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Abstract—Multibit register (MBR) composition is an effective
and proven method for clock tree power reduction. The proposed
MBR composition follows a balanced restructuring approach
that is applied after global or detailed placement. Its goal is
to minimize the total number of registers in a design, and sim-
plify subsequent clock tree synthesis, while taking care that any
potential degradations in timing slack, wire length, or routing
congestion do not offset the power benefits of a lighter clock
tree. The proposed methodology identifies nearby compatible
registers that can be merged without degrading timing, and with-
out reducing the ‘“useful clock skew” potential. These registers
are merged, provided that the MBR placement can be legal-
ized according to the proposed simplified physical constraints.
A new integer linear programming formulation minimizes the
total number of registers in the design. Additional optimiza-
tion steps give significant reductions in register count and clock
tree capacitance, as shown by experimental results on industrial
benchmarks that are already rich in MBRs after logic synthesis.
These steps include: MBR decomposition; initial allowance of
incomplete MBRs, and the partial recovery of them by the end
of the flow; and MBR-specific register sizing.

Index Terms—Clock tree synthesis (CTS), multibit registers
(MBRs), physical design, power optimization.

I. INTRODUCTION

EDUCED power consumption is a key design criterion

for modern circuits to extend battery lifetime, reduce
packaging and cooling costs, and permit higher device perfor-
mance. Low-power design starts at the architectural level, with
techniques such as clock gating that disables the clock signal
propagation to the inactive parts of the circuit, and contin-
ues through implementation. The challenge in implementation
is to create, optimize, and verify the physical layout so that
it meets the power budget, as well as timing, performance,
and area goals. In this context, clock power optimization is
one of the most important objectives, as clock power can

Manuscript received November 11, 2017; revised March 16, 2018 and
May 15, 2018; accepted June 10, 2018. Date of publication July 4, 2018;
date of current version July 17, 2019. The work of I. Seitanidis was
supported by the Alexander S. Onassis Foundation. This paper was rec-
ommended by Associate Editor C. C.-N. Chu. (Corresponding author:
Giorgos Dimitrakopoulos.)

I. Seitanidis and G. Dimitrakopoulos are with the Electrical and Computer
Engineering Department, Democritus University of Thrace, 67100 Xanthi,
Greece (e-mail: iseitani@ee.duth.gr; dimitrak @ee.duth.gr).

P. M. Mattheakis and L. Masse-Navette are with Mentor, a Siemens
Business, 38100 Grenoble, France (e-mail: pavlos_matthaiakis @mentor.com;
laurent_masse-navette @ mentor.com).

D. Chinnery is with Mentor, a Siemens Business, Fremont, CA 94538 USA
(e-mail: david_chinnery @mentor.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2852740

L )
2-bit Register A

3-bit Register E
\ MBR %—
Clock )Mmposm 4 Zx Clock

Root Root

4-bit RegisterY

i

1-bit Register

g

Fig. 1. MBR composition reduces register count and simplifies CTS by
grouping registers to larger multibit cells.

contribute 20%—40% of the dynamic power consumption for
a synchronous digital design [1].

The dynamic power consumption is mostly due to switch-
ing of capacitances and it is equal to 0.5 -f - C - Vg , for
a capacitance C (dis)charging between 0 V and supply volt-
age Vg4, with switching frequency f. Clock gating reduces the
switching frequency [2], [3]. Placing registers in clusters [4]
reduces the wire capacitance load on the clock network,
which can be further reduced by merging them to multibit
registers (MBRs) [5].

MBR composition reduces the complexity of the clock tree
by reducing the number of clock sinks, thus shortening the
clock tree’s wire length, which decreases the wire capacitance.
By sharing clock circuitry within the cell, MBRs also present
a smaller pin capacitance load on the clock tree compared
to separate single-bit registers. Not only does this reduce the
clock switching power at the leaf-level of the tree, but the
reduced clock load also allows a smaller clock tree to be used
(with fewer and smaller clock buffers) further reducing the
clock power. An example of the result of MBR composition
is shown in Fig. 1, where the registers of the original design
are merged to fewer cells.

MBR composition must carefully select which registers to
merge, to maintain the correct function and scan connectivity.
It must avoid degrading timing slack, wire length, or routing
congestion, while reducing clock power.

The proposed balanced restructuring approach targets MBR
composition after global or detailed placement, with the goal
to: 1) minimize the total number of registers in a design;
2) reduce clock power; and 3) simplify subsequent clock
tree synthesis (CTS). The proposed methodology equally
applies to circuits that initially have only single-bit regis-
ters, or that are rich in MBRs identified earlier in the design
flow.
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A. Related Work

MBR composition can be performed early in the flow, i.e.,
during logic synthesis [6]-[8] for register power reduction.
Although early allocation of MBRs offers significant savings,
it misses critical placement and timing information that affect
the final result. For this reason, the majority of the work in
MBR composition is focused on identifying MBRs after global
or detailed placement.

In those cases, compatible registers are identified and
grouped in MBRs with the goal of minimizing any wire
length increase, timing degradation, and/or routing conges-
tion [9]-[14]. In most cases, the initial designs have only
single-bit registers and do not consider any function or
library limitations, which are standard restrictions in indus-
trial designs. The composed MBRs are either limited to small
sizes of 2 or 4, bits or they move to excessive sizes of up
to 16 or 64 bits. In reality, quite a few of the registers may
have no logically equivalent multibit version, or they may
have been specified as fixed or size-only by the designer,
and thus cannot be composed to MBRs. The main difference
across the various approaches is the clustering or grouping
algorithm employed (clique partitioning, analytical or k-means
clustering, and force-driven bonding), and the selection of
the placement window within which to search for compatible
registers.

MBR composition has been also applied during placement,
taking into account the effect of clock tree latency [15]. The
late application of MBR composition narrows the design space
to identify candidate MBRs. Each new choice requires incre-
mental legalization and clock tree rebuilds, which results
in long runtimes and can cause timing hotspots with the
disturbance of the clock sink points.

Basic methods for MBR composition have been enriched
with other features, such as the optimization of clock gat-
ing logic [16], data-driven clock gating [17], and crosstalk
avoidance [18]. Recentlyy, MBR composition has been
extended to satisfy multimode multicorner timing constraints,
where the compatibility of registers is differentiated per mode
of operation [19].

Even if registers are not replaced by MBRs their physical
clustering can simplify the clock tree and reduce the buffering
needed in the clock tree. In these cases, register banks are cre-
ated in the layout after clustering nearby registers [20]-[22],
with the goal being to create balanced clusters and minimize
register displacement from its original position to the new
position in the register bank.

B. Novelties of This MBR Composition Approach

In this paper, MBR composition follows strict rules for
identifying compatible registers that can be merged to MBRs.
Candidate registers should be compatible in terms of function-
ality, timing, placement, and scan connectivity. Also, the reg-
isters replaced by an MBR should exhibit similar input/output
slacks, thus enabling the application of the same useful clock
skew after CTS.

To increase the possibility of identifying compatible regis-
ters and avoiding any timing incompatibilities, selected MBRs
of the original circuit are decomposed and optimized, to
facilitate higher quality MBR generation later in the flow.

MBR composition uses a new weighted integer linear pro-
gramming (ILP) formulation that offers significant reduction
in the total number of registers with reasonable runtime. The
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weights assigned to each MBR candidate correspond to new
simplified physical constraints that facilitate MBR detailed
placement.

During MBR allocation, we allow incomplete MBRs, where
some D/ pin pairs are left tied-off/disconnected. This reduces
register count, while later in the flow some of the unconnected
pins are connected using an extra recovery step.

After MBR composition, timing-driven MBR downsizing
allows us to save additional clock pin capacitance. This further
reduces the clock tree’s power consumption.

The combined effect of the new rules that determine reg-
ister compatibility, the weighted selection of the best MBR
candidates, the allowance of incomplete MBRs, and the post-
composition optimization steps proposed in this paper, result
in significant reductions in register count and clock tree capac-
itance that lead to simplified and power-efficient clock trees.
The presented approach has been integrated into the Mentor—
Nitro-SoC place-and-route tool, achieving good results in an
industrial design flow on modern designs that are already rich
in MBRs after logic synthesis.

The rest of this paper is organized as follows. In Section II,
we discuss the goals of a successful MBR composition and
present briefly the overall MBR composition flow. Section III
presents the details of MBR decomposition and optimiza-
tion. Section IV discusses the compatibility criteria that
determine which registers can be composed into MBRs,
details the methodology for enumerating MBR candidates
and introduces the ILP formulation that minimizes the num-
ber of registers. The placement and mapping of the assigned
MBRs to specific cells of the library is also discussed in
Section IV. Section V introduces the post-MBR composi-
tion optimization steps. Section VI presents the experimental
results, while the conclusions are drawn in Section VII.

II. OVERALL FLOW AND GOALS

MBR composition forms MBRs by grouping either single-
bit flip flops or latches, or already existing MBRs composed
during logic synthesis. The goal is to create larger MBRs,
reducing the register count, and simplifying the clock tree.

A. Goals of the MBR Composition Flow

When two or more registers are selected for merging, they
are removed from the netlist and their nets are reconnected to
the new MBR. The placement of the new MBR determines the
wire length of the reconnected nets, and if not chosen appro-
priately, may cause timing violations. The candidate registers
should have sufficient positive D/Q pin slack to allow them
to reconnect to the newly formed MBR without introducing
or increasing timing violations.

Any preexisting MBR, or any newly formed one, should
include pins that have similar input D-pin slacks and similar
output Q-pin slacks. If the pins of one bit of an MBR have
positive D/negative Q slack, and the pins of another bit exhibit
negative D/positive Q slack, then those pins contradict possi-
ble useful clock skew assignment to the MBR. For example,
considering the setup constraints, the pin with negative D slack
favors a later clock arrival time, while the pin with negative
Q slack prefers an earlier arrival [23].

Such cases of timing slack incompatibility should be
avoided, either by disallowing candidate registers with incom-
patible timing profiles to be merged, or by decomposing
existing MBRs with such characteristics to smaller MBRs.
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Fig. 2. Proposed MBR composition flow follows a balanced restructuring
approach that reduces the complexity of CTS without degrading timing, wire
length, and routing congestion.

The pins assigned to each decomposed register (single-bit or
multibit) can then be grouped according to their timing slack
profile.

Additionally, routing congestion that may arise after MBR
composition should not be overlooked. The generation of large
MBRs brings many wires in the same region, thus possibly cre-
ating routing congestion problems in very dense placements.
Given this, the availability of space and wiring resources
should not be left as an afterthought, but should be included
during MBR selection, mapping, and placement.

B. Flow for MBR Composition

The proposed flow for MBR composition is depicted in
Fig. 2. After the initial placement and optimization, MBRs
that have bits with positive D/negative Q slack, and other bits
with negative D/positive Q slack, are decomposed to smaller
MBRs or single-bit registers. Each of the resulting registers
should contain bits with the same timing slack profile. In our
example, all single-bit registers are upsized, thus increasing the
probability of producing more efficient MBR mappings later.

The resulting circuit is then passed to the core of MBR
composition. Compatible registers are identified, merged to
new MBRs, and appropriately placed, ensuring that the impact
on datapath timing, wire length, and routing congestion does
not offset benefits of a lighter clock tree.

The composition flow permits the generation of incom-
plete MBRs, where some D/Q pin pairs are left tied-
off/disconnected. Incomplete MBRs tackle the MBR bit-width
granularity limitations in typical standard cell libraries, and
help reduce register count. We ensure that the merging to
incomplete MBRs does not negatively affect the area or leak-
age power. Although incomplete MBRs are used during MBR
composition, they nearly all disappear after a final recovery
step at the end of the flow.

Once MBR composition finishes, the MBRs are passed
through a sequence of post-processing optimization steps that
improve the overall result and simplify the CTS that fol-
lows. The first step involves MBR downsizing, with the goal
of reducing MBR area and clock pin capacitance without
degrading timing. The circuit is then legalized to fix any
placement violations produced during MBR composition, and
redistribute the white space produced by the registers replaced
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Fig. 3. MBR decomposition of an 8-bit MBR with timing incompatible

pins. Decomposition leads to four new registers either MBRs or single-bit
registers that are placed in the position of the original MBR. In this example,
the 8- and 4-bit MBRs are assumed to be two-row cells.

by an MBR. On the legalized circuit, we perform one final
optimization step that tries to use as many as possible of
the incomplete MBRs’ pins by redistributing and reconnecting
available nets from nearby registers.

III. MBR DECOMPOSITION AND OPTIMIZATION

Every MBR of the design that contains pins with different
timing profiles is decomposed to registers of smaller bit-width
(namely, for each MBR where a bit’s input-D/output-Q pins
have positive D/negative Q slack, and another bit’s pins exhibit
negative D/positive Q slack). After decomposition, each of the
new registers can be either a single-bit register or an MBR,
and includes pins with exactly the same timing profile.

During decomposition, we try to minimize the number of
decomposed registers. For example, assume the case of the
8-bit MBR shown in Fig. 3, where five pins exhibit positive
Dipositive Q slack, two pins negative D/positive Q slack, and
one pin positive D/negative Q slack. Assuming an example
standard-cell library that includes only 1-, 2-, 4-, and 8-bit
MBRs, the 8-bit MBR implemented as a two-row cell (accord-
ing to Fig. 3) is decomposed to: 1) one 4-bit MBR and one
single-bit register for the five bits with positive D/positive Q
slack; 2) a 2-bit MBR for the two bits with negative D/positive
Q slack; and 3) one additional single-bit register for the bit
with positive D/negative Q slack.

Inside each group (e.g., the group of five pins with positive
Dipositive Q slack), the separation to MBRs is done according
to the available MBRs in the standard cell library and the Q
slack of each pin. The pins are sorted according to their Q
slack, and then assigned in this order to the largest available
MBR of the library. In this way, the pins with large values of
Q slack are separated from the pins with less slack. Note that
incomplete MBRs are not allowed in this step.

The new derived cells are placed temporarily at the position
of the original MBR, while any useful clock skew properties
applied by the designer on the original MBRs are transferred
as is to each of the decomposed cells.

After decomposition, the derived cells can be merged with
other compatible registers, producing more favorable MBR
mappings. The total register count of the design is initially
increased by MBR decomposition, but the final number of
registers is significantly reduced relative to the original design.

After decomposition, we upsize to maximum size all the
single-bit registers with negative Q slack. This improves their
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output-Q pin timing, which increases the probability of merg-
ing with other nearby registers during MBR composition, as
detailed in Section IV. This upsizing only minimally affects
the timing slack on the input D pin of the register, as verified
by the experimental results.

On the other hand, upsizing the single-bit registers increases
their clock pin capacitance. This overhead will later disap-
pear, as those registers will likely be replaced by larger MBRs
with less total clock pin capacitance than that of the original
registers.

MBRs are not upsized at this stage, irrespective of their
timing. As verified experimentally, the extra timing benefit
that we would earn by upsizing MBRs at this stage does not
pay off in reducing either the total register count, or the total
clock pin capacitance at the end of the flow.

IV. MBR COMPOSITION

Even if a group of registers has an equivalent MBR in the
library to replace them, they cannot be arbitrarily merged to
new and larger MBRs. A group of registers can be merged
to a larger MBR only if the registers are compatible in terms
of functionality, scan chain organization, placement, timing
profile, and drive strength.

Once the compatible registers are determined, an ILP-based
optimization is formulated that selects which registers should
be merged to MBRs. At this step, incomplete MBRs are con-
sidered as valid MBR candidates. The weight assigned to each
MBR candidate corresponds to new simplified physical con-
straints that facilitate MBR placement legalization. Once the
MBR candidates have been selected, they are mapped to spe-
cific library cells and placed, after taking into account the
position of the replaced cells and the wire length.

A. Compatibility Checks

For each register in the design, we define a search win-
dow that expands the equivalent height of 20 rows in both
dimensions. Every register placed inside this search window
is checked for compatibility with the current register under
examination. Compatibility is checked serially, starting from
functional and scan compatibility checks, and continuing with
placement, timing, and drive-strength compatibility checks.

Registers can be merged to a new MBR only if there is
an MBR in the library with equivalent functionality. For exam-
ple, a register with a reset pin can only be replaced if an MBR
with a reset pin is in the library. Similarly, scan flip-flops can
be replaced only if scan-enabled multibit versions are avail-
able. Quite a few registers may have no logically equivalent
multibit version, or they may have been specified as fixed
or size-only by the designer, and thus cannot be composed
to MBRs.

Registers are functionally compatible when they share
exactly the same control pins, including clock and clock gat-
ing conditions. Many papers erroneously assume that any
registers in the netlist are functionally compatible, maximiz-
ing the opportunities for MBR composition, but this is far
from true for real industrial designs. Functional compatibility
is performed in two steps, library cell matching and func-
tion equivalence. The former checks whether two registers are
instantiations of library cells with equivalent library pin func-
tions. For instance, a register with an active low clock enable
is marked as incompatible with a register with an active high
clock enable, or a register missing clock enable. The function
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Fig. 4. (a) Example of the formulation of TFR of a single bit register. (b) Two
registers whose TFRs overlap can be considered placement compatible.

equivalence checks whether the nets connected to each pair
of equivalent lib pins are carrying equivalent Boolean func-
tions. For instance, two registers with identical scan enable lib
pin functions will be marked as incompatible if the Boolean
logic on the nets driving the two scan enable lib pins are not
equivalent.

Scan compatibility dictates which registers are compatible,
based on the scan chain definitions. Registers must be in the
same scan partition (i.e., allowed on the same chain). MBRs
may have either a single scan-in and scan-out pin, or multi-
ple independent scan in/out pins (the scan enable pin is still
shared). In the first case, if the scan pins belong to the same
scan partition, then moving scan pins across different scan
chains is allowed, and no additional constraints are imposed
because of the scan chain definitions. However, registers that
belong to ordered scan chain sections may only be composed
to a single MBR with an internal scan chain that preserves the
same scan order within the MBR. In the second case, where
MBR cells with separate scan pins per D/Q pair are used
for composition, no restrictions are imposed, as several scan
chains with different constraints can cross the same MBR,
providing they have a common scan enable signal. Scan com-
patibility in the absence of separate scan pins per D/Q pair is
performed in two steps. In the first step, registers that belong
to different scan partitions are marked incompatible. In the
second step, registers that belong to the same scan partition
are marked as incompatible if they are ordered, but belong to
different ordered sections.

In the following steps, registers are checked for placement
compatibility. For each register, a timing-feasible placement
region is identified by transforming the positive timing slack
of the input D and output Q pins to an equivalent distance that
it can move without causing a timing violation.

Each register input (output) slack value defines a diamond.
At the center of the diamond is the fanin (fanout) gate and
its half diagonal is the equivalent distance. An example of the
timing feasible region (TFR) of a register is shown in Fig. 4(a).
We used Elmore delay for the timing slack to equivalent
distance calculation similar to [19] and [24].

Registers are compatible with respect to placement if their
TFRs overlap, as shown in Fig. 4(b). The placement compat-
ibility is checked on a global or detail placed design to give
a realistic sense of the relative placement of the registers under
consideration for merging.

If the timing slack is negative, the feasible region is limited
to the intersection of the bounding boxes of the violating pins
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with the feasible regions of the rest of the D and Q pins of the
same cell. Even if a negative slack does not permit the cell to
move, it is not left out of placement compatibility checking, as
it has a TFR that matches its footprint, to which other registers
with positive slack can possibly move.

Next, timing compatibility is checked, to avoid merging cells
that have positive D/negative Q slack with cells that exhibit
negative D/positive Q slack. At this point, due to MBR decom-
position, there is no MBR with such contradictory timing
slacks. With this additional check, we ensure that we do not
create new MBRs with this undesirable characteristic.

Even if the D/Q slack signs of two cells are the same,
timing compatibility is preserved only if the magnitude of the
observed slacks is similar. We should not merge registers with
a large difference in timing criticality, because it increases
power when a timing-critical signal forces the MBR to be
upsized unnecessarily for the other signals. We must avoid
very different clock useful skew values, as only one can be
realized for a given MBR, and the difference degrades useful
skew opportunities for other timing paths to/from the MBR.

Finally, the last check is drive-strength compatibility. Two
or more registers are considered compatible if their drive resis-
tance differs by less than 3%. For drive resistance, we refer to
a linear model approximation of the register’s delay as drive
resistance multiplied by load capacitance, with some addi-
tional fixed “intrinsic” delay in the register. A cell with low
drive resistance can drive more capacitance with less delay.
In practice, we use accurate composite current source timing
models.

We need to avoid merging a high drive strength cell with
a low drive strength cell. If this happens, then the derived
MBR should be of high drive strength in order not to degrade
timing (implicitly the low drive strength register is upsized
when merged in the new MBR). However, this would signifi-
cantly increase the MBR’s area and power. By characterizing
two registers with different drive strengths as incompatible,
we avoid such inefficient outcomes.

The only case in which registers are considered compatible,
even if their drive strengths differ, is when a high drive strength
register is not timing critical (it has a lot of output-Q pin slack).
In this case, when multiple registers are merged to a new MBR,
the MBR can use the lower drive strength of the registers from
which it came. The high drive strength registers that participate
in the new MBR are implicitly downsized, thus relinquishing
some of their available slack.

B. MBR Candidate Enumeration and Incomplete MBRs

The compatible registers of the design are represented by
the compatibility graph G in Fig. 5(a). The graph nodes are
the registers, whether single bit or preexisting MBRs, and the
edges of G reflect the compatibility between them.

An MBR can only be formed from registers that are all
compatible with each other. Therefore, the registers that can
be merged to a new MBR form a clique in G. For instance,
the four-node clique {A, B, C, D} and the three-node clique
{B, C, F} can each be mapped to a 4-bit MBR. By enumer-
ating all the cliques of G, we determine the set of candidate
MBRs to consider during MBR composition.

During clique enumeration, a clique is considered valid if
the number of register bits matches the size of at least one
MBR in the cell library. For example, for a cell library that
consists of 1-, 2-, 3-, 4-, and 8-bit MBRs, the three-node clique
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Fig. 5. (a) Compatibility graph of six registers, comprising ten bits in total.
The compatible registers (nodes of the graph) are connected with an edge.
Each register has a name and a size: Al is a single-bit register; F2 is a 2-bit
register; and E4 is a 4-bit MBR inserted during logic synthesis. (b) Possible
groups for MBRs after clique enumeration.

{A, C, E} that involves six register bits is invalid, since a 6-bit
MBR is not available in the library. The clique {A, C, E} is
valid if it is allowed to map to an 8-bit MBR, which would be
incomplete as only six out of the eight D/Q bits are connected.

The table in Fig. 5(b) lists all cliques for the compatibil-
ity graph of Fig. 5(a), and the different bit widths of MBR
cells that can be used for their mapping. Cliques {A, E} and
{A,E, C} need 5- or 6-bit MBRs that are not available, but
they can be mapped to an 8-bit MBR, leaving some pins
unconnected.

Incomplete MBRs may seem a waste of area and leakage
power, but it can be advantageous as MBRs share the regis-
ter control pins and associated logic. For example, replacing
seven single-bit registers (with seven reset and seven clock
connections) with an 8-bit MBR that uses one reset and one
clock wire saves 12 wire segments, even if one D/Q pin pair
out of 8 is disconnected. However, MBRs with internal scan
may not be suitable for this—at the least, the first bit scan
input pin and the last bit scan output pin must be connected
to a scan chain.

Allowing incomplete MBR cells gives additional freedom
to the MBR composition to minimize the number of regis-
ters. To keep the area and leakage overhead under control,
we only consider an incomplete MBR as a valid candidate
for MBR composition when the area of the incomplete MBR
does not exceed the area of the replaced registers multiplied
by a selected overhead allowance factor. Even if incomplete
MBRs are used at this stage, the majority are fully utilized at
the end of the flow by reconnecting nets of nearby registers
to the empty pins of the incomplete MBRs.

To enumerate all cliques of G, we first enumerate all maxi-
mal cliques of G using the Bron—Kerbosch [25] algorithm. For



1506

each maximal clique, we enumerate all the valid subcliques
for the permitted bit widths per the MBR library cells, using
a dynamic programming approach.

The runtime complexity of maximal clique enumeration is
O(3"/3). This is not computationally tractable for large graphs.
Hence, G is partitioned to a set of connected components,
which are further decomposed to a set of subgraphs using
k-means clustering. Each subgraph cannot exceed 30 nodes.
The partitioning is driven by the register clock pin positions,
using Manhattan distance, to maximize the clock tree power
reduction achieved by MBR composition. At each iteration of
k-means, flops are assigned to clusters, and cluster centers are
then recalculated to reflect the new flop-to-cluster assignment.
At each iteration, when a cluster reaches its limit of 30 nodes,
it cannot accept any new nodes and the unassigned flops at
each iteration are assigned to other clusters that are not full.
Increasing this bound above 30 did not help, as the slight
improvement cost too much additional runtime. As detailed in
the experimental results presented in Section VI, the majority
of the connected components consist of fewer than ten nodes
and do not require further partitioning. Partitioning is only
applied to 5% of the connected components that consist of
more than 30 nodes.

C. ILP Formulation

Clique enumeration defines the set M = {My, M1, ..., My}
of valid MBR candidates. A register of the original design
may participate in various MBR candidates. This attribute is
declared via binary variables a;; € {0, 1}, where a;; = 1 if cell j
participates to MBR candidate M;, otherwise a;; = 0. To iden-
tify which candidate MBRs are selected from among the MBR
candidates, we add a binary variable x; € {0, 1}; x; = 1 when
MBR M; is assigned to replace the constituent compatible reg-
isters, else x; = 0. When the register j is grouped in MBR M;,
and the corresponding MBR is selected, then both x; and a;;
should equal one. The total number of registers is minimized
by solving the following integer linear program:

M|
minimize Zwix,-
i=1
M|
subject to V register j : Zal;,'xi =1; aj,x; €{0,1}.
i=1

The constraint added for each register j guarantees that each
register will be part of only one MBR. The cost function of the
ILP does not treat all MBR candidates equally. Each candidate
MBR M; is associated with a weight w;; the smaller the weight
w;, the more favorable the choice of M;.

D. Weights to Limit Wire Length and Congestion

MBRs, due to their multiple input and output pins, lead to
wire concentration, increasing the possibility of local routing
overutilization. To avoid this, we aim to spread the routing
demand to nearby regions by penalizing (with appropriate
weights) the composition of new large MBRs very close to
other already formed MBRs. In this way, we implicitly han-
dle the possible increase in routing congestion after MBR
composition. Considering routing congestion explicitly in the
ILP would require the addition of a routing utilization model
or more constraints. However, our experimental results in
Section VI show that the weighting heuristic chosen to handle
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Fig. 6. Initial placement of registers of the compatibility graph in Fig. 5(a).
Each register’s size corresponds roughly to its bit width (number of D and
Q pins). To improve routability after mapping to MBRs, we check inside
the polygon surrounding the clique for other registers. The fewer intervening
registers, the more favorable the candidate MBR.

the MBR-specific routing demand is adequate for achieving
our goal without increasing the initial routing congestion.

The weight assigned to each candidate MBR is based on
the relative placement of the compatible registers that will
be merged to this MBR. The most favorable MBR candidate,
which receives the lowest weight, is one that avoids any other
closely placed compatible registers that do not participate in
the clique and could belong in another composed MBR. This
limits the probability that the nets of the two new MBRs cross
each other, keeping routing utilization under control.

For each MBR candidate, we define a polygon formed by
the corners of the participating registers. We compute the
convex hull formed by the outer corners of those registers.

Fig. 6 illustrates the test polygon that corresponds to
the four-node clique {A, B, C,D} or the three-node clique
{A, B, C}, which produce, respectively, a 4-bit and a 3-bit
MBR candidate. All registers of the {A, B, C, D} clique are
part of the test polygon, and no other compatible register
lies in the same region. So this choice is the most favorable,
and receives the minimum weight. The 4-bit MBR candidate
has a clear area to be placed physically separate from any
other MBR. The empty space, which will be available after
removing the participating compatible cells, roughly defines
the room to place the MBR. Even though this white space is
not contiguous as required to place the MBR, placement legal-
ization is simplified because no other register will be placed in
the same area. It also reduces the displacement of nonregister
cells that exist in the same area. Registers are larger and often
have higher placement priority, so smaller movement of fewer
registers helps minimize the placement disturbance.

For the candidate 3-bit MBR of clique {A, B, C} in Fig. 6,
the polygon defined by the corners of A, B, and C, includes the
compatible register D. This composition is worse, as register
D may merge with another MBR that will be placed near the
3-bit MBR, which will increase the routing resource utilization
locally.

By weighting each candidate MBR M;, we promote the
composition of large MBRs, when the region defined by the
constituent compatible registers is clean of other registers.
When there are many intervening registers, we promote the
selection of smaller, but clean, MBRs. This is achieved with
a heuristic weight w; for each candidate MBR M; as follows:

]/bi, n; =0
wi=1b2", 0<n <b;
00, n; > b;
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MBR candidates and their weights
Initial| 2-bit | 3-bit 4-bit 5-bit | 6-bit
A 1.00|AB 0.50| BF 0.33|ABCD 0.25|AE 0.20|AEC 0.17
B 1.00|AC 0.50| CF 0.33| BCF 8.00| Mapped to 8-bit
C 1.00|AD 0.50(|ABD 0.33 incomplete MBR
D 1.00|BC 4.00|ABC 6.00
E 1.00|BD 0.50|ACD 0.33
F 1.00|CD 0.50(BCD 0.33

Best with only complete MBRs
1.00 + 0.33+0.33 = 1.66

Best allowing incomplete MBRs
0.20 + 0.50 + 0.33=1.03

I LI | 8bit AR
B [ o |
\ |3bit BF | ‘ | - |

Fig. 7. Weights of candidate MBRs for the example in Fig. 5 and the best
solution. The 5- and 6-bit can map only to an 8-bit incomplete MBR.

where b; is the number of bits of the registers that will be
merged to MBR M; and n; is the number of other compatible
registers that block the convex polygon defined by the outer-
most corners of the registers replaced by M;. To favor merging
of registers, a weight of 1 is assigned to existing registers.

A register is a blocking register for M; if its center is inside
the corresponding test polygon and it is not a constituent reg-
ister of M;. For the example shown in Fig. 5(a), the clique
{A,B,D} has {b;,n;} = {3,0} = w; = 1/3, as it is not
blocked by any other register in Fig. 6. Whereas the clique
{A, B, C} has {b;,n;} = {3, 1} = w; = 6 because the center
of D is inside the polygon defined by the outmost corners of
{A, B, C}.

When the test polygon for each candidate M; is free of any
other compatible registers, the weight promotes the selection
of larger MBRs. For instance, the weight of a clean 8-bit MBR
is 1/8, which is less than the 1/2 = 1/4 41/4 weight of two
clean 4-bit MBRs needed to cover the same number of bits.

When there are obstacle registers, the selection of large
MBRs is penalized relative to the selection of smaller MBRs.
Consider an example 8-bit MBR candidate that has one obsta-
cle register, so {b;,n;} = {8, 1}. In this case, the weight of
this candidate would be w; = 16. The equivalent choice with
two smaller 4-bit MBRs would have one clean MBR with
{bi,n;} = {4,0} = w; = 1/4, and another 4-bit MBR that
includes the intervening register, {b;, n;} = {4,1} = w; = 8.
The total cost of the second option is 8.25, causing the ILP to
select the two 4-bit MBRs in preference to the 8-bit MBR. It
is more likely that the two 4-bit MBRs can be placed with
reduced competition for routing resources with the intervening
register. Large MBRs may reduce the register count but can
create routability problems when placed close to other MBRs,
and their large area can increase the placement difficulty [26].
In future work, we plan to explore the possibility that, instead
of penalizing the MBR candidates with obstacle registers
through an increased weight, we completely remove them from
the candidate list.

Fig. 7 summarizes the weights for the MBR candidates of
the compatibility graph of Fig. 5, with placement per Fig. 6.
When no incomplete MBRs are allowed, cliques {B, F'} and
{A, C, D} are mapped to 3-bit MBRs, while cell E is kept sep-
arate. This solution reduces the initial six registers to three.
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When incomplete MBRs are allowed, the same final regis-
ter count is achieved with a different final outcome. Both
choices in Fig. 7 minimize the ILP cost function, and allow
the three final MBRs to be placed in distinct regions with-
out intersecting each other. Before placement legalization, the
composed MBRs may overlap with other nonregister cells in
the region, but the weights assigned to each candidate reduce
the chance of overlapping with neighboring MBRs. This exam-
ple highlights the option of incomplete MBRs. In practice, the
incomplete register AE (shown in Fig. 7) will be rejected, as
its area is significantly larger than the area of the registers it
replaces.

Candidate MBRs involve both the initial registers of the
design and the ones derived after MBR decomposition. As
described in Section III, the MBRs resulting after decomposi-
tion are placed at the position of the decomposed MBR. This
initial placement decision does not limit the creation of large
MBRs, as verified experimentally, since the test polygon for
every candidate clique/MBR covers only compatible registers.
The decomposed MBRs lead to some compatible registers and
some incompatible ones (this is the reason why we decom-
posed in the first place). So the incompatible ones do not block
the formation of larger cliques.

E. MBR Mapping

The ILP selects candidate MBRs that minimize the total
number of registers and are less intertwined in the layout. For
each MBR, the ILP selects just its bit width and the functional
class of cells to which it belongs. Two further steps are needed
for MBR assignment: 1) MBR mapping and 2) placement.

We must map the assigned MBR to a specific library cell.
From the functional compatibility checks performed earlier,
we know there is a compatible MBR in the library. From the
available MBRs, we should select the one that best fits the
timing and the drive strength profiles of the registers that it
replaces.

The drive strength of the selected MBR should match the
maximum drive strength of the registers that will be replaced
by the MBR. This avoids degrading the timing of the design,
but may incur an area and power overhead. However, since the
registers to be merged are already drive strength compatible,
the area overhead is avoided.

Registers with a high drive strength but a large timing slack
(checked during drive-strength compatibility) do not determine
the drive strength of the new MBR. In this manner, those
registers are implicitly downsized and their slack is reduced.

Any extra area paid depends on the difference of the drive
strength between the composed registers versus how many
control pins are shared by the MBR. To minimize clock power,
we select the MBR with the lowest pin capacitance from the
MBR library cells that closely match the drive strength of the
registers to be replaced by the MBR. Due to the large variety
of MBR cells in modern libraries, if the drive strength and
the clock pin capacitance are not appropriately selected, they
may cancel the benefits of MBR composition by creating sig-
nificant timing problems or diminishing the clock tree power
reduction.

MBR mapping also ensures that the scan chain definitions
encoded as scan compatibility constraints are preserved with
the lowest possible cost. MBRs with multiple scan in/out
pins may seem attractive as their area and power are lower
than their counterparts with internal scan. In reality, MBRs
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with multiple scan in/out pins incur the extra routing resource
cost of the external scan chain connectivity. For this reason,
MBR library cells with external scan chains are avoided during
MBR selection—they are typically selected only when there
is no other alternative, or for mapping registers that are non
consecutive and belong to an ordered scan section.

F. MBR Connection and Placement

After mapping to the assigned MBR, we must determine
a location for the new cell, and connect the input and output
nets of the MBR to the many available pins.

We first assign nets to pins of the MBR. We topologically
sort the replaced cells by their horizontal position, and con-
nect the pins of the leftmost cell to the leftmost bit of the
MBR. This is done for the input-D and output-Q pins, as well
as any control pins. If these are registers on an ordered scan
chain, the order of pin assignment is dictated by the scan order.

The new MBR is placed in the position that minimizes the
length of the wires connected to its D and Q pins. To identify
the best location, we use a linear programming (LP) approach.

The new MBR must be placed in the common timing-
feasible region of the compatible cells. For each D/Q pin of
the replaced registers, we identify their fan-in and fan-out pins
to which the MBR will connect, respecting the connectivity
of the original registers.

For each MBR pin and its connections, we create a bounding
box. We reference each MBR pin’s coordinates relative to the
MBR’s lower left corner, plus some offset (dx;, dy;) for the
pin’s location on the cell. The lower left (x, y) coordinates of
the MBR are the variables to be determined by the LP.

For the bounding box that corresponds to the input or out-
put connections of each pin i, we use the half-perimeter wire
length to estimate the wire length of the new wires. For each
bounding box, the approximate wire length wil; is

wl; = max{xy, x + dx;} — min{x;, x + dx;}
+ max{ys, y + dy;} — min{y;, y + dy;}

where (x;, xp, y1, yn) are the bounding box coordinates, and
(x, y) are coordinates of the MBR’s lower left corner. We use
a LP to minimize the wire length of the D/Q pins of the MBR

M
minimize E wli;
i=1

subject to (x,y) € MBR’s TFR.

The max and min functions in the objective are removed by
the use of extra helper variables. For example, max{x;, x+dx;}
is transformed to inequality constraints x, < z and x+dx; < z,
while the opposite inequality is used for the min function.

Every new MBR replaces the set of merged registers, and its
placement reuses the space freed by them. The drive strength
compatibility check ensures that the area of the replaced
cells is enough to contain the area of the larger composed
MBR. However, the reorganization of this freed space for plac-
ing the new MBR causes the rest of the preplaced gates in
the same region to move slightly. As we verified experimen-
tally, the legalization step that follows MBR placement, along
with the incremental timing-driven optimization performed by
default after legalization, manages to handle the movement of
the rest of the gates without any true disturbance to timing,
while preserving the desired wire length reduction.
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Algorithm 1 MBR Downsizing

1: foreach register € MBRs do

2 prevINS < TNS; prevWNS < WNS;

3 while register is downsizable do

4: Downsize register;

5: Run Incremental STA;

6 if prevINS < TNS && prevWNS < WNS then
7 prevINS < TNS; prevWNS < WNS

8

else
Undo downsize; Break;
10: end if
11: end while
12:  end for

V. POST MBR—COMPOSITION STEPS

After MBR composition, there are two further optimiza-
tions. As shown in Fig. 2, these are MBR downsizing and the
recovery of incomplete MBRs, with placement legalization in
between. Downsizing reduces the clock pin capacitance and
the area of the MBRs by sizing them down to the point that
does not degrade timing. Recovery of incomplete MBRs bet-
ter utilizes the unused pins of incomplete MBRs by locally
merging compatible MBRs with incomplete MBRs.

A. MBR Downsizing

During MBR mapping, we selected for each new MBR the
library cell that best matched the drive strength of the replaced
registers, without performing any additional optimization that
would tradeoff timing slack with MBR area and clock pin
capacitance. However, based on the timing profile of each reg-
ister, significant clock pin capacitance and area can be saved
by downsizing the nontiming-critical MBR cells.

Downsizing the MBRs uses a brute-force approach, avoid-
ing violating either the total negative slack (TNS) or the worst
negative slack (WNS) of the design, shown in Algorithm 1.

For each MBR, we find the set of equivalent library cells.
The cells are sorted in descending order based on their drive
strength. We test the cells with lower drive strength than the
examined MBR. The MBR can be downsized if there is at least
one more cell with a size smaller than the examined MBR that
has not yet been tested. After every downsizing, the TNS and
the WNS generated by this change must not be worse than the
TNS and WNS using the previous gate size. We stop searching
when the MBR resize degrades TNS and WNS, in which case
we keep the size from the previous round.

B. Recovery of the Unused Pins of Incomplete MBRs

After the placement has been legalized, we identify local
compatible registers that can be merged with the incomplete
MBRs to better utilize their disconnected pins. For example,
if an 8-bit incomplete MBR with one empty bit is next to
a compatible single-bit register, we can remove the single-bit
register and connect its nets to the pins of the empty bit of the
8-bit MBR. This reduces both number of incomplete MBRs
and total number of registers.

The steps in the recovery of incomplete MBRs are shown
in Algorithm 2. First, we find all the MBRs that have uncon-
nected pins. For each incomplete MBR, we find all the
compatible registers that are placed inside its timing-feasible
region. We consider only registers with bit width less than the
empty pins of the incomplete MBR. In this way, we do not
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Algorithm 2 Recovery of Incomplete MBRs

1: foreach register € Incomplete MBRs do

2 pins <— NumberOfUnusedPins (register);

3: nearbyRegs < Registers inside fixed size window

4 foreach s € nearbyRegs do

5 if lisCompatible (s, register) or
NumberOfPins(s) > pins then

6: Remove s from nearbyRegs;

7: end if

8: end for

9: Sort nearbyRegs based on number of pins

10:  foreach s € nearbyRegs do
11: if NumberOfPins(s) < pins then

12: Connect Nets(s) to the unused pins of register;
13: pins < pins — NumberOfPins(s);

14: Remove s from the design;

15: if pins == 0 then Break;

16: end if

17:  end for

18: end for

need to break down existing MBRs to reuse their pins; we can
just reconnect the nets of the smaller nearby registers.

All candidate registers are sorted in descending order based
on their number of pins. If two registers have the same number
of pins, the register that is closer to the MBR is ordered first.
Next, while there are empty pins in the examined MBR, we
determine if we can completely remove a nearby compatible
register and connect its nets to the unconnected pins of the
MBR. If all pins of the MBR are connected, we move to the
next incomplete MBR. Note that incomplete MBRs may still
remain after checking all the nearby registers.

VI. EXPERIMENTAL RESULTS

The MBR composition methodology has been tested on six
industrial benchmarks that are rich in MBRs after logic synthe-
sis. Designs D1-D5 correspond to implementations at 28 nm,
while D6 is implemented in a 16-nm process technology. The
industrial designs used represent real use cases that were actu-
ally taped out. In all cases, the designs were optimized both in
terms of physical layout density and timing. On average, the
designs achieve an 80% layout density; above that, the designs
are unroutable.

Our methodology aims to reduce the register count and
clock tree capacitance, with only marginal disturbance to tim-
ing, wire length, and routing congestion. Before presenting the
overall results for all designs, we would like to focus on two
distinct cases that highlight how the proposed MBR composi-
tion flow performs under different scenarios. Two clock nets
were selected in a placed design and CTS was performed on
them, with and without the application of the proposed MBR
composition flow. MBR composition was applied only on the
registers driven by those clock nets.

The first case (case A) is a clock net that drives 3571 regis-
ters, which are mostly single-bit registers. This example shows
the efficiency of the MBR composition step itself. Multiple
compatible registers are composed to larger MBRs, allowing
the use of incomplete MBRs.

The second case (case B) is a clock net that has a simi-
lar fanout, consisting of 2795 registers, but a larger portion
are existing MBRs formed in logic synthesis. This example
highlights the power of MBR decomposition and optimization,
combined with MBR recomposition, and sizing.
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Fig. 8. Initial distribution of register sizes, and after each major step of the
proposed flow for the clock net of (a) case A and (b) case B.

The initial configuration of case A is shown in the initial bar
of Fig. 8(a). The 3571 registers belong to several categories.
The library used supports 1-, 2-, 3-, 4-, and 8-bit registers.
After decomposition, the register count increases to 3588, due
to decomposition of the MBRs with timing-incompatible pins.
The MBR composition flow reduces the total number of reg-
isters by 37% relative to the number of registers in the initial
design. Single-bit registers are reduced to almost a third of
the initial count, and the number of 4- and 8-bit registers is
increased accordingly.

Incomplete MBRs are allowed during MBR composition,
provided that each incomplete MBR does not impose more
than 5% area overhead relative to the area of the registers that
it replaced. After MBR composition, there are 13 incomplete
MBRs, all 8-bit MBRs. Following the unused pin recovery, the
final number of incomplete registers is reduced to 9, reducing
the total number of registers to 2229.

Note that the efficiency of the proposed MBR composition
flow is actually higher if we take into account that 1192 of
the initial 3571 registers (almost a third) were skipped during
the composition flow. They either do not match functionally to
any MBR library cell, or there is no larger MBR in the library
with the same functionality. From the 3571 initial registers,
only 2159 of them were composable, which was reduced to
1037 registers (2229 final registers, minus the 1192 skipped
ones), corresponding to an almost 50% register reduction.

Similar results are derived for case B, as shown in Fig. 8(b).
With more MBRs initially, MBR decomposition touched more
registers, and the 2795 initial registers increased to 2814 after
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TABLE I
PROPERTIES OF TWO EXAMPLE CLOCK NETS OF THE INITIAL DESIGN
AND THEIR PROPERTIES AFTER THE APPLICATION
OF THE PROPOSED MBR COMPOSITION
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TABLE II
INITIAL DISTRIBUTION OF REGISTER SIZES
AND AFTER THE PROPOSED FLOW

Initial D1 D2 D3 D4 D5 D6

Properties Case A Case B -
p Initial [Proposed| Initial [Proposed 1-bit 21070 33918 19561 15478 19561 34938
Max Leaf Levels 10 9 9 9 2-bit 1116 0 1453 3513 1453 4771
Rise/Fall 742 748] 718 622 3-bit 995 0 1726 1619 1726 2463
Avg. Latency (ps)
Rise/Fall Avg. 4-bit 1196 3483 2409 4180 2409 48441
Clock Skew (ps) 106 103 100 102 8-bit 5445 0 9370 25148 9370 386
Clock .
Wirelength (mm) 32.0 31.1 342 31.5 #Registers | 29822 37401 34519 49938 34519 90999
Buffer Count 287 229 242 224
Total 8.9 78 9.1 81 Proposed | D1 D2 D3 D4 D5 D6
Capacitance (pF) ) ) ) )
1-bit 7739 12187 5202 9622 6446 36105
2-bit 1576 1297 1340 2928 2445 3984
decorr:ip0§ition. Despit.e t.}:iis in(l:reasg, M(];Bl?1 com;iositiolr)l ancll 3-bit 1226 1000 1393 1967 2213 3225
unused pin recovery significantly reduced the total number o .
registers. After the application of the flow, the final number of 4-bit 1842 2844 2220 4781 3785 9393
registers is 1862 (with 21 incomplete MBRs), corresponding to 8-bit 6402 1892 10761 25466 9390 19608
33% regi§ter savings. Again, not all registers. were composable. Incomplete 247 562 306 165 619 78
Case B included 962 noncomposable registers. Subtracting .
these from the register count, the number of registers saved ~_¥Registers | 19032 19782 21722 44929 24898 72393
by the proposed method was 50%. Savings 36%  47%  37%  10%  28% @ 20%

The register reductions achieved directly translate to power,
buffer, and wire length savings in the clock tree network.
Table I summarizes the results achieved for cases A and B
after applying CTS on the initial clock nets and on those
restructured by the proposed MBR composition flow.

Clock tree capacitance, wire length, and buffer count are
all reduced in both cases examined. In case A, the savings
are higher due to the larger number of single-bit registers that
allowed the MBR composition to explore more efficient MBR
allocation choices. For example, clock tree capacitance and
buffer count were reduced by 12% and 20%, respectively. In
case B, the composable MBRs were fewer and already had
a larger bit width, limiting the available improvements for the
proposed method. However, in addition to the 7% reduction
in buffer count, measurable savings are still observed in clock
tree capacitance and wire length (11% and 7.8%, respectively).
The clock skew is also improved, by reducing the number of
levels in the clock tree from 10 to 9 in case A, and by reducing
the clock wire length in both cases.

The clock leaf number and the clock pin capacitance reduc-
tion typically translate to lower clock latency. However, there
are cases where the clock latency does not exhibit the expected
reduction, due to the MBR placement algorithm that mini-
mizes the total, and not specifically the clock tree wire length.
As a result, MBRs might move away from their clock driver.
In the case where the clock leaf defining the clock latency
moves even further, a slight latency increase is observed. The
same applies to clock skew, which is typically reduced; there
are cases where slight increases can occur, due to the non
CTS-friendly placement.

The MBR composition flow shown in Fig. 2 achieves similar
improvements when applied across all the clock nets of the
industrial designs. Also, we did not apply any additional useful
skew offsets in our flow for these results.

Table II summarizes the register counts of the initial and the
MBR-restructured designs. Even in designs with a large ini-
tial portion of MBRs, many registers were replaced by larger

MBRs. The average savings in the total number of registers
achieved by the proposed method is almost 30%. The largest
savings are observed in design D2, which had the largest initial
number of single-bit registers, while the smallest savings are
observed in design D4, where the majority of the registers were
already large 8-bit MBRs. The D6 number of single-bit regis-
ters actually increased, due to the initial MBR decomposition,
but this permits more register composition with compatible
slacks, resulting in an overall register count reduction of 20%.

The reported savings correspond to a significant improve-
ment after taking into account how constrained the application
of MBR composition is in real industrial designs that are rich
in MBRs after logic synthesis. For example, in all examined
cases, the compatibility graphs were extremely fragmented,
due to the strict compatibility constraints. Each compatibility
graph contained multiple independent subgraphs with sizes
fewer than ten nodes (recall that a node can correspond to
an already formed MBR during logic synthesis). These small
subgraphs were more than 85% of the total subgraphs and
covered around 60% of the total register bits of the designs.
MBR candidate enumeration and the ILP-based MBR assign-
ment combine to get the most out of these small subgraphs. In
larger graphs (less than 5% of the subgraphs consist of more
than 30 nodes), the proposed approach achieves equally good
results, but with increased runtime.

Several other design characteristics of the initial and restruc-
tured designs are shown in Table III. By reducing the number
of registers, MBR composition also reduces the complexity of
the clock tree. Clock tree capacitance is reduced by 9.22%
and buffer count is reduced by 11.45%, resulting in a similar
reduction in clock power.

Clock and total wire length of the design is also reduced,
due both to fewer registers and the wire-length-minimization-
driven MBR placement. Note that in designs rich in MBRs,
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TABLE III
INDUSTRIAL DESIGNS CHARACTERISTICS BEFORE (INIT) AND AFTER THE PROPOSED MBR COMPOSITION FLOW (NEW)

Design | Aven Toul Wire | WNs | TNS Clock Wire | #Clock rouall Bt
(um?) Cells length (ps) (ns) (ps) length Buffers (oF) Edges
(m) (mm)
Init 598015 498434 14.19 47 1.82 176 669 2218 91 3
D1 | New 596903 487646 14.01 42 0.48 194 613 1708 81 0
Save 0.19% 2.16% 1.27% 10.64% 73.46% | -10.51% 8.37% 22.99% 10.99% 100%
Init 952021 853912 16.67 719 865.33 196 453 3296 106 4
D2 | New 943771 836690 16.57 616 869.18 181 416 2911 90 1
Save 0.87% 2.02% 0.60% 14.33% -0.45% 7.63% 8.17% 11.68% 15.09% 75%
Init 1118762 666540 23.12 585 44.73 221 631 2825 132 382
D3 | New 1118056 655151 23.76 665 69.75 189 603 2338 120 192
Save 0.06% 1.71% 2.77% | -13.87% | -55.93% 14.45% 4.44% 17.24% 9.09% 49.74%
Init 2801693 | 1995640 65.04 2562 | 9018.63 264 1230 6459 272 46
D4 | New | 2800580 | 1984050 63.59 2548 | 9490.52 282 1219 6332 272 54
Save 0.04% 0.58% 2.23% 0.55% -5.23% -6.82% 0.89% 1.97% 0.00% | -21.74%
Init 1158447 693565 24.79 505 85.75 335 436 1875 92 354
D5 | New 1152705 683582 24.80 435 42.20 233 417 1671 83 199
Save 0.50% 1.44% -0.04% 13.86% 50.79% 30.30% 4.36% 10.88% 9.78% 43.79%
Init 653013 | 1188878 28.43 127 118.12 126 478 2762 192 0
D6 | New 649263 | 1165887 28.49 109 77.51 126 437 2654 172 0
Save 0.57% 1.93% -0.21% 14.17% 34.38% 0.00% 8.58% 3.91% 10.42% -

the clock wire length is a smaller percentage of the total wire
length. The reduction of registers also led to a 0.37% and
1.64% average reduction in the total area of the designs and
the total number of cells, respectively.

Although we perform significant circuit restructuring, on
average we do not increase the timing violations, as high-
lighted by the WNS and the TNS of the presented benchmarks.
On average, we reduce both WNS and TNS by 6.64% and
16.17%, respectively. The only large discrepancy appears in
design D3, where MBR composition leads to an increase in
timing violations.

Design D3 includes several highly dense regions that also
include timing-critical (start) endpoints that span across many
paths of the design. When composing new MBRs in such
dense regions, the rest of the cells in the region are slightly
moved, even if they do not participate in the newly formed
MBRs. How far the rest of the cells move from their original
positions depends on the internals of the detailed placement
engine, and how it prioritizes each cell’s type (sequential or
combinational), its area, or its timing criticality. In the case of
D3, the slight displacement of timing-critical cells that affect
many timing endpoints (mostly single-bit register cells that
did not participate in MBR composition) causes a cumulative
effect that increases the TNS of the design.

There is no timing degradation if we avoid MBR compo-
sition in regions with excessive cell density. However, this
approach leads to fewer composed MBRs, and to more reg-
isters in total at the end. The results given in this paper do
not take such precautions, and every region (independent of
its utilization) participates in MBR composition. This fully

unconstrained approach decreases the total number of registers
to 21722 (37% savings—initially there were 34519 registers)
with a 50% TNS overhead relative to the initial design. When
we skip the registers that belong to regions with more than
95% cell density, then the total number of registers becomes
22467 (34% savings relative to the initial design) while setup
timing (WNS and TNS) is not degraded. Further decreasing
the density cut-off threshold, as tested with additional exper-
iments for 90% and 85% densities, increases register count
without a noticeable difference in TNS.

A similar trend is observed regarding the final clock skew.
The majority of the simplified clock trees produced after MBR
composition demonstrate improved behavior with respect to
clock skew, except in D1 and D4, where clock skew is
marginally worse, due to an unfavorable placement of the
MBR cells.

In this paper, we do not aim at reducing the overall routing
congestion of the design. Rather, our goal is to not degrade
the global routing congestion profile of the initial design after
applying MBR composition to reduce the number of registers
and simplify CTS. This goal is achieved, as shown by the
results reported in the last column of Table III. The difference
in overflow edges [27], without and with our MBR compo-
sition methodology, is marginal due to the placement-aware
weight selection for candidate MBRs in the ILP formulation.

In addition to the reduction of the number of overflow rout-
ing edges, as depicted in the rightmost column of Table III,
the restructuring of the designs does not globally alter the
routing congestion profile of their critical edges. The rout-
ing edges with high utilization (demand/capacity ratio) receive
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Fig. 9. Average percentage of change in the utilization per edge for each

group of edges that initially exhibited similar utilization (globally). After MBR
composition, initial low-utilization edges receive more load, thus increasing on
average their utilization, while edges with high utilization on average receive
less load.

less utilization after MBR composition and detailed place-
ment, while routing edges with low utilization are additionally
loaded.

This behavior is highlighted in Fig. 9(a) for all routing
edges of DI1. Each bar of Fig. 9(a) corresponds to the edges
of the initial design that exhibit similar utilization, i.e., all
edges that exhibit up to 0.1 utilization are covered in the
leftmost bar of Fig. 9(a). For each of the initial utilization
groups, Fig. 9(a) records the average percentage of change
(positive or negative) to their utilization after MBR composi-
tion. Following the presented data, it is evident that the routing
edges that initially exhibited low utilization have increased
their utilization, and the ones with high utilization are less
stressed after MBR composition. The same conclusion can be
derived by the data presented in Fig. 9(b) and (c) for designs
D2 and D3, respectively, while the rest of the designs exhibit
similar behavior.

To isolate the routing congestion near the regions that
include an MBR, we identified the routing edges that pass
on top of or next to MBRs in both initial designs and designs
derived after applying the proposed MBR composition flow.
For each edge, we recorded the routing utilization in the initial
and final designs. The histogram of utilization for those routing
edges is depicted in Fig. 10 for designs D1-D3. In all cases,
the number of routing edges that are close to MBRs increases
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Fig. 10. Histogram of the utilization of all routing edges that are close to
MBRs in the initial designs and final designs after applying the proposed
MBR composition flow.
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Fig. 11. Runtime of all the intermediate steps involved in the proposed MBR

composition methodology including also the runtime of CTS.

(due to the additional MBRs composed by the proposed flow),
but their utilization remains under control, following the same
trend depicted for all the routing edges of the design in Fig. 9.

Finally, Fig. 11 highlights the runtime of each part of the
MBR composition flow shown in Fig. 2. The flow was exe-
cuted on an Intel Haswell server operating at 2.7 GHz with
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512 GB of RAM. In all cases, MBR composition corre-
sponds roughly to half of the runtime of CTS, with the most
expensive parts being the mapping of the selected MBRs and
their legalization. The solution of the ILP, although consum-
ing a non-negligible part of the overall runtime, is not the
bottleneck for the application of the proposed MBR compo-
sition. On the contrary, the proposed enumerative ILP-driven
methodology appropriately handles both many small compati-
bility subgraphs and small number of larger subgraphs, while
significantly reducing the total number of registers.

VII. CONCLUSION

Applying MBR composition on industrial benchmarks
requires a balanced restructuring approach. In addition to the
reduction in the number of registers and clock tree capaci-
tance, it should also keep the potential degradation in slack,
wire length, and routing congestion under control.

In this paper, we present a complete MBR composition flow
that explores almost every aspect involved in the use of MBRs
during physical design. MBR decomposition is introduced to
partially alleviate the timing incompatibilities derived after the
placement of the original netlist. Registers are then merged
to form larger MBRs employing an ILP-based optimization
that uses new and realistic rules that determine register com-
patibility. The ILP has a weighted selection of the best MBR
candidates to facilitate their legalization and reduce contention
for local routing resources. We permit incomplete MBRs to
achieve additional MBR composition, but ensure that this is
not detrimental for area or leakage.

The combined effect of these steps significantly reduces reg-
ister count and, together with the timing-driven sizing of the
MBRs, effectively reduces clock pin capacitance. The bene-
fits are shown across six industrial benchmarks, demonstrating
the effectiveness in producing a lighter clock tree without
degrading timing or increasing routing congestion.
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