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PhaseNoC: Versatile Network Traffic Isolation
Through TDM-Scheduled Virtual Channels
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Abstract—As multi/many-core architectures evolve, the
demands on the network-on-chip (NoC) are amplified. In addi-
tion to high performance and physical scalability, the NoC is
increasingly required to also provide specialized functionality,
such as network virtualization, flow isolation, and quality-of-
service. Although traditional architectures supporting virtual
channels (VCs) offer the resources for flow partitioning and isola-
tion, an adversarial workload can still interfere and degrade the
performance of other workloads that are active in a different set
of VCs. In this paper, we present PhaseNoC, a truly noninterfer-
ing VC-based architecture that adopts time-division multiplexing
at the VC level. Distinct flows, or application domains, mapped to
disjoint sets of VCs are isolated, both inside the router’s pipeline
and at the network level. Any latency overhead is minimized
by appropriate scheduling of flows in separate phases of opera-
tion, irrespective of the chosen topology. When strict isolation is
not required, the proposed architecture can employ opportunistic
bandwidth stealing. This novel mechanism works synergistically
with the baseline PhaseNoC techniques to improve the overall
latency/throughput characteristics of the NoC, while still pre-
serving performance isolation. Experimental results corroborate
that—with lower cost than state-of-the-art NoC architectures,
and with minimum latency overhead—PhaseNoC removes any
flow interference and allows for efficient network traffic isolation.

Index Terms—Network traffic isolation, network-on-
chip (NoC), time-division multiplexing (TDM), virtual
channels (VCs), virtual networks.

I. INTRODUCTION

NETWORKS-ON-CHIP (NoCs) have established their
position as the de facto communication medium in mul-

ticore systems, owing to their scalability attributes. To sustain
system scalability into the many-core domain, it is imper-
ative that the NoCs hardware cost is minimized, while not
sacrificing network performance [1]. This objective is nontriv-
ial, since the functionality expected from the NoC continues
to grow. For instance, multicore systems increasingly require
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some form(s) of isolation—or separation—among the traffic
flows of concurrently executing applications. In the simplest
case, such segregation attributes are desired due to restric-
tions imposed by higher-level protocols, e.g., cache coherence
in chip multiprocessors (CMPs). Constraints of this type are
typically satisfied through static separation of flows (termed
“message classes”) using virtual channels (VCs) within the
NoC [2]. Nevertheless, the requirements of flow isolation are
often more elaborate than mere physical partitioning, and
include advanced rules that describe how the flows are allowed
to interact, or the level of service that each flow should receive.

The concept of flow isolation can manifest in two
forms: 1) high-assurance, secure-grade noninterference, as
required by systems demanding security guarantees [3]
and 2) performance isolation with minimum-bandwidth and
bounded-latency quality-of-service (QoS) guarantees [4].
Noninterference is becoming increasingly relevant within the
context of virtual execution platforms, whereby the shar-
ing of hardware resources must be impervious to cross-
interference [4].

Existing solutions have only been able to satisfy one of the
two above-mentioned objectives; i.e., either strict isolation at
the cost of lower network throughput, or more efficient per-
formance isolation without noninterference guarantees. There
is currently no architecture that can selectively provide both
properties, with minimal impact on overall network area and
performance. The difficulty lies within the inherent nature of
NoC architectures. Due to the widespread sharing of router
resources (ports, arbiters, crossbar, channels, etc.) among all
the VCs, strict noninterference between flows is, by definition,
not guaranteed. In fact, VCs are interfering by construction,
since multiple VCs are eligible to compete for the same NoC
resources at any given time.

The main goal of this paper is to develop a NoC
micro-architecture that can effectively bridge the unseemly
dichotomy between strict noninterference assurance and flex-
ible/efficient QoS provisioning. Building on this fundamental
premise, we propose the PhaseNoC architecture, which pro-
vides this dual flow-isolation property. The crux of PhaseNoCs
operation revolves around the notions of domains and phases.
A domain is defined as an individual VC—or a group
of VCs—serving one (or more) application flow(s). Each
PhaseNoC router can serve any number of domains in par-
allel, and it can guarantee strict isolation across the supported
domains. The various domains are served in phases using a
fresh reinterpretation of time-division multiplexing (TDM),
which is applied at the VC level.

Overall, PhaseNoC is characterized by three fundamental
properties, which highlight the key contributions of this paper.

1) PhaseNoC relies on a complete overhaul of the routers’
micro-architecture and their internal pipeline operation
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into a domain-amenable organization called explicit
pipelining, which ensures that the various domains
will never “compete” (i.e., arbitrate) with each other
to gain access to any network resource. In fact, the
domains are completely oblivious to each other’s exis-
tence, and there is no information leak whatsoever across
the domains, as highlighted in Section II. Essentially,
PhaseNoC constitutes a bandwidth-programmable traf-
fic isolation mechanism that allows separate virtual
networks—the supported domains—to operate concur-
rently and in complete isolation, despite sharing the
same hardware infrastructure.

2) To address the latency overhead typically associated
with TDM-based scheduling, PhaseNoC utilizes pre-
cisely choreographed phase propagation throughout the
NoC, by applying VC-level TDM schedules at the gran-
ularity of individual router pipeline stages. The phases
are coordinated into optimally scheduled interlocked
propagating waves, which ensure that in-flight packets
of all domains experience the minimum possible latency.
A generalized methodology that enables the creation of
optimal phase schedules in any network topology is pro-
vided in Section III, which also includes weighted phase
schedules, whereby bandwidth is unevenly distributed to
the domains.

3) If secure-grade isolation is not required, PhaseNoC is
also able to support a more “relaxed” traffic isolation
mode that sacrifices the full noninterference properties
to improve overall performance. PhaseNoCs opportunis-
tic bandwidth stealing (OBS) mechanism, introduced in
Section IV, utilizes any bandwidth left unused by a
domain in each cycle. The unused bandwidth is recy-
cled among the domains that need it at any given time.
The OBS technique cost-effectively facilitates the fusion
of strict bandwidth guarantees and best-effort (BE) ser-
vices, as encountered in mixed-criticality environments.
Also, OBS allows for the seamless handling of bursty
dynamic behavior, e.g., when a domain momentarily
requires more bandwidth, beyond its statically allocated
VC-level TDM quota. The extra traffic is “absorbed” by
OBS, without affecting the other domains.

PhaseNoC is evaluated through multifaceted and extensive
cycle-accurate simulations, as presented in Section V. The
evaluation framework employs both synthetic traffic patterns,
and execution-driven full-system simulations with real appli-
cation workloads. Comparisons against SurfNoC [3]—the cur-
rent state-of-the-art in secure NoC architectures—and baseline
NoC architectures that do not provide any isolation guar-
antees indicate that PhaseNoC provides consistently higher
performance. A detailed hardware analysis using a 45 nm
standard-cell library verify that PhaseNoC yields substantial
cost savings, as compared to state-of-the-art VC-based archi-
tectures, despite providing the extra functionalities of both
strict and relaxed flow isolation.

II. PHASENOC ROUTER ARCHITECTURE

The PhaseNoC router organizes the allocation and the
switching tasks executed per-packet and per-flit in phases,
ensuring that each phase deals only with a distinct set of VCs
(a so called domain). Every input port of the PhaseNoC router

hosts V VCs that are organized in D domains, where each
domain may contain a group of m VCs (m = V/D).

Packets entering the input VCs of their domain must find
their way to the proper output, after going through several
allocation steps. The head flit of a packet first calculates its
output port through routing computation (RC). It then uses the
selected output port to allocate an output VC (i.e., an input
VC in the downstream router) in VC allocation (VA). Once a
head flit has acquired an output VC, it tries to gain access to
the output port through switch allocation (SA). Winners of SA
traverse the crossbar switch (ST), and are written in an out-
put pipeline register. Finally, the flit moves to the next router
through link traversal (LT), and is written in the downstream
router’s input buffer (BW) [5].

Noninterference is guaranteed if, at any allocation or switch-
ing step, the participating (competing) packets belong exclu-
sively to the same domain (group of VCs). Thus, contention
and interference can only arise between packets and flits of the
same domain. PhaseNoC guarantees noninterference among
all supported domains through its phased operation, i.e., each
phase—covering all inputs of the router—deals exclusively
with a single domain, and each phase is completely isolated (in
terms of utilized resources) from other phases (and from other
domains). The phase activation process should be the same for
all inputs of the router, thus making it impossible for two dif-
ferent inputs to participate in a router’s allocation/switching
stage with packets/flits that belong to different domains.

A. Explicit Pipelining

When a router is pipelined, it may operate simultaneously
on many application domains, by selecting the appropriate
phase for each pipeline stage. Care should be taken to assure
that two domains never simultaneously participate in the same
stage. To ascertain this behavior, we let the router’s pipeline
operate in a predetermined (although programmable) static
schedule. For example, once the group of VCs belonging to
domain D0 perform VA, the group of VCs of domain D1
perform SA, while the winning flits of domain D2 pass the
crossbar (ST), and the flits of domain D3 are on the link toward
the next router. Therefore, in each cycle, the router is fully uti-
lized, but each part of the router works on a different domain.
This unique feature of PhaseNoCs pipeline ensures that each
stage works on a different phase, and the flits/packets served
in each phase belong exclusively to a single domain. We term
this type of pipeline operation as explicit pipelining.

To achieve this behavior, each input port should own a sep-
arate path to VA, SA, and ST, as shown in Fig. 1(a) (only the
path to ST carries real data). Each input can send to each part
of the router the requests/data of a different domain (group
of VCs), provided that the select signals of the multiplex-
ers (that coordinate the phase propagation) never point to the
same domain. By setting the phase of each stage appropri-
ately, all of them may be executed in parallel, but each stage
acts on the packets/flits of a different domain. It is critical,
however, that all inputs see the same order of phase activa-
tion. Additionally, secure-grade isolation can be achieved by
building the multiplexers in front of each stage of the router
using trusted logic [6], according to the guidelines in [3].

For zero-latency phase scheduling, a flit should always find
the phase of its current pipeline stage aligned to its domain,
and may move uninterrupted (unless it loses to another flit of
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(a) (b)

Fig. 1. (a) PhaseNoC router architecture. Only a set of VCs (one domain) is
allowed to participate from each input in each allocation stage, and it is the
same set (domain) for all inputs. One multiplexer for each stage, controlled by
a TDM schedule, allows different domains to be served by different stages of
the router. (b) Cycle-by-cycle operation of a four-stage pipelined PhaseNoC
router. In each cycle, all router parts are utilized, with each pipeline stage
serving (allocating or switching) a different domain (group of VCs).

the same domain during arbitration). For example, if the phase
of VA in cycle 1 is serving domain 1, then the phase of the
SA stage in cycle 2 should be serving domain 1 as well. This
behavior is captured in Fig. 1(b), which presents the cycle-
by-cycle activity of an input port’s pipeline stages. In each
cycle (columns), all of the pipeline stages (rows) operate on a
different domain, whose ID is shown by the number in the cor-
responding box. In the first cycle, RC operates in phase 0, so
domain 0 is able to calculate its output port. In the next cycle,
it finds its phase in VA, and it is able to allocate an output VC
of its domain successfully, as flits of domain 1 perform RC. In
cycle 2, domain 0 uses its allocated VC to participate in SA,
while the head flits of domain 1 try to acquire an output VC.
Whether this allocation is successful or not depends only on
the contention appearing between the flits of domain 1 from
all inputs; only domain 1 flits are allowed to participate in VA
in this phase. In cycle 3, the flits from domain 0 that won
in SA traverse the crossbar, and it is the turn of domain 2 to
perform VA.

Explicit pipelining guarantees noninterference between
flits/packets of different domains, irrespective of the packet
length (flits per packet) and the pipeline depth of the routers.
At any given time, each pipeline stage deals with the flits of a
certain domain that may belong to packets of arbitrary length.

Routers with fewer pipeline stages can be built by merging
stages. However, due to the phased operation of PhaseNoC
routers, merging two stages means that their phase multiplex-
ers should also be merged.

B. Structure of Allocators

In an N-port router with D domains and m VCs per domain,
there exist a total of N×D×m input and output VCs (recall that
D×m = V , i.e., the total number of VCs per input port of the
router). The VA process between those input and output VCs
in a traditional router would require an N ×D×m : N ×D×m
allocator. However, in PhaseNoC, in each clock cycle, only a
single domain performs VA to a group of m VCs per input.
Thus, in the whole router, at most N ×m input VCs will try to
allocate an output VC. Since an input VC will never request
an output VC outside each domain, then at most N ×m output
VCs will be requested.

Thus, for completing the VA process in PhaseNoC, a sim-
pler N × m : N × m VC allocator suffices, which serves a
different domain in each clock cycle. As illustrated in Fig. 2(a),

(a) (b)

Fig. 2. PhaseNoCs reduced allocators for (a) VA and (b) SA router pipeline
stages.

VA is performed in two stages. In VA1, each input VC of the
domain matched to the current phase of the router selects one
available and possibly ready (i.e., has at least one buffer slot)
output VC. The selection is made by round-robin arbiters that
select one of the m active VCs of an output port of the same
domain. In VA2, each of the N × m output VCs is assigned
through an N × m : 1 arbiter to at most one input VC of the
same domain.

Similar simplifications can be derived for the switch alloca-
tor as well, which, again, involves two steps of arbitration, as
shown in Fig. 2(b). The SA1 arbiter per input port is reduced
from a V : 1 arbiter in a baseline implementation without
domains to an m : 1 arbiter in PhaseNoC, since local arbi-
tration involves only the input VCs of the domain currently
active in the SA stage. The SA2 stage, which selects the input
port that will access each output port, cannot be simplified
further, and it still requires an N : 1 arbiter per-output.

Note that, if desired, the SA2 arbiters may be modified to
implement any type of arbitration policy, and said policy would
only affect the traffic within a particular domain. For example,
the SA2 arbiters could implement policies such as round-robin,
weighted arbitration [7], or even a static TDM schedule in the
form of a TDM wheel [8]. The chosen arbitration policy will
only affect the traffic within a domain, with no impact on
the global TDM phase schedule. This functionality enables
PhaseNoC to facilitate, if required, two-level schedules: 1) the
top-level TDM schedule coordinating the domain phases and
2) second-level schedules for the traffic within each domain.

Although the VA and SA allocators are shared by different
domains, sharing is performed in time and, thus, it is impossi-
ble for packets that belong to two different domains to compete
for the same resource in the same cycle. Additionally, to com-
pletely eliminate any domain interference, all arbiters should
use D separate priority vectors, each one corresponding to the
active domain. The appropriate set is selected by the phase
of the allocation stage, ensuring that arbitration decisions are
completely separated across domains.

III. APPLICATION-DOMAIN SCHEDULING

PhaseNoC routers guarantee noninterference between differ-
ent domains by time-multiplexing the allocators, the crossbar,
and the output physical channels in different domains in each
clock cycle. This time-multiplexing scheme ensures that the
latency and throughput of each domain is independent of
the other domain’s load; contention is only allowed between
the packets of the same domain. To achieve zero latency
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(a) (b)

Fig. 3. Scheduling constraints set by (a) direct and (b) wrap-around links
for achieving zero-latency flit traversal across routers.

overhead in flit propagation, the inter-router phase propaga-
tion should be extended to the network level to allow flits of
one domain to travel in the network in a wave-like manner.
The flits of each domain would traverse many hops in consec-
utive cycles, without waiting for the turn of their application
domain to come. In this way, noninterference is achieved with
the minimum possible latency, since only the flits of the same
domain experience contention throughout the network.

A. Topology Constraints

Depending on the pipeline depth of the router, each router
is concurrently active on one, or many, different applica-
tion domains (groups of VCs). Therefore, once an application
domain performs RC in cycle t0, the same application domain
will proceed to VA in cycle t0 +1, to SA in cycle t0 +2, to ST
one cycle later, and it will eventually appear on the link (LT)
in cycle t0 +4. Therefore, in order for the flits of this applica-
tion domain not to experience any latency overhead, the router
at the other side of the link should schedule the start of the
service of this particular application domain in cycle t0+5; the
first step is again RC. So, for experiencing no latency between
any two routers, the domain served in the first pipeline stage
of both routers connected with a forward link should differ by
P + 1 cycles; P, due to the router pipeline, plus one for the
single cycle spent on the link.

To present the conditions that satisfy this property, we first
study the simple case of two directly connected routers shown
in Fig. 3(a). We assume that the first pipeline stage of router
A is serving domain D0 in the current cycle. Under a zero-
latency schedule, the first pipeline stage of router B will reach
the domain currently served by the first pipeline stage of router
A after P cycles. At the same time, we should guarantee that
this relationship between any two neighboring routers also
holds in the backward direction, so that any traffic crossing
router B toward router A does not experience any latency
either. The output links of router B forward flits of domain
D0 − 2P − 1 when the first stage of router A is serving
domain D0. Therefore, if we want router A to receive in-sync
the flits coming from B, then, in the next clock cycle, the next
domain of A, which will be D0 + 1 mod D, should match the
domain that is served on the incoming links in this cycle, i.e.,
D0 − 2P − 1 mod D, where D is the number of domains. This
constraint is satisfied when

2(P + 1) mod D = 0. (1)

(a) (b)

Fig. 4. Zero-latency schedules on a 3 × 3 2-D mesh using (a) four domains
with single-cycle routers and (b) six domains in two-stage pipelined routers.
All incoming links feed the first pipeline stage of the router, and all output
links are driven by the last stage.

Condition (1) requires that the number of domains D is equal
to any of the factors of 2, P + 1, or 2(P + 1).

Fig. 4 depicts the assignment of four domains to PhaseNoC
routers and, implicitly, to the network links, for a 3 × 3 mesh.
Fig. 4(a) shows a snapshot of the reset phase of the network,
assuming single-cycle routers (P = 1, and, thus, D = 4),
which select the same domain for all the inputs of the router.
The number inside the nodes and next to the links corresponds
to the domain ID. Then, each router independently increases
its working domain by one in each clock cycle and wraps
around when the number of domains is reached. Equivalently,
Fig. 4(b) shows the schedule applied to two-stage pipelined
routers (RC-VA in one cycle for one domain, and SA-ST in the
next cycle for a different domain) that can serve six domains
without any latency overhead.

Once the number of domains is selected appropriately, the
assignment of starting phases to the internal pipeline stages
of the routers and the links can begin from any node and
propagate decrementally to the remaining nodes, while tak-
ing care to wrap around to domain D − 1 when the domain
0 is reached. During the propagation of starting phases, all
the incoming links of each router (and, as a result, all out-
going links, too) should serve the same application domain.
This constraint is a requirement for offering isolation across
domains, since on every pipeline stage inside the router the
same domain is active on all inputs concurrently.

The proposed scheduling mechanism is extended to topolo-
gies that also contain wrap-around links, such as rings and
tori. As depicted in Fig. 3(b), two adjacent nodes may be
connected with a forward and a backward link using a wrap-
around connection in a k-node 1-D ring connection. In this
case, and assuming that the first pipeline stage of router A is
serving application domain D0, the output links of router B
(at the other end of the ring; k hops away) should be serving
the domain D0 − k(P + 1) + 1 mod D, in order for any flits
from B to A not to experience any latency. If a zero-latency
penalty is also required for the flits that cross the wrap-around
connection, then the domain currently being served by the out-
puts of router B should be equal to the domain that the first
pipeline stage of router A will serve in the next cycle, i.e.,
D0 + 1 mod D. Thus, for allowing a perfect schedule when
wrap-around connections exist in the topology, we should
guarantee that (D0 − k(P + 1)+ 1) mod D = (D0 + 1) mod D,
which translates to

k(P + 1) mod D = 0. (2)
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(a) (b)

Fig. 5. Examples of zero-latency schedules in two Manhattan-grid NoCs with
single-cycle routers. (a) Eight-domain schedules are allowed, constrained by
the wrap-around rings. (b) Only four domains can be supported here under
perfect phase scheduling, due to the co-existence of two unequal loops in
the NoC.

Fig. 6. Zero-latency schedule of four domains in a six-node ring network.

The loop constraint of (2) is satisfied when D is equal to any
of the factors of k, P + 1, or k(P + 1).

Fig. 5 depicts a snapshot of the reset state of phase prop-
agation in two Manhattan-grid networks. In Fig. 5(a), the
topology consists of four-node rings in each dimension, which
limit the number of application domains that can be hosted
under a perfect (zero-latency) schedule to eight domains, when
routers operate in a single cycle. On the contrary, in Fig. 5(b),
the topology includes two sets of loops: 1) the wrap-around
rings that include six nodes and allow the scheduling of 12
domains with single-cycle routers and 2) the internal loops
that span four nodes and limit the supported domains to 8.
However, since the two loops co-exist, the maximum num-
ber of domains that can be supported under a zero-latency
schedule is gcd(12, 8) = 4.

Similar limitations arise when wrap-around ring connections
spanning k nodes [Fig. 3(b)] co-exist with direct (self-loop)
connections [Fig. 3(a)], and, thus, the constraints of both con-
nection patterns should be simultaneously satisfied. In this
case, the number of domains D that can be scheduled with
zero-latency overhead is equal to gcd(2(P + 1), k(P + 1)). The
number of domains is 2(P+1) or P+1 for even or odd values
of k, respectively. For instance, as shown in Fig. 6, a six-node
ring of single-cycle routers can host at most four application
domains, i.e., gcd(2(1 + 1), 6(1 + 1)). When k is odd and the
topology includes both direct and ring loops, the number of
domains can be increased from P + 1 to 2(P + 1), under a
perfect schedule, by adding a pipeline register on one of the
links of the k-node ring—thus delaying the flits for one more
cycle and making the effective number of hops in the ring to
become even.

The constraints derived by the direct (self-loop) connec-
tions between two neighboring routers and the wrap-around
ring connections cover the majority of network topologies.
However, in some cases, another connectivity pattern exists,
similar to the one shown in Fig. 7. In this case, router A can
reach router R following a multihop path through router B,

Fig. 7. Zero-latency phase propagation on a reconvergent fan-out connection
between routers A and R.

or directly, using the express channel. When the first pipeline
stage of router A serves domain D0, then, at the same time,
its output link is forwarding flits that belong to domain
D0 − P, which should be served by the first pipeline stage
of B in the next cycle. Thus, node B must start by serving
domain D0 − P − 1 [similar to Fig. 3(a)]. In a similar man-
ner, the first pipeline stage of router R, which is placed r
nodes away, should be operating on domain D0 − rP − r, in
order for the flits of A (that reach R via B) to experience
zero-latency overhead. However, A can also reach R directly.
Therefore, in order for the two paths between A and R to be
in-sync, and, thus, prohibiting any latency overhead, the equal-
ity D0 − P − 1 mod D = D0 − rP − r mod D must hold. This
equality is satisfied when

(r − 1)(P + 1) mod D = 0. (3)

Equation (3) dictates that D should be equal to any of the
factors of (r − 1)(P + 1). If the condition does not hold, flits
that arrive at the inputs of R from one of the two paths will
have to wait for their phase to arrive.

The conditions derived suffice to describe the connectiv-
ity patterns of any network topology, and how those patterns
affect the number of application domains that can be supported
by PhaseNoC, in order to allow flits to propagate without
any latency overhead irrespective of the path they take in the
network. The reason for this powerful attribute (i.e., no depen-
dence on the path taken within the NoC) is due to PhaseNoCs
operation, which ensures that all outgoing links of a router
serve the same domain in a given cycle, following a per-
fect schedule. Thus, any adaptive routing strategy can freely
select any output of the router and still enjoy in-phase flit
propagation. In topologies, either regular or irregular, where
the three connectivity patterns (or a subset of them) co-exist,
the number of domains that can be supported under a per-
fect schedule is decided by the greatest common divisor of
the number of domains given by conditions (1)–(3). Once the
number of domains is selected appropriately, and the phases
are distributed on the links and the routers of the topology, a
flit can flow uninterrupted from source to destination without
experiencing any delay in any part of the network, and irre-
spective of the path that it follows, except: 1) the delay arising
from contention with competing flits of the same domain and
2) the time spent at the network interfaces while waiting for
the turn of their application domain to come.

B. Extending the Number of Application Domains

PhaseNoC can support—by construction—an arbitrary
number of domains; explicit pipelining does not limit in any
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(a) (b)

Fig. 8. Phase propagation of (a) four domains in a tree topology and (b) ten
domains in a partitioned tree topology (up and down connections separated).

(a) (b)

Fig. 9. Phase propagation of (a) two domains in a hierarchical ring topology
and (b) six domains in each subnetwork of a partitioned version of the same
topology [i.e., the hierarchical ring topology of (a) is partitioned, by separating
the left and right directions]. Phases across subnetworks are not aligned.

way the number of active domains. However, at the network
level, and depending on whether the number of domains are
aligned to the identified topology constraints, the distribution
of phases on the links and the routers of the NoC may lead to:
1) either a perfect schedule with zero-delay overhead or 2) it
will inevitably favor some paths relative to others, in terms of
delay. When we cannot align the number of domains to match
the conditions required for perfect scheduling, we can follow
another approach, which enables the scheduling of a larger
number of domains with a controllable latency overhead.

More domains can be supported after topology partitioning,
which aims to remove one or more of the topology constraints.
For example, the tree topology shown in Fig. 8, which con-
sists of single-cycle routers, can host at most four domains due
to the self-loop constraint in each bi-directional link [condi-
tion (1)]. The self-loop constraint can be broken if we separate
in different subnetworks the up and down connections. In this
way, the number of domains that can be supported under a per-
fect schedule by PhaseNoC is unlimited in each subnetwork,
since there is no loop that would limit the number of sup-
ported domains under a perfect schedule. Fig. 8(b) examines
the case of ten domains.

In other cases, even though partitioning significantly
increases the number of domains that can supported under a
perfect schedule, said number is not unlimited. For example,
the hierarchical ring built from single-cycle routers shown in
Fig. 9(a) can host at most two domains (the greatest common
divisor of the number of domains due to the self-loop, the
three-node loop of the local rings, and the six-node loop of
the global ring). After partitioning the rings, by separating the
left and right directions, the constraints are more relaxed and
six domains can be hosted, as shown in Fig. 9(b).

Perfect scheduling holds inside each subnetwork and does
not extend across subnetworks. Once a flit finds its domain
active, it will move uninterrupted until it has to change direc-
tion and turn into the other subnetwork. In order for the flit

to turn, the appropriate phase should arrive. Assuming, in the
general case, that the same D-slot schedule is running in both
subnetworks, the flit may need to wait at most D cycles for
its domain to arrive, since the schedules in each subnetwork
are independent. However, this will happen at most once in
the flit’s path; whenever the flit moves from one subnetwork
to the other.

This strategy can be followed in any topology, thus
extremely simplifying the perfect scheduling requirements.
For example, a 2-D mesh can be split in two subnetworks,
one traversed by flits moving in the X+/Y+ directions, and
the other one by flits moving in X−/Y−. In that case, flits
would experience latency only when turning from X+ to
Y−, or X− to Y+, assuming XY routing. A partitioned 2-D
mesh is the only topology applicable to SurfNoCs sched-
ules [3]. On the contrary, in this paper, we have identified
the constraints for zero-latency phase propagation in arbitrary
topologies, showing also how the aforementioned constraints
can be relaxed by selectively breaking the loops of the topol-
ogy. Finally, although TDM NoCs that apply TDM-based
contention-free routing (per-output SA2 arbiters are replaced
by TDM wheels)—such as [8]–[10]—do not face any topology
restrictions, the actual topology constraints appear implicitly
as design-time scheduling inefficiencies that lead to low TDM
slot usage.

C. Weighted VC-Level TDM Schedules

The bandwidth of the network may be unevenly distributed
across application domains—in a programmable manner—by
just changing the TDM schedule of phase activation in each
PhaseNoC router. When each domain receives an equal share
of the network’s bandwidth, its phase is activated once every D
cycles (the period of the TDM schedule is exactly D cycles),
while, at the same time, it enjoys zero-latency traversal, as
facilitated by the phase propagation in the network. When
the bandwidth is not equally shared across domains, TDM
scheduling expands to more than D cycles.

One time-frame of bandwidth allocation (i.e., VC-level time
slots) consists of S TDM subperiods of D cycles each. The
minimum bandwidth that can be allocated is one slot every
S × D cycles. The value of S determines the granularity
of bandwidth allocation. The minimum value of S is equal
to Smin = �(1/BminD)�, where Bmin represents the smallest
bandwidth given to any of the application domains, and it is
normalized to the maximum bandwidth of 1 (i.e., 100%). On
the other hand, the maximum value of S can be arbitrarily large
to enable very fine-grained bandwidth allocation. For practical
purposes, we can compute S assuming that Bmin is the smallest
nonzero difference between the bandwidth allocations to the
various domains. This ensures sufficiently fine granularity in
the allocation.

For example, assume the case of four application
domains (D = 4), which are programmed to receive 0.29,
0.15, 0.36, and 0.20 of the total bandwidth, as illustrated in
Fig. 10. In this case, Bmin = 0.15 (the minimum allocated
bandwidth quota), so the value of Smin = 2 can be used. The
corresponding application domain should receive one time slot
every eight cycles, which is less than the bandwidth required.
Also, by using only two TDM periods, we will not be able
to approximate closely the rest user-defined bandwidth ratios.
On the contrary, and as previously mentioned, we can use the



850 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Fig. 10. Example of the construction of a weighted TDM phase schedule,
which enables uneven allocation of bandwidth to the supported domains.

minimum nonzero bandwidth difference across the domains
to improve the granularity of bandwidth allocation. This min-
imum difference is equal to 0.20−0.15 = 0.05, which requires
S = �(1/(0.05 × 4))� = 5 TDM periods to achieve finer gran-
ularity. In this case, S×D = 20 time slots must be periodically
allocated to four application domains (see Fig. 10).

Each domain should receive BW(i) × S × D VC-level
time slots, where BW(i) represents the user-defined bandwidth
share of the ith domain. In the example of Fig. 10, domains
should receive 5.8, 3, 7.2, and 4 time slots, according to their
required bandwidth share. When the number of VC-level time
slots is not an integer, then—inevitably—one domain will
receive one additional time slot, while another domain will
receive one less time slot. Many rules can be applied to guide
the distribution of the left-over time slots to the various appli-
cation domains. In our example (Fig. 10), we select to round
the time slots to the closest integer. Consequently, domain D0
will receive 0.30 of the bandwidth (instead of the requested
0.29), while domain D3 will receive 0.35 (rather than the
requested 0.36). If we want the actual bandwidth allocation
to approximate more closely the requested bandwidth alloca-
tion, we must increase the value of S (thereby increasing the
granularity of bandwidth allocation).

The phase activation of the application domains should be
programmed to be repeated every S × D cycles, while still
respecting the following two rules of PhaseNoC scheduling.

1) PhaseNoC guarantees that the domains allocated at least
1/D of the bandwidth will experience a perfect schedule
for this portion of their allocated bandwidth. The addi-
tional VC-level time slots given to any domain (on top
of 1/D) will be out-of-phase, but without any latency
penalty, since the domain will be activated more than
once every D cycles in some TDM periods.

2) The domains receiving a bandwidth less than 1/D will
operate partially in-phase, since their domain will not be
activated in all TDM periods; thus, more than D cycles
may elapse between two consecutive activations of the
low-bandwidth domain.

The allocation algorithm, illustrated in Fig. 10, maps the
predetermined number of time slots (slots[i] for the ith applica-
tion domain) to the S×D time slots of the bandwidth allocation
time-frame. As long as a domain has not consumed all of its
available time slots, it receives a time slot that is either fully,
or partially, in-phase. A domain is always scheduled in-phase,
as long as it requires one time slot in all TDM subperiods (i.e.,
its requested bandwidth is at least 1/D). When a time slot is
empty—since it belongs to a low-bandwidth domain that has
used all of its slots—the slot is assigned to an out-of-phase
domain (but with shorter delay) that has the maximum number
of remaining slots.

IV. BOOSTING PERFORMANCE WITH VA CONCURRENCY

AND OPPORTUNISTIC BANDWIDTH STEALING

PhaseNoCs scheduling approach leads to a static (albeit pro-
grammable) allocation of bandwidth to domains. Using the
VC-level TDM scheduling mechanism, PhaseNoC guarantees
that packets injected in one application domain cannot affect
the delivery of packets in a different application domain. More
specifically, due to the strict schedule, each domain will get
a static share of the network’s bandwidth, irrespective of the
traffic flowing in other domains. Even if a “rogue” flow tries
to flood the network, all other packets belonging to different
domains will not be affected at all, both in terms of throughput
and latency. Each domain is completely impervious to inter-
ference, and PhaseNoCs secure-grade isolation ensures that
no information leaks across domains, i.e., a domain cannot
infer anything pertaining to any other domain’s traffic inten-
sity. The downside of these strict guarantees that is typical for
any architecture that offers strict network traffic isolation, lies
in the fact that a domain cannot enjoy more bandwidth than
the portion preallocated to the domain in the static schedule.
This is true even if some domains use fewer of their available
time slots at any given time.

When strict isolation guarantees are not necessary, it would
be beneficial to reclaim unused cycles to decrease latency
and improve throughput. Moreover, by facilitating some form
of bandwidth “stealing” across domains, the NoC would
be able to accommodate sudden traffic bursts and main-
tain work-conserving transmission of data. Toward this end,
we present two light-weight modifications to the PhaseNoC
micro-architecture that work synergistically: 1) to minimize
unwarranted latency overheads and 2) to “recycle” any band-
width left unused by the domains. The latter feature may
sacrifice the secure-grade noninterference guarantees, but it
still provides complete performance isolation to each domain.
In other words, a domain may now be able to deduce the
traffic intensity levels in other domains (i.e., information leak
is now possible), but each domain is still provided with at
least its preallocated performance guarantees, irrespective of
the traffic intensity in other domains. Depending on the sys-
tem’s characteristics, PhaseNoC can be configured to support
either strict noninterference, or performance-only isolation.

A. Phaseless VC Allocation

The first modification targets the latency overhead incurred
due to the per-packet operations. For instance, the VA pipeline
stage concerns only the head flit of each packet. Thus, if we
provide time slots for VA to all flits in the network, said time
slots will be left unused. This becomes especially pronounced
in pipeline setups where VA is executed in different pipeline
stages from SA and the nonhead flits are coerced to traverse
the VA stage without doing any actual work.

Therefore, a phase-less VA would be preferable, which
would not consume any valuable slots in the TDM sched-
ule, and which would be executed only by head flits. In
order to enable such optimization and achieve maximum uti-
lization, packets from multiple domains must be allowed to
concurrently execute VA, while still guaranteeing that the VA
operation of any packet does not impact any other packet in
a different domain. In a baseline VA unit, interference among
input VCs can only occur in the VA2 stage, if multiple input
VCs request the same output VC. Note that no interference
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Fig. 11. Modified SA architecture employed by PhaseNoCs OBS mechanism
to enable the opportunistic stealing of idle (unused) output port slots by out-
of-phase flits.

occurs in VA1, since the latter is simply a selection process
executed independently by each input VC. If each output VC
is only allowed to be requested by input VCs belonging to a
single domain, then no two domains can interfere (arbitrate
against each other) in VA2. Therefore, input VCs from dif-
ferent domains are prohibited to request the same output VC.
This restriction constitutes a sufficient condition to allow input
VCs from multiple domains to perform VA in parallel, without
any cross-domain interference.

To enable concurrent execution of VA by multiple domains
in each cycle, the simplifications to the VA allocators outlined
in Section II must be relinquished in favor of a baseline VA
unit that would allow more head flits per cycle to allocate an
available output VC of the same application domain.

B. Opportunistic Bandwidth Stealing

The second modification to the baseline PhaseNoC archi-
tecture is the augmentation of a mechanism called OBS. This
technique optimizes the SA stage by aiming to maintain all
output ports of the router busy in each cycle, whenever the
active domain would otherwise leave some output ports unuti-
lized. The OBS mechanism observes which output ports are
left unused in each cycle by the active domain. All head-of-
line flits belonging to the currently active domain are known
as in-phase flits. The unused output ports in each cycle are
thereby used by out-of-phase flits, i.e., flits belonging to other
(inactive) domains. Hence, any bandwidth left unused by in-
phase flits in each clock cycle is opportunistically “stolen”
by out-of-phase flits. To achieve this without violating perfor-
mance isolation properties, the new policy must comply with
the following twofold rule, which strictly prioritizes in-phase
flits over out-of-phase ones: an out-of-phase flit is allowed
to participate in SA if: 1) there is no in-phase flit eligible
to participate in SA in the out-of-phase flit’s input port and
2) there is no in-phase winner heading to the out-of-phase flit’s
destined output port.

In order to implement this double-faceted rule with a rea-
sonable implementation overhead, we introduce a secondary
SA (sSA) unit, which handles switch requests from out-of-
phase flits independently. The sSA unit operates in parallel
with the primary SA (pSA) unit, which still operates exactly
as described in Section II and serves requests from flits of the
active domain (i.e., in-phase flits).

Similar to a separable input-first SA implementation, the
sSA module consists of two stages of arbitration, as illustrated
in Fig. 11. At the input side, sSA1 serves the requests from
VCs that do not belong to the active domain, but have already

been allocated an output VC (with at least one free buffer
slot). The winner of sSA1 is allowed to proceed to the sec-
ond stage, only if pSA1 has not declared any in-phase winner
for that input port. As shown in Fig. 11, the grants of sSA1
are masked, when at least one request was made to the local
pSA1 unit. Output port requests from the winners of sSA1
reach the second arbitration stage, sSA2, which declares an
out-of-phase input port winner. However, the final winner for
every output port is decided after checking the outcome of the
corresponding pSA2 unit. If pSA2 has produced a grant, an
in-phase flit is eligible to access the specific output port, and it
is given priority through the multiplexer on the right-hand side
of Fig. 11. In the absence of an in-phase winner, the output
port is used by the out-of-phase sSA2 winner.

With OBSs sSA policy, all domains are still guaranteed
their assigned TDM schedule slots. However, if these slots
are unused in any given cycle, another domain can oppor-
tunistically steal them. Essentially, OBS complements strict
provisioning of bandwidth guarantees with BE services, in a
very efficient and cost-effective manner that allows seamless
handling of bursty traffic; when a flow momentarily exceeds
its statically allocated bandwidth quota (e.g., due to dynam-
ics in an application’s behavior), OBS can absorb the excess
traffic without affecting the other domains.

By allowing all out-of-phase flits to always compete for the
unused bandwidth of any in-phase domain, OBS inevitably
sacrifices the strict two-way isolation of PhaseNoC (informa-
tion leak can happen across any two domains). However, OBS
could easily be modified to forbid out-of-phase flits of partic-
ular domains from stealing unused bandwidth from particular
in-phase domains, by selectively masking certain out-of-phase
requests. Such controllability would enable configurable and
directional (one-way) isolation under OBS, if desired.

V. EXPERIMENTAL EVALUATION

A. Hardware Evaluation

The first step in the evaluation of PhaseNoC is the quanti-
tative assessment of the hardware complexity of the proposed
designs relative to the state-of-the-art. PhaseNoC can be
applied to any topology and any flow-control mechanism.
The only part of the NoC that is affected by PhaseNoC is
the router architecture, which now operates under explicit
pipelining. Therefore, any comparison at the router level
directly reflects the overall benefits, or possible overheads,
of the PhaseNoC concept at the NoC level. The two-stage
pipelined routers under comparison (using look-ahead RC)
were synthesized and placed-and-routed using Cadence digital
design flow driven by a low-power 45 nm standard-cell library
(0.8 V, 125 ◦C). The router models have been configured to
five input–output ports, as needed by a 2-D mesh network,
while the flit width was set to 64 bits. The area/delay curves
were obtained for all designs, under the same constraints and
assuming that each output is loaded with a wire of 2 mm.

Five different architectures are considered: 1) a baseline
NoC design with no traffic-isolation, or QoS-provisioning
capabilities; 2) the SurfNoC architecture [3] with no input
speedup; 3) SurfNoC with input speedup equal to the number
of supported domains (SurfNoC-S); 4) the proposed PhaseNoC
design providing, secure-grade domain isolation; and 5) the
PhaseNoC architecture augmented with the OBS mecha-
nism (PhaseNoC-OBS), which optimizes network performance
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(a) (b)

Fig. 12. Area-delay curves for two-stage pipelined routers of baseline,
SurfNoC, SurfNoC with input speedup, PhaseNoC, and PhaseNoC-OBS NoC
architectures. Two configurations are investigated. (a) Four VCs and (b) eight
VCs organized in four domains.

while still guaranteeing complete performance isolation. The
SurfNoC-S design follows the original architecture proposed
in [3], which requires crossbar input speedup to achieve
acceptable performance.

Our goal is to evaluate the benefits arising from the explicit
operation of the router in phases, which limits the allocation
and switching operations to the input/output VCs of a certain
domain. Fig. 12 depicts the area-delay curves for the two-
stage pipelined routers under comparison. All routers are tested
under two different configurations, shown in Fig. 12(a) and (b),
respectively: 1) four VCs with one VC per domain and 2) eight
VCs organized as two VCs per domain. For the baseline
routers, we assume that the four and eight VCs are grouped
in four virtual networks. All routers have four buffers per VC
as needed to cover the credits’ RTT in two-stage pipelined
routers.

At every design point, PhaseNoC routers require the
lowest area, while being as fast as the fastest state-of-
the art design. More specifically, PhaseNoC occupies up
to 20% smaller area than the state-of-the-art SurfNoC
design—which employs input speedup—without any delay
overhead. Moreover, PhaseNoC requires 13% less area and
achieves 5% lower delay than a baseline NoC. The reported
savings are mostly a result of the complexity reduction in
the allocation units. PhaseNoCs allocation is always limited
to the input VCs of one domain, which allows both sharing
of the arbiters, and a reduction in their logic depth. Increasing
the number of domains will increase the savings accordingly.

PhaseNoC-OBS adds a minimal (less than 6%) overhead
in area and delay, as compared to the baseline, while still
being more area efficient than SurfNoC with input speedup.
PhaseNoC-OBS uses the same VC allocation logic as base-
line designs, while it employs a secondary switch allocator
that operates in parallel to the main one (to opportunisti-
cally “steal” the unused time slots of the VC-level TDM
schedule). SurfNoC without input speedup behaves almost
identically to the baseline. However, it offers the worst network
performance, as will be shown in the following section.

B. Network Performance Evaluation

The goal of this section is to evaluate the effectiveness of
PhaseNoC, in terms of network performance, as compared to
conventional VC-based NoCs and SurfNoC architecture [3].
Moreover, the traffic isolation properties of the various archi-
tectures are also investigated.

TABLE I
SYSTEM PARAMETERS FOR THE FULL-SYSTEM SIMULATIONS

In the first set of experiments, we simulate a 64-core
tiled CMP system running real application workloads on a
Linux operating system. The simulation framework employs
Simics [11]—which handles the functional simulation tasks—
extended with the GEMS [12] that provides a detailed tim-
ing model of the memory hierarchy and it includes the
GARNET [13] cycle-accurate NoC simulator.

Table I shows the full-system simulation parameters. We
assume that the system operates on two domains. The first
domain executes a multithreaded application from PARSEC
benchmarks [14], while the other domain receives synthetic
GPU traffic. Three VCs are assigned to the domain serving
the PARSEC application, and three other VCs to the domain
serving the synthetic GPU traffic. This VC setup was dic-
tated by the MOESI cache-coherence protocol, which requires
at least three virtual networks to prevent protocol-level dead-
locks. Each VC has a depth of three flits, which is adequate
to cover the credits’ RTT in single-cycle routers. The syn-
thetic GPU traffic is modeled based on real GPU application
behavior, as described in [15], and exhibits the many-to-few-
to-many traffic patterns observed in GPU applications. This
environment, which simultaneously handles both CPU and
GPU traffic, abstractly mimics heterogeneous multicore pro-
cessors, which integrate both CPU and GPU cores on the
same die.

The five architectures under comparison are configured to
support two domains: 1) for the PARSEC applications and
2) for the synthetic GPU traffic. Each domain receives 50%
of the offered bandwidth. The injection rate of the synthetic
GPU traffic is 0.054 flits/node/cycle, which is, in fact, rather
high, because the many-to-few-to-many traffic patterns create
severe hot spots in the network [15].

Fig. 13(a) shows the average network latency of the var-
ious PARSEC applications, normalized to the baseline NoC.
Recall that GPU traffic also traverses the NoC, concurrently
with the PARSEC application traffic. As expected, the baseline
router provides the best performance, albeit with no isolation
guarantees. SurfNoC provides complete isolation (noninter-
ference) to the PARSEC applications, but at a significant
performance cost (45% latency increase, on average). When
SurfNoC employs input speedup, this cost decreases to 19%
on average, but with a substantial area overhead, as shown
in Section V-A. On the contrary, PhaseNoCs performance is
substantially better than SurfNoC and close to SurfNoC with
input speedup, while still providing complete noninterference.
This performance improvement is attributed to the efficiency
of PhaseNoCs zero-overhead phase scheduling. On average,
PhaseNoCs latency overhead over a baseline NoC is 16%.
Finally, PhaseNoC-OBS, which sacrifices secure-grade iso-
lation for performance-only isolation, provides near-identical
performance as the baseline NoC.
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(a)

(b)

Fig. 13. Full-system simulation results using PARSEC applications [14].
(a) Average network latency. (b) Total execution time.

Similarly, Fig. 13(b) shows the total execution time of
the various PARSEC applications, normalized to the baseline
NoC router. The trends are similar to those of the average
network latency, but PhaseNoC is now only 8% slower, on
average, than the baseline NoC. This indicates that the rela-
tively small degradation in average network latency sustained
under PhaseNoC does not greatly impact the total execution
time (due to the fact that a lot of the packets exhibit large
slack [16]). Once again, PhaseNoC-OBS offers near-identical
performance as the baseline NoC (the differences are within
simulation-noise margins). Overall, both PhaseNoC incarna-
tions yield execution times that are very close to the baseline,
with significantly less area than baseline and SurfNoC designs.

Despite the authenticity provided by full-system simula-
tions, the flexibility to stress the NoC and isolate its inherent
attributes is somewhat limited, due to the fixed character-
istics of the running applications. In order to differentiate
more clearly the various architectures, we henceforth resort to
synthetic traffic patterns (for the remaining experiments), by
operating Garnet in a “network-only” mode. Various configu-
rations are explored, while the network size, routing algorithm,
and buffer depth are the same as in the full-system simulation
configuration. Synthetic traffic consists of one-flit short pack-
ets ( just like request packets in a CMP), and longer five-flit
packets ( just like response packets carrying a cache line). For
the latency-throughput analysis, we assume a bimodal distri-
bution of packets with 50% of the packets being short, one-flit
request packets, and the rest being long, five-flit reply packets.

In the first set of experiments, we examine the average net-
work performance characteristics of the architectures under
comparison. Fig. 14(a) depicts the load-latency curves of
PhaseNoC architectures, baseline NoC (Base), and SurfNoC
variants, assuming single-cycle routers with four VCs per port,
which are distributed to four domains (one VC per domain),
under uniform-random (UR) traffic. The baseline NoC, even
if not providing any isolation properties, assumes that each
VC is a virtual network, thus in-flight VC changes are pro-
hibited. The PhaseNoC and SurfNoC variants are driven by a
static 4-phase TDM schedule that gives an equal share of the
available bandwidth to each domain. The same setup holds
in Fig. 14(b), which repeats the same experiment using the
bit-complement permutation traffic pattern.

From both figures, we can deduce that the zero- or low-
load-latency of PhaseNoC, even after the strict TDM operation

(a) (b)

Fig. 14. Average packet latency as a function of the total load for (a) UR
and (b) bit complement permutation traffic.

at the VC level, is still very close to that of the baseline
design, due to the efficient network-level schedule, which
allows the domino-like propagation of flits without any addi-
tional latency (independent of the source and destination, the
topology, or the routing algorithm). In terms of saturation
throughput, PhaseNoC offers lower throughput than the base-
line, due to the noninterfering operation across domains, which
reduces—in some sense—the choices for flit interleaving. Note
that this difference is not observed in the real applications
of Fig. 13, because the injection rates of said applications
are very low. This throughput loss is inevitable, since there
is no way for the time slots allocated to one domain to be
used by another domain. On the contrary, PhaseNoC-OBS
manages to fully recycle all unused time slots. SurfNoC with-
out input speedup provides the worst performance. The wave
propagation in SurfNoC adds additional latency when mov-
ing from a south-east direction to a north-west one. Further,
the absence of crossbar input speedup markedly increases
SurfNoCs latency overhead. On the contrary, SurfNoC with
input speedup improves the performance dramatically, thereby
yielding results that are near-identical to PhaseNoC. However,
this performance comes at a steep hardware cost: an
20% area overhead relative to PhaseNoC. The PhaseNoC-
OBS design substantially outperforms both SurfNoC vari-
ants and achieves performance that is on par with the
baseline NoC.

To evaluate the effect of the number of application domains
on latency and hardware area, we conducted an additional
experiment. Fig. 15(a) shows the average packet latency of
PhaseNoC and SurfNoC networks using four-stage pipelined
routers at an injection rate of 0.01 flits/node/cycle using UR
traffic, when varying the number of application domains. In
terms of latency, PhaseNoC and SurfNoC with speedup show
equivalent performance, both experiencing a controlled latency
overhead. On the other hand, PhaseNoC-OBS can “absorb”
any extra delay due to phase nonalignment, thus reducing the
criticality of scheduling and phase alignment. Fig. 15(a) does
not capture the impact of supporting additional domains on
hardware cost, which is very high for SurfNoC with input
speedup (as previously analyzed). To capture the interaction
between latency and area, we employ the combined metric
of (Latencydesign/Latencybase) × (Areadesign/Areabase). Under
this metric (lower is better), both PhaseNoC variants exhibit
the best performance, as shown in Fig. 15(b). Specifically,
PhaseNoC outperforms SurfNoC with input speedup by 18%,
in terms of this combined metric.
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(a) (b)

Fig. 15. Comparison of PhaseNoC and SurfNoC networks using four-stage
pipelined routers when varying the number of application domains, in terms
of (a) average packet latency and (b) normalized latency × normalized area
(the normalization is to the baseline NoC).

Fig. 16. Noninterfering isolation of traffic in PhaseNoC. Unlike a baseline
NoC, traffic in VC0 (i.e., domain 0) of PhaseNoC is constant, irrespective of
the load behavior in the other domains.

Note that the support of additional domains implies addi-
tional area cost, due to the presence of additional VC
buffers. Hence, PhaseNoCs area efficiency over SurfNoC with
input speedup (20% lower area) allows for the support of
additional domains. Conversely, assuming equal router-area
budget, PhaseNoC can support more domains than SurfNoC.

PhaseNoC variants achieve high network performance,
while still offering isolation properties that are not provided
by a baseline NoC. The first scenario that shows the isola-
tion properties of PhaseNoC, involves a two-domain network,
where each domain has one VC, in both PhaseNoC and a
baseline NoC. The traffic on both VCs is UR, while the load
in VC0 remains constant and the load in VC1 is progressively
increased. As shown in Fig. 16, the load in VC0 of PhaseNoC
is completely immune to the changes in VC1s load. However,
in the baseline case, as the load in VC1 increases, the accepted
throughput of VC0 (domain 0) drops and converges to that of
VC1 (domain 1).

In the second scenario, we evaluate the bandwidth guar-
antees offered by PhaseNoC when enhanced with the OBS
mechanism, as compared to a baseline network without any
guaranteed services (GSs). We simulate a network with two
domains, each one utilizing a single VC, which are used to
serve two different traffic classes: 1) BE and 2) an urgent
guaranteed-bandwidth (GB) service. To provide such services,
PhaseNoC with OBS operates under a schedule that offers
99% of the slots to the GB domain, leaving only the remain-
ing 1% to BE. In this way, GB traffic is always guaranteed
high priority, while BE can still enjoy more than 1% (as long
as GB is idle), in order to deliver the BE service. In this exper-
iment, BE is serving a constant load of UR traffic, while GB
remains idle most of the time and is only used to inject urgent
burst traffic, once during the simulation time: on the 5Kth
cycle, 12 random nodes initiate a 5K-cycle burst traffic, each
one toward a separate destination node, using the GB domain.

(a) (b)

Fig. 17. Demonstration of the flow isolation properties of PhaseNoC-OBS.
The GB domain in PhaseNoC-OBS is completely immune to the load of the
BE domain, and always manages to deliver the GB traffic in time. (a) Real-
time serving of GB traffic. (b) Sensitivity to BE load.

Fig. 17(a) illustrates both domains’ accepted throughput
during the simulation period, whereby the BE load is set to
0.25 for both baseline (Base) and PhaseNoC-OBS networks.
Before the bursts are initiated, the BE traffic in PhaseNoC-
OBS “steals” the idle domain’s slots, and is able to deliver the
same throughput as the baseline network. Once the burst injec-
tion starts, the urgent traffic (GB) is offered higher priority and
immediately receives 99% throughput, in contrast to the base-
line network, where the traffic is equally shared among the two
domains, without any prioritization. Immediately after the
burst stops, PhaseNoC-OBS has delivered the urgent traffic in
time, and the BE domain immediately recovers. On the other
hand, the recovery period in the baseline network is almost as
long as the duration of the burst, since urgent traffic has not
been ejected yet, and occupies network resources long after the
burst is over. The total delivery time of the whole 5K-cycle
burst, under various UR loads in the BE domain, is shown in
Fig. 17(b). Notice that the GB domain in PhaseNoC-OBS is
completely immune to the load of the BE domain, and always
manages to deliver the load in time, as needed for real-time
traffic. In any case, in PhaseNoC-OBS the TDM prescheduled
time slots at the VC level are gracefully combined with BE
output port utilization to provide the best of both worlds.

VI. RELATED WORK

At first glance, PhaseNoC may appear to be yet another
facilitator of QoS guarantees. However, the proposed design is
distinctly differentiated from existing techniques by its ability
to guarantee full, secure-grade isolation between the sup-
ported domains. While PhaseNoC can also provide typical
QoS guarantees and differentiated services among the sup-
ported domains, its key contribution lies in the mechanism’s
ability to completely isolate the various domains. PhaseNoC
provides a TDM schedule at the VC level governing the
noninterfering service across domains. The service of com-
munication flows within each domain could potentially be
provided by any existing QoS technique. Hence, the PhaseNoC
architecture is orthogonal to (and can benefit from) current
mechanisms supporting differentiated services.

A. Priority-Based Scheduling

Existing NoC techniques employing priority-based schedul-
ing as a means to provide QoS guarantees were inspired
by rate-based techniques in multicomputer networks, such as
weighted fair queueing [17], virtual clock [18], and rotating
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combined queueing [19]. Similarly, age-based arbitration pri-
oritizes packets based on their age (oldest first) [20], while
source throttling [21] can regulate flow rates to facilitate
congestion control. Rate-based schemes employ fine-grained
scheduling of packets, which incurs high implementation cost
that is often prohibitive for on-chip implementations.

Hence, researchers have developed on-chip-amenable
derivatives of rate-based approaches. Two examples are glob-
ally synchronized frames (GSFs) [22] and preemptive virtual
clock (PVC) [23], which utilize a coarse-grain rate-based phi-
losophy based on the notion of time epochs, or “frames” [24].
By coarsening the granularity of bandwidth allocation, frame-
based techniques reduce the hardware cost and scheduling
complexity. To improve the efficiency of frame manage-
ment, GSF [22] adopts an additional dedicated “barrier net-
work,” which operates alongside the main NoC. Nevertheless,
GSF still suffers from significant throughput degradation, as
compared to a baseline router with no QoS provisioning.
PhaseNoC could be augmented with GSF functionality (if
desired), since each “frame” would correspond to a PhaseNoC
domain. The GSF mechanism would control the traffic injec-
tion at the NIs, while GSFs barrier network would monitor the
global drainage of each domain. Similarly, nonlinear weighted
arbitration [25] can be incorporated within a PhaseNoC
domain to shape the traffic within each domain and provide
equality of service among the flows of a domain.

Unlike GSFs reliance on multiple active frames, the PVC
mechanism [23] employs only a single active frame at a time.
However, PVC also relies on an additional network, which
facilitates packet preemption (i.e., packet dropping and retrans-
mission). In general, PVC suffers from higher implementation
complexity than GSF, and it achieves markedly lower through-
put than a baseline NoC. Furthermore, the PVC mechanism
provides limited scalability with system size, as acknowledged
in the topology-aware QoS schemes of [26].

Stall-time criticality is exploited to enable application-aware
prioritization in the NoC [27]. This technique improves system
throughput, with no QoS guarantees. Similarly, Aérgia [16]
prioritizes in-flight packets based on how they affect the appli-
cation’s execution time. LOFT [28] combines a frame-based
approach and flit-reservation flow control [29] to improve flow
robustness and network utilization over GSF. QNoC [30] pro-
vides four QoS service levels and uses preemptive scheduling
to prioritize higher service levels. Per-priority-class buffering
and preemptive scheduling at the flit-level are characteristics
of any priority-based scheduling approach to avoid priority
inversions. CoQoS [31] enables coordinated QoS management
of the cache, NoC, and memory. MANGO [32] classifies
VCs into two separate classes and implements statically
programmed connections and reserved VCs/paths. Centrally
managed VC-level connections between any communicating
pair are used in [33].

B. TDM-Based Scheduling

The vast majority of the TDM-based designs perform TDM
scheduling at the time-slot level [8], [9], [34]. The scheduling
is typically performed offline (assuming a priori knowledge of
the applications expected to be running on the system), since
online scheduling is normally slow [35], and then statically
applied to the NoC. Argo [34] allows schedules to evolve at
the granularity of a single cycle, even when the routers have

more than one pipeline stage. The resulting hardware cost is
quite low, but the latency overhead can be substantial.

Æthereal [8] employs pipelined TDM (at the time-slot
level) and circuit-switching to guarantee performance services.
Traffic is separated into two main classes: 1) GS and 2) BE.
Excess bandwidth not used by GS flows is given to BE flows.
Packets on a single connection are always ordered, but order-
ing cannot be enforced between connections. The utilization of
excess bandwidth by other domains in PhaseNoC is facilitated
by OBS. The SuperGT NoC [36] is an evolution of Æthereal
providing three QoS classes. Aelite simplifies the router archi-
tecture by providing only GS [9], and dAElite moves one step
further by including multicast traffic and fast virtual-circuit
setup [10]. Weber et al. [37] provided run-time programmable
bandwidth guarantees by regularly injecting epoch packets.
Finally, Nostrum [38] and Lu and Jantsch [39] employed a
form of TDM and virtual circuits to allocate bandwidth and
satisfy QoS guarantees.

The overall simplicity of TDM-based NoCs, and their useful
properties in providing QoS guarantees, are normally con-
trasted by the rather high buffering requirements. For example,
TDM-based NoCs require virtual-circuit buffers (i.e., per con-
nection) at least in the network interfaces, whereas PhaseNoC
only requires buffers per application domain. In the same con-
text, PhaseNoC-OBS provides a practical approach for mixing
BE and GS traffic, without resorting to additional virtual-
circuit buffers for BE connections [40]. PhaseNoC reuses VC
buffers that normally refer to link-level flow control to stati-
cally define application domains as a generic mechanism for
flow isolation. This reduces the need to dynamically set and
tear down virtual circuits. The overall buffer savings expected
from the use of VC buffers as isolated application domains—
as opposed to using virtual circuits for the same purpose—is
expected to be significant. However, the exact savings are hard
to quantify, since they depend on the number of application
domains and the maximum number of virtual-circuit connec-
tions required for sufficient performance. In this paper, we
treat application domains as virtual networks, which allow the
sharing of all network resources by different applications (e.g.,
CPU and GPU traffic). As future work, we plan to explore
different mappings for the supported domains.

Additionally, PhaseNoC can be used in conjunction with
TDM-based NoCs that apply TDM scheduling at the time-
slot level. We believe that the TDM schedules derived for
applying contention-free packet routing can be derived inde-
pendently of their bandwidth guarantees, whereas the actual
bandwidth allocation can be imposed at the VC-level by the
PhaseNoC architecture. In this case, the algorithmic complex-
ity of traditional TDM scheduling [41] is expected to be lower.
This extension to PhaseNoC is also planned as future work.

C. Avoiding Flow/Traffic Interference in NoCs

One way to avoid interference among flows is to physically
separate them in distinct networks. For example, the Tile64
iMesh separates user application traffic from OS and I/O traffic
into separate physical networks [42]. Traffic isolation is also
required in congestion management [43], [44]. ICARO [45]
uses two virtual networks to isolate congested traffic from
noncongested traffic, in order to avoid head-of-line block-
ing. PhaseNoC could provide similar functionality if combined
with the congestion detection mechanism of [44] or [45].
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Nevertheless, all approaches discussed so far may provide
some QoS guarantees, but none can guarantee complete flow
isolation (noninterference). Many designs provide increased
robustness to interference (e.g., PVC), but no absolute guar-
antees can be given, i.e., QoS properties are insufficient to
guarantee noninterference within the network [46].

Guaranteed noninterference has been investigated primarily
within the realm of security [47]. In [46], static network parti-
tioning in space and time is employed to provide multiway iso-
lation among the supported domains. This multiway isolation
property comes at a high performance cost, which is alleviated
by the introduced reversed priority with static limits (RPSL)
mechanism, which uses priority-based arbitration and static
limits to guarantee one-way isolation between high-security
and low-security flows. The RPSL mechanism [46] facilitates
bandwidth reuse among domains, just like PhaseNoCs OBS.
However, its operation gives rise to fairness/starvation issues.
As a result, RPSL requires an additional mechanism to mon-
itor and statically limit the use of each input/output port by
particular domains. On the contrary, PhaseNoCs OBS scheme
enables bandwidth reuse without suffering from any fairness
issues whatsoever.

Efficient multiway noninterference among traffic flows
is provided by SurfNoC [3] and TDM-based architec-
tures [8], [10]. Similar to PhaseNoC, SurfNoC also revolves
around the concept of propagating waves across the on-chip
network and TDM scheduling at the VC level. However,
PhaseNoC is distinctly different and offers significant advan-
tages over SurfNoC.

1) PhaseNoCs novel router micro-architecture allows—for
the first time—each pipeline stage of the router to deal
explicitly with the flits of only one domain.

2) Even though PhaseNoC achieves full isolation, it is less
expensive (in terms of hardware) than even baseline
designs, due to explicit pipelining, which provides iso-
lation across domains for free and allows for extensive
sharing of the allocation logic. On the contrary, SurfNoC
routers require expensive crossbar input speedup (of
degree equal to the number of supported domains), in
order to achieve acceptable performance.

3) Unlike SurfNoC, which always suffers a delay over-
head on wave-front changes, PhaseNoC benefits from
zero-latency propagation overhead, when satisfying the
topology constraints derived in Section III-A. The pro-
vided methodology generalizes to any network topology;
instead, SurfNoCs scheduling is only applicable to 2-D
meshes/tori.

4) PhaseNoC jointly handles optimal scheduling and
uneven allocation of bandwidth to the supported
domains.

5) If secure-grade isolation is not required, PhaseNoCs
OBS mechanism recycles any bandwidth left unused in
each cycle to optimize performance.

VII. CONCLUSION

In addition to providing high performance and scalability,
NoCs may also be required to support additional functionality,
such as flow isolation, and QoS provisioning. This paper intro-
duces PhaseNoC, a cost-efficient VC-based NoC architecture
supporting truly noninterfering multidomain operation. The
new design relies on TDM scheduling at the VC-level, which

optimally coordinates the multiphase propagation of domains
across the NoC. PhaseNoC is a bandwidth-programmable
traffic isolation mechanism, which is applicable to any topol-
ogy upon following the proposed methodology for creating
optimal phase schedules. When secure-grade domain isola-
tion is not mandatory, PhaseNoC can also support a more
“relaxed” isolation mode, which substantially improves the
latency/throughput performance. By utilizing OBS, any unused
bandwidth is recycled among the domains. This performance-
optimized mode still provides complete performance isolation
to each domain. Extensive evaluation using both synthetic
traffic and real application workloads validates the efficiency
of PhaseNoC, as compared to the state-of-the-art. Finally,
detailed hardware analysis verifies the cost-effectiveness of the
proposed new architecture.
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