205 64.52 400.89 30.60

art. Note that the reported runtimes for the gate-sizing-only
techniques are taken verbatim from their respective papers.
Consequently, those runtimes correspond to other machines
with different specifications than the one we used. Therefore,
the comparisons can only be broadly and generally indicative.
Regardless, we include those runtime numbers here in a
big-picture context, to demonstrate that the runtimes of the
proposed approach are reasonable, as compared to the others.

Finally, it should be noted that, since our cell sizing al-
gorithm is effectively an enhanced version of the LR-based
sizers used in [16] and [17], our optimization can approach the
results reported in said papers using gate-sizing-only transfor-
mations. The extra savings reported, which are significant for
the larger benchmarks, are the outcome of the autonomous
orchestration of all available netlist transformations. More
specifically, like in the TAU 2019 benchmarks, cell sizing
and clock skew scheduling are the most efficient methods
for reducing leakage power and timing violations respectively,
with the rest of the methods having smaller but considerably
positive impact on the final result.

VII. CONCLUSIONS

This work investigates adaptive design optimization tech-
niques, where a modified version of Multi-Armed Bandits is
employed to autonomously optimize unknown designs. In each
iteration of an LR-based global optimizer, the MAB-based
orchestrator chooses a particular method to apply among sev-
eral netlist transformations. The introduced recommendation
engine can start either blindly, or with an initial estimate of
rewards from profiling the optimization transforms across a
subset of smaller, representative benchmarks. It adapts on-the-
fly across iterations, based on analysis of which optimization
approaches have been most successful thus far on this design.
This dynamic adaptation is performed while balancing the
exploration of alternative optimizations versus the reward, and
by avoiding the need for any manual tuning. The proposed
approach achieves superior results on the TAU 2019 and ISPD
2013 benchmarks, as compared to current state-of-the-art.

We have provided a new generalized paradigm for a digital
circuit optimization engine that combines the following: (a)
state-of-the-art Lagrangian relaxation that identifies how best
to weigh (with Lagrange multipliers) the delay versus power
tradeoff at each cell to achieve lower power and timing closure;
(b) plug-and-play capability for different optimization trans-
forms that are typically used in an industrial EDA flow; and (c)
a system to recommend which type of optimization may give
more benefit at this point during optimization. The heuristics
optimize the design based on the local LR cost function,
harmoniously operating under the guidance of the proposed
recommendation engine to achieve timing convergence and
lower power. Any optimization method that can be adapted to
use the local LR cost function can be added.
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