
0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

Timing-Driven Placement Optimization Facilitated
by Timing-Compatibility Flip-Flop Clustering

Dimitrios Mangiras, Apostolos Stefanidis, Ioannis Seitanidis, Chrysostomos Nicopoulos, Giorgos Dimitrakopoulos

Abstract—Timing-driven placement optimization is applied
incrementally in various parts of the flow, together with other
timing optimization techniques, to achieve timing closure. In
this work, we present a generalized approach for Lagrange-
Relaxation-based timing optimization that is used to iteratively
relocate gates, flip-flops, and local clock buffers, with the goal
being to reduce timing violations. Cells are allowed to move
within an appropriately positioned search window, the location
of which is decided by force-like timing vectors covering both
late and early timing violations. The magnitude of these timing
vectors is determined by the value of the corresponding Lagrange
Multipliers. The introduced placement optimization is applied in
conjunction with a newly proposed flip-flop clustering algorithm
that (re)assigns flip-flops to local clock buffers, to separate flip-
flops with incompatible timing profiles and to facilitate the
subsequent timing-optimization steps. The proposed approach
is tested on the ICCAD-2015 benchmarks, providing the best
overall results when compared to state-of-the-art timing-driven
placement techniques.

Index Terms—timing optimization, placement, clustering, La-
grange relaxation

I. INTRODUCTION

Timing closure is a complex process that involves many
iterative optimization steps applied in various phases of the
physical design flow [1], [2]. Placement is instrumental to
the performance of the overall flow, since it determines the
length of the wires and their congestion in certain regions
of the design. Long wires suffer from increased RC delay
(R: Resistance, C: Capacitance), while wire congestion may
lead to routing critical nets on non-minimum-distance paths
to avoid congested regions. Over the last several years, wire
RC delay has not only accounted for the lion’s share of
the total delay by far, but its variation across the metal
stack has also increased dramatically [3]. Such critical factors
have significantly increased the importance of timing-driven
placement, which is required to reduce timing violations within
a reasonable runtime, even for very large designs.

During global placement and cell spreading, the timing is
optimized by controlling the wire length of selected nets,
or by trying to smooth the physical layout of timing-critical
paths [4], [5], [6]. The incremental timing-driven placement

Dimitrios Mangiras, Apostolos Stefanidis and Giorgos Dimitrakopoulos are
with the Department of Electrical and Computer Engineering, Democritus
University of Thrace, Xanthi, Greece. Dimitrios Mangiras is supported by the
Onassis Foundation - Scholarship ID: G ZO 014-1/2018-2019.
(e-mail: dmangira@ee.duth.gr, apstefan@ee.duth.gr, dimitrak@ee.duth.gr).

Ioannis Seitanidis, is with Mentor, a Siemens Business, Grenoble, France.
(e-mail: Ioannis Seitanidis@mentor.com).

Chrysostomos Nicopoulos is with the Department of Electrical and Com-
puter Engineering at the University of Cyprus, Nicosia, Cyprus.
(e-mail: nicopoulos@ucy.ac.cy).

steps that follow global placement try to move cells to appro-
priate locations, to improve timing, with minimal disturbance
to the initial placement. In [7], a linear program is utilized
to minimize the weighted wire length on critical paths, where
the path-delay sensitivities are used as weights. To avoid non-
critical paths becoming critical, a novel criticality-adjacency
network concept is presented. The work of [8] presents new
sensitivity and figure-of-merit functions to guide cell reloca-
tion, while, in [9], net weights are computed using a critical-
path counting algorithm (the more paths a net affects, the
larger its weight). In [10], a differential timing model for
moving timing-critical cells is adopted. The validity of the
timing model is maintained by constraining the placement
changes.

The recently introduced Early Histogram Compression
(EHC) [11] technique mitigates hold timing violations through
re-assignments of Local Clock Buffers (LCB) to flip-flops
and appropriate LCB movements. Better results are achieved
in [12], which optimizes the clock arrival at each flip-flop by
appropriate re-assignments of LCBs to flip-flops and flip-flop
movements, to improve hold violations while preserving the
pre-optimized setup violations. In contrast to such approaches,
OWARU [13] utilizes Bézier curves to smoothen the physical
curve produced by the placement of the cells participating in
timing-critical paths. Other approaches like [14] and [15] rely
on analytic formulations for relocating flip-flops, gates, and
LCBs, or utilize non-critical cell relocation and cell-swapping
to improve Quality-of-Results (QoR).

Other approaches rely on the Lagrange Relaxation (LR)-
based formulation of timing optimization, whereby the de-
rived cost function guides cell relocation to reduce timing
violations [5], [6], [16], [17]. Using LR, the hard constraints
of the optimization are removed and incorporated into the
objective function, each one multiplied by a penalty term
called a Lagrange Multiplier (LM). During optimization, LMs
act as dynamic weights that reflect both the timing criticality
of each net and the number of critical endpoints that it affects.

In this paper, we focus on incremental timing-driven place-
ment, with the goal to fix the placement of timing-critical
cells and improve overall timing. As opposed to previous
methods that independently move combinational gates, flip-
flops, and/or LCBs using loosely-connected algorithms, we
propose, for the first time (to the best of our knowledge),
an LR-based timing-driven placement algorithm that handles
the relocation of all types of cells in a unified manner. Each
timing-critical cell is relocated iteratively through the selection
of an optimized position out of a set of appropriately selected
candidate positions. Both the selection of the best position, and
the definition of the search window, are based on the value of

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

the LMs in each optimization round.
The proposed LR-based placement optimization methodol-

ogy is complemented by a pseudo-3D flip-flop clustering al-
gorithm that clusters flip-flops according to their geographical
location and the timing slacks of their D and Q pins. The
objective is to guarantee that flip-flops of the same cluster
share a compatible timing profile (i.e., the flip-flops should
benefit in the same way by an increase, or an equivalent
decrease, in the clock arrival time). In this way, nearby timing-
compatible flip-flops of the same cluster can be driven by the
same LCB, while timing-incompatible flip-flops are driven by
different LCBs, even if they are placed in the same region.
This separation of timing-incompatible flip-flops facilitates the
timing optimizations performed later on by LR-based cell
relocation.

The proposed approach effectively combines the application
of the following processes to yield very promising results:

1) A proposed LR-based formulation for timing optimiza-
tion that allows the handling of gates, flip-flops, and
LCBs in a unified manner.

2) LM-based calibration of the search window to detect
candidate placements for each cell.

3) A flip-flop clustering step that clusters flip flops un-
evenly, based on their timing profile.

The entire methodology is implemented in C++ inside the
RSyn physical design framework [18] and tested against the
benchmarks of the ICCAD 2015 contest [19]. The derived
results indicate significant improvements in Worst Negative
Slack (WNS) and Total Negative Slack (TNS) at a reason-
able runtime, as compared to state-of-the-art timing-driven
placement-optimization techniques that include either closely
related LR-based optimization [16], or other highly-efficient
heuristics [11], [12], [13].

The rest of the paper is organized as follows: Section II
presents the timing-compatibility clustering method. Sec-
tion III introduces the proposed LR-based formulation for
timing optimization. Section IV outlines the overall placement
optimization flow. Section V presents the formation of the
search window that contains the candidate positions for each
cell. The experimental results are presented and analyzed in
Section VI. Finally, Section VII concludes the paper.

II. TIMING COMPATIBILITY FLIP-FLOP CLUSTERING

The proposed timing-driven placement methodology relo-
cates combinational gates, flip-flops, and LCBs in a unified
manner, to improve the circuit’s timing. Moving LCBs relative
to the group of flip-flops that they drive, increases or decreases
the clock arrival time. This change in clock arrival may be
beneficial to some flip-flops of the group and harmful to other
flip-flops in the same group. For example, delaying clock
arrival would benefit flip-flops with negative D/positive Q
late slack, and hurt the timing of flip-flops with a positive
D/negative Q late slack profile. Therefore, before applying any
LCB movement, we need to be sure that each LCB drives flops
with compatible timing profiles (i.e., all need an increase or
reduction in clock arrival time, or are neutral to this choice). To
achieve this, we use a pseudo-3D clustering algorithm, where

Algorithm 1: Timing Compatibility FF Clustering

1 Assign a timing profile to each flip-flop;
2 InitClusters();
3 FF PriorityList ← PrioritizeFlipFlops();
4 repeat// FF-to-cluster assignment
5 foreach FF i in FF PriorityList do
6 if i∈fast then
7 Ccand←{clusters with fast or neutral FFs};
8 else if i∈slow then
9 Ccand←{clusters with slow or neutral FFs};

10 else
11 Ccand←{all clusters};
12 end
13 best cost← inf;
14 foreach cluster j in Ccand do
15 if size(j)!=MaxSize & canAssign(i,j) then
16 cost← AssignmentCost(i,j);
17 if (cost < best cost) then
18 best cost← cost;
19 assign FF i to cluster j;
20 end
21 end
22 end
23 end
24 UpdateClusterCenter();
25 UpdateTiming();
26 UpdateFFTimingProfiles();
27 until convergence;

flip-flops are clustered according to their (x, y) position and
their timing profile. Flip-flops placed in the same cluster are
driven by the same LCB, while timing-incompatible flip-flops
are put in different clusters and driven by different LCBs.

The proposed clustering algorithm is given in Algorithm
1. Initially, each flip-flop is given a timing profile that can
belong to one of three categories depending on how the clock
arrival time would benefit the flip-flops’ timing: (a) faster
clock arrival (fast), (b) slower clock arrival (slow), and (c)
neutral. Any finer-grained categorization is possible. Neutral is
considered compatible with both the fast and slow categories,
while flip-flops that belong to the fast and slow categories
are incompatible. The list of clusters is then initialized, and
the iterative loop of flop-to-cluster assignment and cluster
updating is executed until convergence is reached (i.e., either
all flip-flops remain attached to their previously assigned
clusters, or the maximum number of iterations is reached).

The proposed clustering algorithm is a variant of k-means
clustering [20], [21], which minimizes the squared distance
between each cluster center and its assigned flip-flops, while
also taking into account the timing profile of each flip-flop
and the size of each cluster. In this way, each cluster contains
an appropriate number of timing-compatible flip-flops, thereby
facilitating the LCB movement that is subsequently applied.

To improve timing, the proposed clustering creates clusters
of unequal sizes on purpose. The LCBs that drive flip-flops
with fast timing profiles are less loaded relative to the LCBs
that drive flip-flops belonging to the slow category. This
uneven loading decreases, or increases, accordingly the delay
of the LCB with the goal being to improve timing. Creating
clusters of uneven sizes – to facilitate timing optimization –
with k-means is not directly possible. To achieve this goal

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

TABLE I
TIMING PROFILE CATEGORIZATION

Early Late
Slack at Timing Slack at Timing

D pin Q pin profile D pin Q pin profile

+ + neutral + + neutral
+ − slow + − fast
− + fast − + slow
− −− slow − −− fast
−− − fast −− − slow

in a practical manner, we artificially shrink, or expand, the
true Euclidean distance, without any further modification to
the clustering algorithm.

A. Assign a Timing Profile to each Flip-Flop

Initially, each flip-flop is assigned to one of the three
categories shown in Table I for late timing, and, separately,
for early timing, after taking into account the timing slacks
(positive/+ or negative/–) at the D and Q pins of each flip-
flop. In the case that the slack is negative at both pins of the
flip-flop, the timing profile of the flip-flop is determined by
the pin with the most negative slack, depicted as two negative
minus signs (−−) in Table I.

The separate late and early timing profiles initially given
to each flip-flop should be merged to one final profile. When
both timing profiles are the same, the final timing profile for
this flip-flop is the same common profile. If one of the two
timing profiles for a flip-flop is neutral (either for late or early
timing), the timing profile for this flip-flop is determined by
the other non-neutral timing profile. On the contrary, when
a flip-flop belongs to contradicting categories in the late and
early timing modes, the timing profile for this flip-flop is the
one selected for the most critical mode, i.e., the one with the
most negative slack in either the D or Q pins.

B. Initialize Clusters and Prioritize Flip-Flops

The total number of clusters is set equal to the number of
available LCBs, and the cluster centers are initialized to the
positions of the corresponding LCBs. If no LCBs are present,
the number of clusters can be selected with any other density
or maximum fanout/capacitance criterion, and the center of
each cluster is set to the position of a randomly-selected flip-
flop.1 Each newly-created cluster is assigned to one flip-flop to
avoid leaving a cluster empty. We try to initialize each cluster
with a fast flip-flop (if a fast flip-flop exists nearby), taken
from a list of the 20 most closely-placed flip-flops. If this
is not possible, the cluster is assigned to a neutral flip-flop
to increase the freedom of later assignments. If, however, all
nearby flip-flops are slow, the cluster is assigned to a slow flop.
In this way, we increase the probability to initialize more fast

1The optimal number of clusters, k, for this timing compatibility clustering
is not obvious, and it can only be judged by the final timing QoR obtained
after executing the entire timing-driven placement flow for various numbers
of clusters. Predicting a-priori the optimal k is planned as future work.

clusters, implicitly reducing the average size of a fast cluster
relative to neutral or slow clusters.

Next, we prioritize the list of flip-flops, so the flip-flops with
timing violations select a nearby cluster first. If the number of
flip-flops with a fast timing profile is larger than the flip-flops
with a slow timing profile, we first examine the fast flip-flops
(those flip-flops are put at the top of the FF PriorityList) and
then the slow flip-flops. In the opposite case (number of slow
flip-flops exceeds the fast flip-flops), we first examine the flip-
flops that belong to the slow timing profile. Neutral flip-flops
are always examined last.

C. Flip-Flop Clustering

The assignment of flip-flops to clusters is outlined in lines
4–27 of Algorithm 1. For each flip-flop examined, we identify
which clusters are considered as valid assignment candidates.
For instance, a flip-flop with a fast timing profile considers
only the clusters that contain fast or neutral flip-flops as valid.
The flip-flops with a neutral timing profile are compatible
with all other flip-flops and can be assigned to any cluster.
When examining the assignment of flip-flop i to cluster j, we
first check – with the condition in line 15 – that no cluster
receives more flip-flops than the maximum allowed, and if
this assignment would cause flip-flop i to be incompatible
with the flip-flops already assigned to cluster j. The potential
incompatibility may arise due to the new wire and LCB delays.
These new delays may, in fact, cause marginal, or potentially
more notable, alterations to the clock arrival times, which, in
turn, may possibly make the timing profiles of the flip-flops
outdated. To accurately reflect the new clock arrival times,
incremental timing analysis should be performed, but this
is prohibitively expensive when checking each independent
assignment. Instead, we focus this analysis only on “weak”
flops that are most likely to switch to a different timing profile
after the changes in the clock arrival times, i.e., flops with
timing slacks in their D/Q pins in the range of ±50 ps. To
quickly estimate the timing impact of assigning flip-flop i to
cluster j, we use the differential timing model of [10] in a
manner similar to [16].

This dynamic checking of the timing profiles can be dis-
abled to significantly reduce the overall runtime. As will
be demonstrated in Section VI, omission of this step has
minimal impact on the resulting timing QoR. The reason
is because flip-flop to cluster reassigment rarely affects the
timing profile of the flip-flops with significant timing slacks; it
may only disturb the weak flip-flops. Therefore, the flip-flops
with significant timing slacks would be correctly separated,
even if dynamic compatibility checking is disabled. The weak
flops with outdated timing profiles would eventually move to
the neutral category via the subsequent timing optimizations,
thus becoming compatible with all other categories.

From all valid and compatible clusters, each flip-flop is
assigned to the cluster that minimizes the assignment cost
computed according to Algorithm 2. The cost is the Eu-
clidean distance between flip-flop f and the center of cluster
c, multiplied by a weight w. The role of w is to create
clusters with unequal sizes, to further improve timing: clusters

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

Algorithm 2: AssignmentCost(FlipFlop f , Cluster c)

1 dist(f, c)←
(
(c.x− f.x)2 + (c.y − f.y)2

)1/2 ;
2 w ← 1;
3 if f ∈ neutral and c has slow or only neutral FFs then
4 w ← size(c)

MaxSize
;

5 else if f ∈ neutral and c has fast FFs then
6 w ← 1 + size(c)

MaxSize
;

7 end
8 return w · dist(f, c);

with fast/neutral flip-flops should contain fewer flip-flops than
clusters with slow/neutral flip-flops. The distance between a
neutral flip-flop and a cluster that contains slow, or only-
neutral, flip-flops is scaled down by w, thus increasing the
probability that the neutral flip-flop is assigned to this cluster.
In contrast, the distance of a neutral flip-flop to a cluster with
fast flip-flops is artificially increased, thus increasing the cost
of this assignment and making the assignment less favorable.
In this way, the clusters with fast flip-flops remain with fewer
flip-flops in total. Weight w only scales the distance of neutral
flip-flops, while w is always equal to one for flip-flops of the
fast or slow categories.

When considering flip-flops of different sizes with different
clock-pin capacitances, the contribution of each flip-flop to the
size of the cluster should be measured relative to its clock-pin
capacitance. The larger the clock-pin capacitance, the larger
the equivalent count in terms of primitive flip-flops. Hence, the
size of each cluster would reflect the total capacitance driven
by the LCB of the cluster. The proposed algorithm will end up
producing clusters of fast flip-flops with less total capacitance
relative to clusters of slow or neutral, flip-flops.

D. Update Cluster Centers and Timing Profiles
When all flip-flops are assigned to a cluster, we need to

update the center of each cluster (line 24 in Algorithm 1) to the
center of gravity of the flip-flops belonging to this cluster. Each
LCB moves to the center of the cluster to which it belongs.
As the centers of the clusters are moved to new updated
positions, the LCBs are also moved and instantly legalized
to their new positions using the Jezz legalizer [22] built
into Rsyn [18]. If LCB movement is limited by a maximum
displacement constraint, and the updated cluster center lies
outside the maximum displacement bounding box of the LCB,
the center of the cluster is slid towards the nearest location at
the bounds of the displacement bounding box. In this way, in
every iteration, the location of the cluster center remains valid
in terms of detailed placement constraints.

When the dynamic update of timing profiles is enabled, an
incremental static timing analysis is performed after moving
the LCBs to their new positions, to update the slacks and the
timing profiles of the flip-flops (lines 25–26 of Algorithm 1).
Therefore, the new – and accurate – timing profile of each
flip-flop is available for the next iteration.

E. Clustering Behavior
To demonstrate the efficacy of the clustering technique

with respect to the generation of clusters of uneven sizes, we

analyze the clustering behavior in a representative benchmark
of the ICCAD-2015 benchmark set [19]. Specifically, Fig. 1(a)
depicts the percentage of cluster sizes for each of the three flip-
flop timing profiles (fast, slow, neutral) for sb10. As shown
in the figure, more than 30% of the fast clusters have sizes
between 10-15 flip-flops, while an additional cumulative 20%
corresponds to even smaller clusters of 0-5 and 5-10 flip-flops.
In contrast, the majority of clusters of slow and neutral-only
flip-flops have larger sizes; around 30% of all slow clusters
have sizes of 20-25 flops. Note that similar trends are observed
in all examined benchmarks.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

S
iz

e
 %

 p
e
r
ti
m

in
g
 p

ro
fi
le

Cluster Sizes

Fast

Slow

Neutral

(a) All three types of clusters

0%

5%

10%

15%

20%

25%

30%

35%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

S
iz

e
 %

 o
f
fa

s
t
c
lu

s
te

rs

Cluster size

70%

80%

90%

100%

0%

5%

10%

15%

20%

25%

30%

35%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

S
iz

e
 %

 o
f
s
lo

w
 c

lu
s
te

rs

Cluster size

70%

80%

90%

100%

(b) Fast clusters only (c) Slow clusters only

Fig. 1. (a) The percentage of cluster sizes for each timing profile (fast, slow,
neutral) for the representative sb10 benchmark of the ICCAD-2015 benchmark
set [19]. The percentage of cluster sizes for (b) only fast, and (c) only slow
clusters, as the number of cluster centers is artificially decreased.

More importantly, the behavior of the proposed clustering
technique is robust with respect to the total number of clusters.
Figs. 1(b) and (c) illustrate the percentage of cluster sizes
for the fast and slow categories, respectively, of the sb10
benchmark, as the total number of clusters, k, decreases.
Specifically, the number of clusters decreases from 100% (i.e.,
the number of clusters in the unmodified benchmark) down to
70% of the initial number. The decrease in clusters is achieved
by uniformly removing – while accounting for any disparities
in cluster densities – a corresponding number of clusters
from the benchmark. As k decreases, both the fast and slow
distributions shift to the right, i.e., towards larger cluster sizes.
Nevertheless, if we juxtapose the fast and slow distributions,
one can clearly see that, even as k decreases, the fast clusters
are still smaller, on average, than the corresponding slow
clusters. This behavior unequivocally demonstrates that the
proposed flip-flop clustering achieves the desired objective,
irrespective of the number of available clusters.

III. LR-BASED TIMING OPTIMIZATION

Our goal is to minimize the sum of early and late TNS, by
appropriately relocating the timing-critical cells of the design.
Assuming that TNS is computed over the set E of all the timing
endpoints, including primary outputs POs and the input-D

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

LCB LCB

LCB

(a): Combinational gates (b): Local Clock Buffers (LCB)

PO

D Q

CLK

LCB

(c): Primary Outputs (POs) (d): Flip-Flops (FFs)

Fig. 2. The definition of arrival times and delays di,j , including both wire-
and arc-delay, for different types of cells.

pins of the flip-flops (FFs) [23], the timing optimization
problem can be stated as follows:

min:
∑
j∈E

(−sLj) +
∑
j∈E

(−sEj) (1)

s.t.: sLj ≤ 0, sEj ≤ 0,

∀ timing endpoint j ∈ E
sLj ≤ T − aLj , sEj ≤ aEj ,
∀ output j ∈ POs

sLj ≤ rLjD
− aLjD

, sEj ≤ aEjD
− rEjD

,

∀ input D pin of flip-flop j ∈ FFs
aLi + dLi,j ≤ aLj , aEi + dEi,j ≥ aEj ,
∀ gate j ∈ Gates (see Fig. 2(a))

aLLCBi
+ dLi,j ≤ aLjQ

, aELCBi
+ dEi,j ≥ aEjQ

,

∀ output Q pin of flip-flop j ∈ FFs (see Fig. 2(d))
aLLCBi

+ dLi,j ≤ aLLCBj
, aELCBi

+ dEi,j ≥ aELCBj
,

∀ LCB j ∈ LCBs (see Fig. 2(b))
Cell placement is legalized
Cell relocation distance ≤ maximum displacement

Variables sLj and sEj represent the negative slack at pin j ∈ E
for late and early timing, while T is the targeted clock period.
The timing slack at each timing endpoint is the difference
between the required arrival time and the actual arrival time.
Parameters aj and aLCBj are the arrival times (late or early)
at the output pins of a gate and an LCB, respectively, while
ajD and ajQ represent the arrival times at the D/Q pins of
flip-flop j. The required arrival time at the D pin of the same
flip-flop is expressed as rjD . The delay di,j is the sum of
the wire and the cell delay from the output pin of cell i to
the output pin of cell j. Fig. 2 illustrates in detail the timing
arcs involved in the computation of di,j for every type of cell.
In the case of gates and LCBs, shown in Figs. 2(a)–(b), di,j
comprises the wire delay from the output pin of the driving
cell of the previous level plus the delay of the jth gate or
LCB. When pin j represents a timing endpoint like a primary
output (Fig. 2(c)), di,j is only the corresponding wire delay.
Similarly, as shown in Fig. 2(d), in the case of a flip-flop, di,j
is the wire delay from the output pin of the LCB that drives
the clock pin of this flip-flop plus the clock-to-Q delay of the

flip-flop. Representing with Ij the set of fanin cells of cell j,
and with λ the LMs, LR can incorporate the timing constraints
of (1) into the objective as follows:

min :
∑
j∈E

(−sLj) +
∑
j∈E

(−sEj) +
∑
j∈E

λL0js
L
j +
∑
j∈E

λE0js
E
j + (2)∑

j∈POs

λLPOj

(
sLj − T + aLj

)
+
∑

j∈POs

λEPOj
(sEj − aEj) +∑

j∈FFs

λLDj

(
sLj − rLjD

+ aLjD

)
+
∑

j∈FFs

λEDj
(sEj − aEjD

+ rEjD
) +∑

j∈Gates

(∑
i∈Ij

λLGi,j
(aLi + dLi,j − aLj)+∑

i∈Ij

λEGi,j
(aEj − aEi − dEi,j)

)
+

∑
j∈FFs

(
λLFFi,j

(aLLCBi
+ dLi,j − aLjQ

)+

λEFFi,j
(aEjQ
− aELCBi

− dEi,j)
)
+∑

j∈LCBs

(
λLLCBi,j

(aLLCBi
+ dLi,j − aLLCBj

)+

λELCBi,j
(aELCBj

− aELCBi
− dEi,j)

)
The Karush–Kuhn–Tucker (KKT) optimality conditions for

the timing endpoints of the design impose that λL0j+λ
L
POj = 1,

and λE0j + λEPOj = 1, for each primary output j ∈ POs, and
λL0j+λ

L
Dj = 1, and λE0j+λ

E
Dj = 1, for the D pin of flip-flop j.

Substituting these equalities into (2) causes the slack variables
sLj and sEj to cancel out and simplify the problem as follows:

min :
∑

j∈POs

λLPOj

(
− T + aLj

)
+
∑

j∈POs

λEPOj
(−aEj) + (3)∑

j∈FFs

λLDj

(
− rLjD

+ aLjD

)
+
∑

j∈FFs

λEDj
(−aEjD

+ rEjD
) +∑

j∈Gates

(∑
i∈Ij

λLGi,j
(aLi + dLi,j − aLj)+∑

i∈Ij

λEGi,j
(aEj − aEi − dEi,j)

)
+

∑
j∈FFs

(
λLFFi,j

(aLLCBi
+ dLi,j − aLjQ

)+

λEFFi,j
(aEjQ
− aELCBi

− dEi,j)
)
+∑

j∈LCBs

(
λLLCBi,j

(aLLCBi
+ dLi,j − aLLCBj

)+

λELCBi,j
(aELCBj

− aELCBi
− dEi,j)

)
Previous work on LR-based timing-driven placement [16],
[17] assumed that flip-flops and LCBs remain locked to their
positions and cannot move. This over-simplification allows the
removal of the required arrival times from (3), since they
remain constant. However, this is not allowed in our work.
Our goal is to incorporate the movement of all types of cells,
gates, flip-flops, and LCBs in the same LR-based formulation,
covering both late and early timing constraints. For this reason,
we would like to remove the direct contribution of the clock
arrival time and keep only the arrival times on the datapath

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

pins in the optimization problem. For the register-to-register
paths, we know that

rLjD
= aEjCLK

+ T − tsetup and rEjD
= aLjCLK

+ thold, (4)

where aLjCLK
and aEjCLK

represent the late and early arrival times
of the clock on flip-flop j, and tsetup, thold are the setup and
hold delays of the flip-flop. The clock arrival time ajCLK and the
arrival time at the output Q pin of a flip-flop ajQ are connected
via the clk-to-Q arc delay djCLK,Q , i.e., aLjCLK

= aLjQ
−dLjCLK,Q

and
aEjCLK

= aEjQ
− dEjCLK,Q

. Substituting these equalities into the
required arrival times of (4) leads to the following equations:

rLjD
= aEjQ

− dEjCLK,Q
+ T − tsetup (5)

rEjD
= aLjQ

− dLjCLK,Q
+ thold, (6)

Using (5) and (6) in the place of the required arrival times rjD
of (3), and considering that T , thold, tsetup remain unchanged
during timing optimization, we end up with the following
formulation:

min :
∑

j∈POs

λLPOj

(
aLj
)
+
∑

j∈POs

λEPOj
(−aEj) + (7)∑

j∈FFs

λLDj

(
− aEjQ

+ dEjCLK,Q
+ aLjD

)
+∑

j∈FFs

λEDj

(
− aEjD + aLjQ

− dLjCLK,Q

)
+∑

j∈Gates

(∑
i∈Ij

λLGi,j
(aLi + dLi,j − aLj)+∑

i∈Ij

λEGi,j
(aEj − aEi − dEi,j)

)
+

∑
j∈FFs

(
λLFFi,j

(aLLCBi
+ dLi,j − aLjQ

)+

λEFFi,j
(aEjQ
− aELCBi

− dEi,j)
)
+∑

j∈LCBs

(
λLLCBi,j

(aLLCBi
+ dLi,j − aLLCBj

)+

λELCBi,j
(aELCBj

− aELCBi
− dEi,j)

)
By differentiating (7) with respect to the arrival times, accord-
ing to the KKT optimality conditions, and representing the set
of fanin and fanout cells of cell j with Ij and Oj , we end up
with the following LM flow conservation rules:
• For each gate j ∈ Gates connected to other gates and

flip-flops at its fanin and fanout cones.∑
i∈Ij

λLGi,j
=
∑
k∈Oj

λLGj,k
+
∑
k∈Oj

λLDk
+
∑
k∈Oj

λLPOk
(8)

∑
i∈Ij

λEGi,j
=
∑
k∈Oj

λEGj,k
+
∑
k∈Oj

λEDk
+
∑
k∈Oj

λEPOk
(9)

• For each flip-flop j ∈ FFs connected to other gates or
flip-flops at its input D and output Q pins.

λEDj
+
∑
k∈Oj

λLGj,k
+
∑
k∈Oj

λLDk
+
∑
k∈Oj

λLPOk
=λLFFi,j

(10)

λLDj
+
∑
k∈Oj

λEGj,k
+
∑
k∈Oj

λEDk
+
∑
k∈Oj

λEPOk
=λEFFi,j

(11)

LCBLCB

PO

PO

LCB

D Q

D Q

D Q

Fig. 3. An example circuit used to illustrate the LM flow conservation rules
to preserve the KKT conditions for different types of cells. This figure also
highlights the timing arcs involved in the computation of the local cost for
each cell relocation in Section IV-A.

• For each LCB j ∈ LCBs driving both clock pins of
flip-flops or other LCBs:

λLLCBi,j
=
∑
k∈Oj

λLFFj,k
+
∑
k∈Oj

λLLCBj,k
(12)

λELCBi,j
=
∑
k∈Oj

λEFFj,k
+
∑
k∈Oj

λELCBj,k
(13)

• For each timing endpoint j ∈ E driven by pin i:

λLPOj
= λLi,j , λLDj

= λLi,j (14)

λEPOj
= λEi,j , λEDj

= λEi,j (15)

For gates, the incoming LMs are distributed to outgoing
timing arcs that can be other gates, input D pins of flip-
flops, or primary outputs. The same holds for the LMs at the
output Q pins of flip-flops, while, on the contrary, the LMs
of LCBs are spread to other LCBs, or the clock pin of flip-
flops. While the equality constraints for combinational gates
have been proven in previous work on LR-based optimization,
the optimal relation among LMs on the pins of flip-flops and
LCBs, including both late and early timing constraints, are
introduced in this work for the first time – to the best of
our knowledge – in the open literature. Applying the LM flow
conservation equations (8)–(15) to selected cells of Fig. 3 gives
the following result:
• For gate 6 (using eqs. (8) and (9)),

λLG3,6
+ λLG4,6

= λLG6,9
+ λLPO10

+ λLD11

λEG3,6
+ λEG4,6

= λEG6,9
+ λEPO10

+ λED11

• For flip-flop 11 (using eqs. (10) and (11)),

λED11
+ λLG11,12

+ λLPO13
+ λLD14

= λLFF8,11

λLD11
+ λEG11,12

+ λEPO13
+ λED14

= λEFF8,11

• For LCB 5 (using eqs. (12) and (13)),

λLLCB2,5
= λLFF5,4

+ λLLCB5,8

λELCB2,5
= λEFF5,4

+ λELCB5,8

Substituting the LM equality constraints into the optimiza-
tion problem, we end up with a simplified objective function
that combines the contribution of gates, flip-flops, and local
clock buffers in a unified cost function, for both late and
early timing, while it highlights – for the first time – the

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

Flip Flop Movement

LCB Movement Gate Movement

Non Critical

Gate Movement

Incremental

Timing Update

LM Update

Incremental

Timing Update Converge?

Unified Cell Relocation

Flip Flop Clustering

LR timing-driven placement

Fast timing

recovery

YesNo

Initial Design

Final

Design

Fig. 4. The overall cell relocation flow. Timing compatibility flip-flop
clustering facilitates the LR-based timing-driven cell relocation that interleaves
the LM updates and unified cell relocation until convergence is achieved.

independent contribution of the clock-to-Q delays and their
associated LMs:

min :
∑

j∈FFs

λLDj

(
dEjCLK,Q

)
+
∑

j∈FFs

λEDj
(−dLjCLK,Q

) + (16)∑
j∈Gates

(∑
i∈Ij

λLGi,j
(dLi,j) +

∑
i∈Ij

λEGi,j
(−dEi,j)

)
+

∑
j∈FFs

(
λLFFi,j

(dLi,j) + λEFFi,j
(−dEi,j)

)
+∑

j∈LCBs

(
λLLCBi,j

(dLi,j)+λ
E
LCBi,j

(−dEi,j)
)

Previous LR-based timing optimizations derived similar cost
functions, but of a more limited scope, involving only gates
for timing-driven placement (as done in [16], [17]), or gate
sizing (in [24], [25]), or including gate sizing with local clock
skew optimizations for improving the late timing only (in [26],
[27]).

IV. OVERALL FLOW AND LR-BASED CELL RELOCATION

The overall flow of applying the LR-based cell relocation
process is depicted in Fig. 4. The flip-flop clustering step is
executed once at the beginning of the flow, to separate timing-
incompatible flip-flops. Then, the iterative LR-based timing-
driven placement optimization evolves in two steps. In the first
step, assuming constant LMs, we try to move a selected set of
cells with the goal of minimizing the cost function (16). In the
second step, the LMs are updated to reflect the new criticality
of the corresponding timing arcs. On every LM update (and
before their initialization), a full incremental timing update
takes place.

In each iteration, all cells are relocated using the procedure
described in Algorithm 3, which approximately minimizes (16)
by the Optimal Local Relocation (OLR) of one cell at a time,
assuming all the other cells are fixed. Flip-flops and LCBs
are relocated first, and then gates are traversed in forward
topological order from the inputs to the outputs (POs), i.e.,

Algorithm 3: Cell relocation

1 sel cells←Movable cells with timing violations;
2 sel cells←sel cells ∪ Non-critical cells at the immediate

fanout of sel cells;
3 foreach cell j ∈ sel cells in topological order do
4 [best costL,best costE]← localCost(j) ;
5 best location←locationOf(j) ;
6 cand pos[j] ← Candidate slots in Search Window[j];
7 foreach position (x, y) ∈ cand pos[j] do
8 move cell j to (x, y);
9 update timing locally;

10 [new costL,new costE]← localCost(j);
11 if (new costL < best costL) AND

(new costE < best costE) then
12 best costL ←new costL ;
13 best costE ←new costE ;
14 best location← (x, y) ;
15 end
16 end
17 move cell j to best location ;
18 update timing locally ;
19 end

OLR of a cell begins after all its fanin gates have been
processed. During OLR, each cell is moved conditionally
to several candidate locations. For each candidate position
examined, timing is updated locally. This update involves
building a new Steiner tree for each fanin and fanout net for
the cell under relocation using Flute [28] inside RSyn, and
recomputing the new delays/slews of the updated nets and all
cells connected to those nets, with slew propagation stopping
at the immediate fanout of the cell under relocation. Using
the new delays computed after the movement, we evaluate
the local cost function, as described in the next sub-section.
If the new local cost is better than the previous best value,
after testing separately the early and the late part of the cost,
this candidate location is stored. After trying all the candidate
locations, the cell is finally moved to the best stored location.

Every cell movement is made to a legal location using the
Jezz legalizer [22] built inside Rsyn [18]. In this way, any
disturbance to the neighborhood around the moved cell is
directly taken into account, and, if it degrades timing, it would
be handled in the following iterations. Jezz has been used as
is, without any modifications to prioritize the displacement of
timing-critical cells versus non-critical neighbors. Any other
legalizer could have readily been used in the place of Jezz.

Contrary to flip-flop clustering, Algorithm 3 does not exam-
ine all cells. Only cells with timing violations and non-critical
gates (with positive slack) on their fanout are considered.
These non-critical gates can change the load of the output net
of the critical driver and, therefore, improve its delay. For each
cell, based on its current location, new candidate positions are
identified inside an appropriately constructed search window,
the size and orientation of which are biased by the local LMs.
The formation of this search window is described in Section V.

Before the LM updates and after flip-flop and LCB reloca-
tion, the timing is updated incrementally (in a global sense), in
order to reflect the new arrival times and the required arrival
times that emerge after cell movement.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

The iterative optimization stops when a maximum number
of iterations is reached, or when TNS stops improving (by
more than 1%) for two consecutive iterations. At the end of
the main optimization loop, a final brute-force timing recovery
step is performed on a list of a few most-critical paths to
reduce only early violation.

A. Local Cost Function

To judge the suitability of each candidate location, we
compute a local cost, using Algorithm 4, which reflects the
local value of the global cost function (16). The local cost
involves the summation of the product of the neighbor arc
delays and the corresponding LM for late and early timing.
The late and early costs are computed separately to enable the
cell relocation algorithm to select the best candidate location.
The local timing arcs that are included in the calculation of
the local cost function involve the timing arcs of the cell under
consideration, its immediate fanin and fanout cells, as well as
the timing arcs of the cells driven by its fanin cells (side arcs).

Algorithm 4: localCost(Cell c)

1 [costL, costE] ← [0,0] ;
2 foreach arc i→ j of local arcs of c do
3 costL ← costL + λL

i,j · dLi,j ;
4 costE ← costE + λE

i,j · (−dEi,j);
5 if arc i→ j is the clock-to-Q arc of a flip flop then
6 costL ← costL + λE

Dj · (−dLjCLK,Q
);

7 costE ← costE + λL
Dj · dEjCLK,Q

;
8 end
9 end

10 return [costL, costE];

For example, in the case of gate 6 shown in Fig. 3, the
local arcs used for evaluating the local cost function consist
of the timing arcs of the gate itself, (3 → 6 , 4 → 6), the
arcs of the cells driving gate 6 (12 → 3, 1 → 3, 5 → 4),
the arcs of the immediate fanout of gate 6 (6 → 9, 6 → 10,
6→ 11), and the arcs of the cells being driven by the fanins
of the gate under consideration (4 → 7). For an LCB, like
LCB 8 in Fig. 3, we consider the timing arcs with respect
to other LCBs, or the clock pins of flip-flops: local arcs =
{{5→ 8}, {2→ 5}, {8→ 11, 8→ 14}, {5→ 4}}. Similarly,
in the case of flip-flops, the timing arcs of both D, Q, and
clock pins are considered, covering all the local fanin and
fanout connections of the flip-flop. For flip-flop 11 in Fig. 3,
the local arcs consist of the following set of arcs: local arcs
= {{8 → 11, 6 → 11}, {5 → 8, 4 → 6, 3 → 6}, {11 →
12, 11→ 13, 11→ 14}, {6→ 9, 6→ 10, 8→ 14}}.

B. Lagrange Multiplier Update

Initially, all LMs are initialized to 1. Then, the LMs for
each PO and D pin of a flip-flop, for late and early timing, are
updated using the modified subgradient optimization proposed
in [29], [16], at the beginning of each iteration, as follows:

λLj = λLj

(
aLj
rLj

)
, λEj = λEj

(
rEj
aEj

)
(17)

After updating the output LMs, their values must be dis-
tributed to all nets satisfying the flow conservation condi-
tions (8)–(15). The distribution is performed by traversing the
circuit in reverse topological order. At each visited cell, the
sum of LMs at the output pins are distributed to the LMs of
the input pins. When an LM value needs to be distributed
to multiple incoming arcs, this distribution is done based on
the ratio of the LMs of the corresponding timing arcs. Such
distribution increases the LMs on critical paths, and, therefore,
the worst negative slack is also expected to be minimized.
Also, since LMs are accumulated at each branching point, the
higher the number of violating endpoints affected by an arc,
the higher the value of the corresponding LM.

The update of the LMs of all internal timing arcs i → j,
λi,j , for late and early timing, is done according to (18)–(19),
following the method presented in [27]:

λLi,j = λLi,j

(
1−

rLj − (aLi + dLi,j)

T

)K

(18)

λEi,j = λEi,j

(
1−

(aEi + dEi,j)− rEj
T

)K

(19)

The numerator of each fraction is the slack at the output pin of
cell j. If the slack is negative, the term in the brackets is greater
than 1, thus increasing the corresponding LM. To quickly
increase the LM value on timing critical cells, we empirically
set K = 4. Smaller values give slower convergence, while
larger values do not show further improvement in timing QoR.
On the other hand, when the arc is non-critical, the value in
the brackets is less than 1, thereby decreasing the LM value.
When the slack is positive, we set K = 1 to decrease the
LMs slowly. This method prevents the criticality of a path
from being forgotten immediately after the timing violation at
the endpoint is removed, thus avoiding criticality oscillations,
e.g., critical arcs becoming non-critical, and the opposite.

C. Timing Recovery with Flip-Flop-to-LCB Re-assignment

The efficiency of the timing-driven placement flow depends
on the placement utilization of the design, and on how much
space is available for moving cells to their appropriately
selected positions with respect to timing. In certain cases, cells
do not have much freedom to move, due to nearby placement
blockages, or macros. Therefore, when cell relocation has
converged – either because cells have reached their maximum
displacement limit, or there is limited placement freedom
nearby – timing can be improved solely by appropriate LCB-
to-flip-flop re-assignment. In this context, we examine the
20 most critical flip-flops and test, in a brute-force manner,
whether reconnecting each flip-flop to a different nearby LCB
would improve timing or not. Ten nearby LCBs per flip-flop
are examined. For each flip-flop-to-LCB re-assignment tried,
we perform a full incremental timing update, in order to be
certain about the expected savings in timing. Each examined
flip-flop stays assigned to the LCB that offers the best overall
timing. The preferred LCB is the one that reduces TNS on
early or late timing, without increasing WNS on the opposite
mode, i.e., late or early, respectively.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Fig. 5. (a) Two independent vectors (one for late and one for early timing
violations) are associated with each fanin and fanout cell; their magnitude
reflects their timing criticality. The vectors indicate the desired directions of
cell movement that would be beneficial in terms of timing. (b) All late and
early vectors are added together to form resultant late and early vectors TL

and TE . The directions and magnitudes of these resultant vectors determine
the orientation of the search window.

V. PLACEMENT OF THE SEARCH WINDOW

A critical aspect of the timing optimization process is the
identification of appropriate new candidate positions for each
cell. In this work, cell movement is facilitated through the
use of a search window. This window encloses the candidate
cell, and it includes all positions that the cell could potentially
occupy as part of the optimization process. The proposed
methodology, dictating how this search window is positioned
around the candidate cell, relies on vectors that indicate
desirable cell-movement directions. Specifically, each fanin
cell i ∈ Ij and each fanout cell k ∈ Oj is associated with
two independent vectors (one for late and one for early timing
violations) on cell j: vLi,j , vEi,j and uLj,k, uEj,k. These vectors
indicate the desired direction of cell movement that would be
beneficial in terms of timing. All vectors originate from the
center of cell j, and they lay on the imaginary lines connecting
the center of cell j to the center of all of its fanin/fanout cells,
as depicted in Fig. 5(a).

The magnitude of each vector is equal to the value of the
LM between these two cells (|vLi,j | = λLi,j , |vEi,j | = λEi,j and
|vLj,k| = λLj,k, |vEj,k| = λEj,k). The higher the value of the LM,
the more timing-critical the net is, which results in a “stronger”
(i.e., of larger magnitude) vector. The LMs are considered ideal
proxies, because they encompass the timing criticality of each
path, in terms of all timing arcs passing through that path.

As illustrated in Fig. 5(a), all the late vectors vLi,A, vLA,k that
act on cell A are always attractive, i.e., they point towards the
interconnected nets. By moving the pin in these designated
directions, the delay would be reduced, which would decrease
the late timing violation. In contrast, all the early vectors
vEi,A, vEA,k are always repulsive, i.e., they point away from
the interconnected cells. By moving the pin in these oppo-
site directions, the delay would be increased, which would
decrease the early timing violation. All vectors acting on cell
j can be viewed as individual “forces” pushing and pulling
cell j in their respective directions, towards and away from
all interconnected cells. Naturally, these individual “forces”
can be added to evaluate the net late and early effects on cell
j. All late vectors are added together to form one resultant
late vector TL, while a similar process is followed to yield
one resultant early vector TE , as shown in Fig. 5(b).

The directions of these two resultant vectors must now be

TABLE II
ICCAD-2015 CONTEST BENCHMARK CHARACTERISTICS

Circuit # Nodes # Flops # LCBs Density Max. Disp. (µm)
Short Long

sb1 1209716 144266 7213 0.80 40 400
sb3 1213253 167923 8396 0.87 40 400
sb4 795645 176895 8843 0.90 20 400
sb5 1086888 114103 5704 0.85 30 400
sb7 1931639 270219 13510 0.90 50 500

sb10 1876103 241267 12063 0.87 20 500
sb16 981559 142543 7126 0.85 30 400
sb18 768068 103544 5177 0.8 20 400

used to determine the exact placement location of the search
window with respect to cell j. Each of the two resultant
vectors TL and TE is projected onto the two coordinate
axes, in order to extract its x (horizontal) and y (vertical)
components. Subsequently, the horizontal and vertical com-
ponents of the two vectors are added up in the following
manner: all the positive horizontal components (pointing to
the right) are added to form |Rj |; all the negative horizontal
components (pointing to the left) are added to form |Lj |; all
the positive vertical components (pointing upwards) are added
to form |Uj |; and, finally, all the negative vertical components
(pointing downwards) are added to form |Dj |.

Our goal is to place the search window of cell j in a position
that is proportional to the calculated values of |Rj |, |Lj |, |Uj |,
and |Dj |. Let us assume that the bottom-left corner of cell j
is placed at the (xj , yj) position, the search window has width
W and height H , and the location of the bottom-left corner of
the search window is at (xo, yo). Initially, the search window
is placed such that the bottom left corner of cell j is at the
center of the search window. Therefore, xo = xj − W

2 and
yo = yj − H

2 . The new location of the bottom-left corner
of the search window, (x̂o, ŷo), is determined by using the
following equations:

x̂o = xj −
|Lj |

|Lj |+ |Rj |
·W, ŷo = yj −

|Dj |
|Dj |+ |Uj |

·H

Essentially, the ratios of the left-to-right components and
the up-to-down components determine the magnitude of the
search window’s slide in x and y directions.

Having determined the final location of the search window
for cell j, we identify a set of N candidate positions uni-
formly spaced inside the search window. Let us denote the
spatial granularity in the x and y dimensions as stepx and
stepy , respectively. The values of stepx and stepy can be
determined from the maximum displacement constraint and
the relationship W/stepx ·H/stepy = N . We iterate from ŷo
to ŷo + H with granularity stepy , and from x̂o to x̂o + W
with granularity stepx. In this manner, a total of N different
candidate positions are investigated for cell j, all situated
within the search window.

VI. EXPERIMENTAL RESULTS

The proposed flow was implemented in C++ using the open-
source RSyn framework [18] as a single-threaded application.
RSyn provides all necessary functions for netlist traversal and

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

TABLE III
TIMING IMPROVEMENT WITH SHORT AND LONG DISPLACEMENT LIMITS. LATE/EARLY WNS (WORST NEGATIVE SLACK), LATE/EARLY TNS (TOTAL

NEGATIVE SLACK) RESULTS, AS COMPARED TO THE FIRST-PLACE WINNER OF THE ICCAD-2015 CONTEST.

Short Displacement

Circuit
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps) LR
Init 1st Ours Init 1st Ours Init 1st Ours Init 1st Ours iter

sb1 -4.98 -4.66 -4.60 -459.74 -374.31 -369.19 -9.34 -3.83 0.00 -317.44 -41.56 0.00 6
sb3 -10.15 -9.43 -9.12 -1502.83 -1373.12 -1301.26 -78.36 -65.72 -4.74 -1458.78 -683.51 -17.44 5
sb4 -6.22 -5.94 -5.99 -3476.69 -3195.33 -3065.46 -12.55 -6.08 -8.40 -519.39 -173.92 -50.20 14
sb5 -25.70 -25.07 -25.11 -6965.15 -6779.95 -6639.30 -36.77 -36.77 -12.00 -591.42 -585.78 -111.40 4
sb7 -15.22 -15.21 -15.21 -1857.38 -1703.78 -1579.86 -7.65 -6.75 -6.80 -1985.85 -1943.74 -1821.19 6
sb10 -16.49 -16.18 -16.28 -33152.80 -32514.40 -31649.30 -8.62 -8.62 -2.02 -620.95 -361.06 -13.11 6
sb16 -4.58 -4.36 -4.24 -776.04 -514.25 -418.72 -10.65 -8.38 -2.49 -113.75 -30.67 -2.49 8
sb18 -4.55 -4.12 -4.08 -1034.80 -943.64 -929.43 -19.01 -3.81 -0.03 -283.00 -69.38 -0.03 4
Avg -10.99 -10.62 -10.58 -6153.18 -5924.85 -5744.06 -22.87 -17.50 -4.56 -736.32 -486.20 -251.98 6.62
Save - 4.57% 5.35% - 11.34% 15.66% - 29.96% 69.81% - 50.00% 84.29% -

Long Displacement

Circuit
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps) LR
Init 1st Ours Init 1st Ours Init 1st Ours Init 1st Ours iter

sb1 -4.98 -4.57 -4.42 -459.74 -351.23 -323.94 -9.34 -16.65 0.00 -317.44 -80.89 0.00 9
sb3 -10.15 -8.70 -8.27 -1502.83 -1160.04 -881.59 -78.36 -13.13 -3.29 -1458.78 -214.03 -16.50 16
sb4 -6.22 -5.76 -5.60 -3476.69 -2464.56 -2309.54 -12.55 -12.28 -3.13 -519.39 -53.84 -13.80 8
sb5 -25.70 -24.29 -24.70 -6965.15 -5842.23 -6327.55 -36.77 -36.77 -12.24 -591.42 -618.27 -54.01 5
sb7 -15.22 -15.21 -15.21 -1857.38 -1510.76 -1454.46 -7.65 -6.75 -7.35 -1985.85 -1958.34 -1820.90 7
sb10 -16.49 -16.07 -16.13 -33152.80 -31517.80 -29445.10 -8.62 -5.15 -2.40 -620.95 -373.75 -12.50 5
sb16 -4.58 -3.84 -3.35 -776.04 -265.56 -209.59 -10.65 -7.55 -1.85 -113.75 -37.64 -1.85 15
sb18 -4.55 -3.81 -3.80 -1034.80 -775.84 -701.43 -19.01 -1.95 -0.02 -283.00 -6.86 -0.02 20
Avg -10.99 -10.28 -10.19 -6153.18 -5486.00 -5206.65 -22.87 -12.53 -3.79 -736.32 -417.95 -239.95 10.62
Save - 8.79% 11.14% - 25.76% 31.46% - 22.26% 74.52% - 56.33% 86.47% -

cell relocation, as well as incremental timing analysis needed
by the proposed method. The new method is evaluated using
the ICCAD-2015 benchmark set [19]. Table II shows some of
the basic characteristics of each of the benchmarks used as
well as the target density and the short and long maximum
allowed displacement constraints that all cells should satisfy.
All experiments were performed on the same Linux-based
workstation using a 3.6 GHz Intel Core i7-4790 with four
cores and 32 GB of RAM. The final reported results are
validated using the scripts provided by the contest organizers,
and OpenTimer [30], which is the reference timer used for
evaluation purposes in the above-mentioned contest.

In all cases, our method executes the flow depicted in Fig. 4,
where flip-flop clustering precedes the iterative LR-based
timing-driven placement. In each iteration, for the relocation
of each cell, we identify 20 candidate positions uniformly
spaced inside a rectangular search window of size W=H=20
rows. For the examined benchmark set, 20 rows correspond
roughly to 68µm, which covers almost all of the allowed
displacement in the case of the short displacement constraint,
and it progressively reaches the maximum displacement in the
case of the long displacement constraint.

A. Comparison with winner of the ICCAD 2015 contest

Table III summarizes the results achieved by the proposed
algorithm, as compared to the initial design characteristics
(‘Init’) and the performance of the first-place winner (‘1st’)
of the ICCAD-2015 contest [16]. As shown in Table III, in
all cases, the timing of the designs is either almost the same

with that derived by the winner of the contest, or significantly
better. Our method smoothly reduces both the late and early
timing violations, without creating a tradeoff between the two.
For instance, for short displacement, the winner of the contest
improves the initial late WNS and TNS by 4.57% and 11.34%,
respectively, on average, while the proposed method increases
the average savings to 5.35% and 15.66%, respectively. At the
same time, WNS and TNS for early timing are significantly
more improved, as compared to [16]: early WNS is reduced
by a further 40% (69.81% vs. 29.96%), on average, and
early TNS by a further 34% (84.29% vs. 50.00%), for the
short displacement constraint. The obtained results represent
the combined effect of (a) the timing-compatibility clustering
that separates incompatible flip-flops, without enabling the
dynamic timing update of the flip-flops’s profiles, (b) the newly
proposed LR-based timing optimization framework, and (c)
the LM-driven cell relocation technique that moves all types
of cells in a uniform manner. The number of iterations that
LR-based cell relocation requires, per design, are depicted in
the last column of Table III.

The proposed approach efficiently utilizes the greater place-
ment freedom given by the long displacement limit. In all
cases, timing is improved when compared to the results
obtained for the short displacement limit, as shown in Table III.
To better highlight how the proposed algorithm utilizes the
available displacement, we performed timing-driven placement
optimization on benchmark sb3 for various displacement con-
straints. The sum of early and late TNS achieved in each case
is depicted in Fig. 6(a). Timing is improved with increasing
displacement constraints, until saturation is reached, which

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

200 400 8006000
850

950

1050

1150

1250

1350

1450

Maximum Allowed Displacement (um)

L
a

te
 T

N
S

 +
 E

a
rl

y
 T

N
S

 (
n

s
)

End

End

Fixed window

StartStart

LM-based

sliding window

(a) (b)

Fig. 6. (a) Final TNS on benchmark sb3 for various displacement constraints.
(b) The evolution of cell relocation using the proposed LM-driven search
window and an equally sized search window.

shows that the placement efficiency (in improving timing) has
reached a plateau.

This result also stems from the proposed sliding of the
search window. Fig. 6(b) displays the trajectory followed by a
cell of the sb3 benchmark, and the progressive placement of
the LM-based sliding window and a fixed window of the same
size. Using the LM-based window, the cell is allowed to move
quickly to its final destination by examining more timing-
effective candidate positions, thus helping in converging faster
to an overall timing-efficient solution. Additional experimental
results reveal that, in all benchmarks, the replacement of the
LM-based sliding of the search window by a fixed search
window would degrade the overall timing quality by 10%
(computed as the average degradation across all WNS/TNS
timing metrics.)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 20 3 4 5 6 7

Iterations

of [16]
LM update

K = 1

K = 2

K = 4

K = 6

N
o

rm
a

li
z
e

d
 L

a
te

 T
N

S
 +

 E
a

rl
y

 T
N

S

Fig. 7. TNS comparison between the LM update approach of [16] and the
proposed LM update approach for the sb10 benchmark. Higher exponent
values of K aim to increase the LMs of timing-critical arcs. As K increases,
the TNS decreases more quickly, with diminishing returns beyond K=4.

The way the LMs are updated enables both fast convergence
and better overall timing QoR, since the delay of timing-
critical arcs is appropriately emphasized relative to other non-
critical timing arcs. Fig. 7 compares the normalized sum of
late and early TNS obtained using the LM update approach
of [16] to that obtained when using the proposed LM update
technique, for the sb10 benchmark with long displacement
limit. For the proposed method, results with different expo-
nents K for the LM updates of (18)-(19) are also shown in
the figure. Obviously, the proposed LM update method yields
significantly better TNS results than the LM update approach

TABLE IV
LATE/EARLY WNS (WORST NEGATIVE SLACK) AND LATE/EARLY TNS

(TOTAL NEGATIVE SLACK) RESULTS WHEN DYNAMIC UPDATE OF TIMING
PROFILES IS ENABLED IN THE FLIP-FLOP CLUSTERING STEP.

Short Displacement

Circuit Late Early
WNS (ns) TNS (ns) WNS (ps) TNS (ps)

sb1 -4.55 -363.10 0.00 0.00
sb3 -9.10 -1290.17 -2.12 -7.21
sb4 -5.99 -3083.13 -10.00 -16.67
sb5 -25.11 -6635.68 -14.00 -115.30
sb7 -15.21 -1562.71 -6.80 -1832.40
sb10 -16.27 -31563.40 -1.37 -6.33
sb16 -4.23 -415.31 0.00 0.00
sb18 -4.07 -924.28 0.00 0.00
Avg -10.57 -5729.72 -4.29 -247.24
Save 5.56% 16.13% 71.84% 85.44%

Long Displacement

Circuit Late Early
WNS (ns) TNS (ns) WNS (ps) TNS (ps)

sb1 -4.32 -313.12 0.00 0.00
sb3 -8.18 -860.39 -2.88 -7.99
sb4 -5.60 -2580.72 -4.00 -5.95
sb5 -24.29 -6176.79 -15.00 -60.10
sb7 -15.21 -1428.32 -6.87 -1830.00
sb10 -16.12 -28573.2 -1.37 -7.85
sb16 -3.30 -202.68 0.00 0.00
sb18 -3.79 -673.84 0.00 0.00
Avg -10.10 -5101.13 -3.77 -238.99
Save 11.88% 32.18% 77.24% 86.84%

of [16]. As K is increased, the proposed method exhibits faster
convergence and better overall timing QoR. Beyond K=4,
further improvement in TNS is marginal, thereby leading us
to the selection of K=4 for all our experiments.

The results of the proposed methodology presented thus far
were obtained without dynamic updates of the timing profiles
in the flip-flop clustering step. If dynamic timing update is
enabled, the overall timing QoR is improved for the proposed
method, as shown in Table IV. As an example, for the
short displacement constraint, having the accurate slack values
during flip-flop clustering helps improve early WNS by a
further 2% (71.84% in Table IV vs. 69.81% in Table III), while
early TNS improves by a further 1% (85.44% vs. 84.29%).
Correspondingly, late WNS is improved by 0.2% (5.56% vs.
5.35%), and late TNS by 0.5% (16.13% vs. 15.66%). The
reason for the minimal improvement is the fact that dynamic
timing updates only affect weak flops with small timing slacks.
Even with stale timing profiles, those flops are easily corrected
by gate/flip-flop relocations in the subsequent optimization
process.

Unfortunately, the minimal improvements in timing QoR
with dynamic timing updates enabled come at a hefty runtime
cost of 6×, on average, relative to disabling the dynamic
timing updates. Hence, the decision to enable the dynamic
timing update feature is left to the engineer, who may wish
to investigate whether a particular design benefits from this
additional step, or not.

B. Comparison with recent state-of-the-art

In the next set of experiments, we compare the proposed al-
gorithm to two recent state-of-the-art timing-driven placement

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

TABLE V
TIMING IMPROVEMENT WITH SHORT AND LONG DISPLACEMENT LIMITS. LATE/EARLY WNS (WORST NEGATIVE SLACK), LATE/EARLY TNS (TOTAL

NEGATIVE SLACK) RESULTS, AS COMPARED TO EHC [11] AND FPUSM [12].

Short Displacement
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps)Circuit
EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours

sb1 -4.67 -4.66 -4.60 -373.99 -374.25 -369.19 -0.04 0.00 0.00 -0.04 0.00 0.00
sb3 -9.53 -9.43 -9.12 -1373.51 -1373.13 -1301.26 -59.59 -21.58 -4.74 -393.55 -153.08 -17.44
sb4 -5.94 -5.94 -5.99 -3153.70 -3195.38 -3065.46 -5.50 -2.20 -8.40 -65.32 -3.42 -50.20
sb5 -25.08 -25.07 -25.11 -6775.95 -6779.94 -6639.30 -31.33 -36.77 -12.00 -271.98 -265.37 -111.40
sb7 -15.22 -15.21 -15.21 -1696.02 -1703.81 -1579.86 -6.75 -6.36 -6.80 -1875.86 -1858.34 -1821.19
sb10 -16.19 -16.18 -16.28 -32514.40 -32514.50 -31649.30 -5.87 -2.19 -2.02 -306.75 -9.09 -13.11
sb16 -4.04 -4.36 -4.24 -444.16 -514.25 -418.72 -0.05 0.00 -2.49 -0.06 0.00 -2.49
sb18 -4.08 -4.12 -4.08 -938.77 -943.69 -929.43 -2.56 0.00 -0.03 -22.80 0.00 -0.03
Avg -10.59 -10.62 -10.58 -5908.81 -5924.87 -5744.06 -13.96 -8.64 -4.56 -367.05 -286.16 -251.98
Save 5.39% 4.57% 5.35% 12.74% 11.34% 15.66% 53.02% 68.29% 69.81% 70.31% 81.12% 84.29%

Long Displacement
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps)Circuit
EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours

sb1 -4.57 -4.57 -4.42 -351.06 -351.21 -323.94 -0.87 -0.43 0.00 -2.18 -0.43 0.00
sb3 -8.69 -8.70 -8.27 -1159.93 -1160.07 -881.59 -4.46 -5.54 -3.29 -9.10 -29.05 -16.50
sb4 -5.76 -5.76 -5.60 -2437.77 -2462.93 -2309.54 -12.28 0.00 -3.13 -55.62 0.00 -13.80
sb5 -24.29 -24.29 -24.70 -5840.52 -5842.28 -6327.55 -58.34 -36.77 -12.24 -61.10 -268.60 -54.01
sb7 -15.22 -15.21 -15.21 -1510.76 -1510.79 -1454.46 -6.75 -6.38 -7.35 -1958.34 -1858.48 -1820.90

sb10 -16.09 -16.07 -16.13 -31563.90 -31518.00 -29445.10 -2.73 -2.20 -2.40 -40.60 -3.47 -12.50
sb16 -3.69 -3.84 -3.35 -234.07 -265.57 -209.59 -0.20 0.00 -1.85 -0.31 0.00 -1.85
sb18 -3.78 -3.81 -3.80 -771.96 -775.87 -701.43 -0.20 0.00 -0.02 -0.20 0.00 -0.02
Avg -10.26 -10.28 -10.19 -5483.75 -5485.84 -5206.65 -10.73 -6.42 -3.79 -265.93 -270.00 -239.95
Save 9.27% 8.79% 11.14% 26.40% 25.76% 31.46% 50.70% 72.42% 74.52% 84.02% 82.29% 86.47%

optimization methods; namely, EHC [11] and FPUSM [12].
The obtained results are summarized in Table V. The results
of the proposed methodology are obtained without dynamic
updates of the timing profiles in the FF clustering step. In most
cases, the proposed methodology achieves similar, or better,
results, in terms of early timing, and it is always slightly better
in late timing. The average savings (‘Save’) reported in the last
rows of Table V report the average savings achieved by each
method relative to the initial designs (‘Init’) reported in the
second column of Table III.

Even though the improvements achieved by the proposed
method may initially seem modest, as compared to EHC and
FPUSM, the comparison should be viewed in the correct
overall context: both EHC and FPUSM are not complete, self-
contained optimization methods. Instead, they rely on another
preceding technique to first close – as much as possible – the
negative slack for late timing. Upon completion of this first
step by the other technique, EHC and FPUSM focus on early
timing optimization. This is precisely the reason why these two
methods were applied to the outcome of the first-place winner
of the ICCAD-2015 contest, which significantly pre-optimized
(especially for late timing) the designs. On the contrary, the
proposed methodology is self-contained and does not rely on
other techniques for any pre-optimizations.

It should also be noted that, while EHC and FPUSM focus
on LCB-to-flip-flop re-assignments and LCB/flip-flop move-
ments, the proposed approach generalizes this methodology
by moving LCBs and flip-flops inside LR-based placement. In
general, prior work only moves gates within LR-based place-
ment. The new methodology is holistic and all-encompassing

Fig. 8. The incremental timing savings relative to the initial benchmarks
obtained by each step of the proposed method, for early and late timing.

in its optimization approach, surpassing the performance of
EHC and FPUSM in most cases for late timing, and closely
matching their performance in early timing. More specifically,
the new approach always performs better in sb3 and sb5 in
early timing, and it is always worse in sb10 in early TNS
timing. The latter is attributed to the fact that, in sb10, the early
critical paths are between flip-flops with very low placement
freedom, because they are placed close to macros that block
placement.

The obtained timing QoR is the synergistic result of all
three algorithms shown in the cell relocation flow of Fig. 4,
i.e., FF clustering, LR-based cell relocation, and early timing
recovery. Fig. 8 depicts the average impact of each step over
all ICCAD 2015 benchmarks for short and long displacement
limits. Timing-compatibility flip-flop clustering prepares the

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

LCB-to-Flip-Flop connections in such a way that it reduces
early timing, but leaves late timing unaffected. In contrast, the
LR-based iterative optimization that follows is more complete
and provides a combined improvement in both early and late
timing. Finally, early timing recovery is a fast step that only
contributes in early timing and its effect is more pronounced
in short displacement limits.

TABLE VI
TIMING IMPROVEMENT OF LATE WNS (WORST NEGATIVE SLACK) AND
LATE TNS (TOTAL NEGATIVE SLACK) AS COMPARED TO OWARU [13]

USING ONLY GATE RELOCATION.

Late Timing/Short Displacement
WNS (ns) TNS (ns)Circuit

OWARU Ours OWARU Ours
sb1 -4.8 -4.61 -426 -368.30
sb3 -9.8 -9.12 -1408 -1301.49
sb4 -6.1 -5.99 -3379 -3092.90
sb5 -25.5 -25.13 -6916 -6660.28
sb7 -15.2 -15.21 -1759 -1582.20
sb10 -16.4 -16.31 -32816 -31707.00
sb16 -4.4 -4.25 -605 -424.06
sb18 -4.2 -4.08 -997 -928.58
Avg -10.8 -10.6 -6038.3 -5758.1
Save 2.75% 5.26% 6.15% 15.44%

Finally, the proposed incremental timing-driven placement
technique was compared to OWARU [13], which focuses
entirely on late timing optimizations. The obtained results are
presented in Table VI. For a fair comparison with OWARU, we
have replaced the performance numbers of our method (when
applied as a whole) with the numbers achieved for late timing
when performing only LR-based gate relocation, excluding FF
clustering, FF and LCB movement, and timing recovery. In
all cases, the proposed approach achieves better results than
OWARU [13].

C. Runtime comparisons

In addition to yielding timing improvements, the runtime
of an optimization methodology is also a critical attribute.
The runtime evaluation results in Table VII indicate that the
proposed approach is close to the state-of-the-art. Note that
the reported runtimes for the competing techniques are taken
verbatim from their respective papers. Consequently, those
runtimes correspond to other machines with different speci-
fications than the one we used. Therefore, the comparisons
can only be broadly and generally indicative. Regardless, we
include those runtime numbers here in a big-picture context,
to demonstrate that the runtimes of the proposed approach are
reasonable, as compared to the others.

The runtimes of the new technique are close – in some
cases better, in others worse – to the first-place winner of the
ICCAD-2015 contest. However, the new approach utilizes its
runtime more effectively, by yielding substantially better QoR,
especially for early timing. In the case of long displacement,
the new technique’s runtimes are longer, since there are more
options to search before converging to a solution. Also, the
proposed method exhibits more-or-less similar runtimes to
EHC and FPUSM. However, for a fair and meaningful runtime
comparison to EHC and FPUSM, one would need to also

TABLE VII
RUNTIME COMPARISON OF STATE-OF-THE-ART TIMING-DRIVEN

PLACEMENT TECHNIQUES. RUNTIMES ARE REPORTED IN MINUTES.

Circuit Short Displacement Long Displacement
1st EHC FPUSM Ours 1st EHC FPUSM Ours

sb1 23 84 10 31 32 84 10 43
sb3 23 92 23 21 27 92 25 49
sb4 17 39 11 137 19 39 10 65
sb5 23 88 16 17 25 88 15 20
sb7 43 172 21 38 53 172 20 41
sb10 40 166 18 102 37 166 18 88
sb16 19 73 9 28 22 73 10 41
sb18 15 41 9 10 16 41 10 32

Runtime (in minutes) of each step of the proposed methodology.
Method sb1 sb3 sb4 sb5 sb7 sb10 sb16 sb18

Sh
or

t FF-Clust 3.8 4.8 5.1 2.2 12.4 9.8 3.5 1.9
LR-Reloc 24.7 13.9 129.2 13.1 22.8 88.3 22.0 6.4
Tim-Rec 2.5 2.0 2.8 1.7 3.0 4.0 2.1 1.4

L
on

g FF-Clust 3.8 4.8 5.1 2.2 12.4 9.8 3.5 1.9
LR-Reloc 36.6 42.1 56.5 15.7 25.8 73.9 35.0 28.2
Tim-Rec 2.6 2.1 2.9 1.8 3.0 4.1 2.1 1.8

add the runtime of the first-place winner of the ICCAD-
2015 contest to those techniques. Recall, that both EHC [11]
and FPUSM [12] are applied after the completion of the
optimization of the first-place winner.

The runtime of the proposed method is the additive result
of the three main steps of the overall flow. The contribution of
each part is shown at the bottom of Table VII for all bench-
marks. As expected, the LR-based cell relocation consumes
the majority of the runtime, while early timing recovery has
a small marginal contribution. The FF clustering’s runtime is
always a small, or medium, percentage of the runtime of LR
relocation, and its runtime is, by construction, the same for
long and short displacement limits.

VII. CONCLUSIONS

Timing-driven placement optimization is an integral cog
of the complex process of achieving timing closure, and it
is one of the key determinants of the overall QoR. This
article presents a novel timing-driven placement optimization
methodology based on an extended Lagrange Relaxation for-
mulation. The fundamental contribution of this new approach
is the concerted relocation of all types of cells (gates, flip-
flops, and LCBs) in a unified manner. The LR-based place-
ment optimization is complemented by a flip-flop clustering
algorithm that ensures the timing compatibility of the flip-
flops of each cluster, thus facilitating the timing optimization
through LCB movement. Additionally, a simple, yet effective,
scaling factor artificially changes the distances of the members
of the cluster from the cluster center. This helps create clusters
of uneven sizes, thereby appropriately delaying, or speeding
up, the clock arrival time. Extensive experimental evaluations
using the ICCAD-2015 benchmarks demonstrate the efficacy
of the proposed methodology, as compared to four state-of-
the-art timing-driven placement-optimization techniques.

ACKNOWLEDGMENT

We would like to thank D. Chinnery, Mentor, a Siemens
Business, USA for his valuable comments.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2942001, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

REFERENCES

[1] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer, Electronic
Design Automation for IC Implementation, Circuit Design, and Process
Technology. Taylor and Francis group, 2016.

[2] N. D. MacDonald, “Timing closure in deep submicron designs,” in
Design Automation Conference (DAC), 2010.

[3] L. C. Lu, “Physical design challenges and innovations to meet power,
speed, and area scaling trend,” Keynote, ISPD 2017.

[4] N. Viswanathan, G.-J. Nam, J. A. Roy, Z. Li, C. J. Alpert, S. Ramji,
and C. Chu, “Itop: Integrating timing optimization within placement,”
in ACM Intern. Symp. on Physical Design (ISPD), 2010, pp. 83–90.

[5] G. Wu and C. Chu, “Two approaches for timing-driven placement by
lagrangian relaxation,” IEEE Trans. on CAD, vol. 36, no. 12, pp. 2093–
2105, Dec 2017.

[6] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “Ritual: a performance
driven placement algorithm for small cell ics,” in IEEE Intern. Conf. on
Computer-Aided Design (ICCAD), Nov 1991, pp. 48–51.

[7] T. Luo, D. Newmark, and D. Z. Pan, “A new lp based incremental timing
driven placement for high performance designs,” in ACM/IEEE Design
Automation Conference (DAC), July 2006, pp. 1115–1120.

[8] H. Ren, D. Z. Pan, and D. S. Kung, “Sensitivity guided net weighting for
placement driven synthesis,” in ACM Intern. Symp. on Physical Design
(ISPD), 2004, pp. 10–17.

[9] T. Kong, “A novel net weighting algorithm for timing-driven placement,”
in IEEE/ACM Intern. Conf. on Computer-Aided Design (ICCAD), Nov
2002, pp. 172–176.

[10] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin,
Y. Parasuram, and B. Halpin, “How accurately can we model timing
in a placement engine?” in ACM/IEEE Design Automation Conference
(DAC), 2005, pp. 801–806.

[11] C.-C. Huang, Y.-C. Liu, Y.-S. Lu, Y.-C. Kuo, Y.-W. Chang, and S.-
Y. Kuo, “Timing-driven cell placement optimization for early slack
histogram compression,” in IEEE/ACM Design Automation Conference
(DAC), 2016.

[12] S. Kim, S. Do, and S. Kang, “Fast predictive useful skew methodol-
ogy for timing-driven placement optimization,” in ACM/IEEE Design
Automation Conference (DAC), 2017, pp. 55:1–55:6.

[13] J.Jung, G.Nam, L.Reddy, I.Jiang, and Y.Shin, “OWARU: Free space-
aware timing-driven incremental placement with critical path smooth-
ing,” IEEE Trans. on CAD, vol. 37, no. 9, pp. 1825–1838, Sep. 2018.

[14] G. Flach, J. Monteiro, M. Fogaça, J. Puget, P. Butzen, M. Johann, and
R. Reis, “An incremental timing-driven flow using quadratic formulation
for detailed placement,” in IFIP/IEEE Intern. Conf. on Very Large Scale
Integration (VLSI-SoC), Oct 2015, pp. 1–6.

[15] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, “Drive
strength aware cell movement techniques for timing driven placement,”
in ACM Intern. Symp. on Physical Design (ISPD), 2016, pp. 73–80.

[16] C. Guth, V. Livramento, R. Netto, R. Fonseca, J. L. Güntzel, and
L. Santos, “Timing-driven placement based on dynamic net-weighting
for efficient slack histogram compression,” in ACM Intern. Symp. on
Physical Design (ISPD), 2015, pp. 141–148.

[17] V. Livramento, R. Netto, C. Guth, J. L. Güntzel, and L. C. V. D. Santos,
“Clock-tree-aware incremental timing-driven placement,” ACM Trans.
Des. Autom. Electron. Syst., vol. 21, no. 3, pp. 38:1–38:27, Apr. 2016.

[18] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, “Rsyn:
An extensible physical synthesis framework,” in ACM Intern. Symp. on
Physical Design (ISPD), 2017, pp. 33–40.

[19] M. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD contest
in incremental timing-driven placement and benchmark suite,” in Intern.
Conf. on Computer-Aided Design (ICCAD), Nov 2015, pp. 921–926.

[20] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651 – 666, 2010.

[21] G. Wu, Y. Xu, D. Wu, M. Ragupathy, Y. Mo, and C. Chu, “Flip-
flop clustering by weighted k-means algorithm,” in ACM/IEEE Design
Automation Conference (DAC), June 2016.

[22] J. C. Puget, G. Flach, R. Reis, and M. Johann, “Jezz: An effective legal-
ization algorithm for minimum displacement,” in Symp. on Integrated
Circuits and Systems Design (SBCCI), Aug 2015, pp. 1–5.

[23] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach. Springer, 2009.

[24] V. S. Livramento, C. Guth, J. L. Güntzel, and M. O. Johann, “Fast and
efficient lagrangian relaxation-based discrete gate sizing,” in Design,
Automation Test in Europe (DATE), March 2013, pp. 1855–1860.

[25] A. Sharma, D. Chinnery, S. Bhardwaj, and C. Chu, “Fast lagrangian
relaxation based gate sizing using multi-threading,” in IEEEE Intern.
Conf. on Computer-Aided Design (ICCAD), 2015, pp. 426–433.

[26] G. Shklover and B. Emanuel, “Simultaneous clock and data gate sizing
algorithm with common global objective,” in ACM Intern. Symp. on
Physical Design (ISPD), 2012, pp. 145–152.

[27] A. Sharma, D. Chinnery, and C. Chu, “Lagrangian relaxation based gate
sizing with clock skew scheduling - a fast and effective approach,” in
ACM Intern. Symp. on Physical Design (ISPD), 2019, pp. 129–137.

[28] C. Chu and Y. Wong, “Flute: Fast lookup table based rectilinear steiner
minimal tree algorithm for vlsi design,” IEEE Transactions on CAD,
vol. 27, no. 1, pp. 70–83, Jan 2008.

[29] H. Tennakoon and C. Sechen, “Gate sizing using lagrangian relaxation
combined with a fast gradient-based pre-processing step,” in IEEE/ACM
Int. Conf. on Computer-Aided Design (ICCAD), Nov 2002, pp. 395–402.

[30] T. W. Huang and M. D. F. Wong, “Opentimer: A high-performance
timing analysis tool,” in IEEE Intern. Conference on Computer-Aided
Design (ICCAD), pp. 895–902.

Dimitrios Mangiras received the Diploma in elec-
trical and computer engineering from the Democri-
tus University of Thrace, Xanthi, Greece, in 2017,
where he is currently pursuing the Ph.D. degree.

His research interests include electronic design
automation for physical design, clock tree synthesis
and machine-learning based optimization as well
as, design of energy-efficient integrated circuits and
automated verification methodologies.

Apostolos Stefanidis Apostolos Stefanidis received
the Diploma in electrical and computer engineering
from the Democritus University of Thrace, Xanthi,
Greece, in 2017, where he is currently pursuing his
Ph.D. degree.

His current research interests include electronic
design automation, with emphasis in machine learn-
ing applications on autonomous timing and power
optimization.

Ioannis Seitanidis Ioannis Seitanidis received the
Dipl.Ing. and Ph.D. degrees in electrical and com-
puter engineering from the Democritus University of
Thrace, Xanthi, Greece, in 2013 and 2018, respec-
tively.

Since 2018, he is a Software Research and Devel-
opment Engineer with Mentor, a Siemens Business,
Grenoble, France. His current research interests in-
clude electronic design automation, design optimiza-
tion and physical synthesis.

Chrysostomos Nicopoulos received the B.S. and
Ph.D. degrees in electrical engineering with a spe-
cialization in computer engineering from Pennsyl-
vania State University, State College, PA, USA, in
2003 and 2007, respectively.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of Cyprus, Nicosia, Cyprus. His current
research interests include networks-on-chip, com-
puter architecture, multi/many-core microprocessor
and computer system design.

Giorgos Dimitrakopoulos received the B.S, MSc
and Ph.D. degrees in Computer Engineering from
University of Patras, Patras, Greece, in 2001, 2003
and 2007, respectively.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece.
He is interested in the design of digital integrated
circuits, electronic design automation, and computer
architecture, with emphasis in low-power systems
design.

