
1

ShortPath: A Network-on-Chip Router with
Fine-Grained Pipeline Bypassing

Anastasios Psarras, Ioannis Seitanidis, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos

Abstract—Scalable Network-on-Chip (NoC) architectures should achieve high-throughput and low-latency operation without
exceeding the stringent area/energy constraints of modern Systems-on-Chip (SoC), even when operating under a high clock
frequency. Such requirements directly impact the NoC routers and interfaces comprising the NoC architecture. This paper focuses on
the micro-architecture of NoC routers and presents ShortPath, a pipelined router architecture that can achieve high-speed
implementations by parallelizing as much as possible – and without resorting to speculation – the allocation steps involved in the
operation of a VC-based router. Most importantly, ShortPath is augmented with a fine-grained pipeline bypassing mechanism, which
skips all stages without contention and “fast-forwards” the flits to the first point of contention. Pipeline bypassing in ShortPath is always
productive, and even if a flit loses in arbitration, it does not repeat any of the stages already bypassed. Extensive network simulations
and hardware analysis – using standard-cell-based synthesis and placed-and-routed layout – corroborate the efficiency of ShortPath,
in terms of both network performance and hardware complexity, as compared to the most relevant current state-of-the-art architecture.

Index Terms—Networks-on-Chip, Routers, Pipelined Organization, Pipeline Bypass, VLSI

F

1 INTRODUCTION

The last decade has witnessed a fundamental paradigm shift
in digital system design: the transition to the multi-core
realm [1]. Multi-core systems have elevated the criticality of
the on-chip interconnection fabric, which is now tasked with
satisfying amplified communication demands. Networks-
on-Chip (NoC) have emerged as the dominant communi-
cation medium in multi-core setups, primarily due to (a)
their innate physical scalability, which simplifies system
integration, and (b) their high-performance characteristics,
stemming from the parallel handling of multiple flows
traversing the network [2], [3].

Virtual Channels (VCs) are an integral part of most
NoC architectures, since they contribute to performance
enhancement, and they facilitate network traffic separation.
The latter attribute enables, in turn, network virtualization,
traffic isolation [4], and quality-of-service provisioning [5].
Moreover, VCs can be used for the definition of Virtual
Networks (VNs), which are used to avoid protocol and/or
routing deadlocks. Packets belonging to a VN complete
their entire trip in the network by traversing the same
VN. In-flight transitions from one VN to another are either
prohibited, or done with very restrictive rules, which are
used to guarantee deadlock freedom in the cases of: (a) sepa-
rating request/reply traffic [6] and/or other cache coherence
message classes [7], and (b) supporting adaptive routing [8].

Being the main building block of the on-chip network,
the VC-based NoC router has been the focus of signifi-

Anastasios Psarras, Ioannis Seitanidis, and Giorgos Dimitrakopoulos are
with the Electrical and Computer Engineering department of the Democritus
University of Thrace (DUTH), Xanthi, Greece.
(e-mail: apsarra@ee.duth.gr; iseitani@ee.duth.gr; dimitrak@ee.duth.gr).

Chrysostomos Nicopoulos is with the Electrical and Computer Engineering
department of the University of Cyprus, Nicosia, Cyprus.
(e-mail: nicopoulos@ucy.ac.cy).

cant research attention, and the target of several micro-
architectural optimizations [9], [10]. The goal of this work
is to design a scalable VC-based router architecture that
strikes a cost-effective tradeoff between latency (in cycles)
and clock period (operating frequency), while still offer-
ing a low-area/power implementation. Ideally, the NoC
router should be able to (1) facilitate the shortest possible
intra-router latency to each individual flit (i.e., single-cycle
traversal), and (2) its clock period should be as short as
possible to enable high-frequency implementations. These
desired traits are innately contradictory: high operating
frequencies are typically achieved by pipelining, which,
inevitably, precipitates commensurate increases in latency
(cycles). Our objective is to cost-effectively reconcile these
conflicting properties through a re-organization of the NoC
router’s micro-architecture.

The proposed router micro-architecture, called ShortPath,
relies on an array of novel micro-architectural innovations,
which work synergistically to optimize the router’s op-
eration. Overall, the key attributes and contributions of
ShortPath are the following:

• A collapsible pipelined router organization, which allows
for dynamic pipeline-stage bypassing, in order to incur
the minimum possible latency to each traversing flit. This
is the first (to the best of our knowledge) architecture
to guarantee that each flit will spend the minimum possible
number of cycles in each router, based on prevailing traf-
fic conditions under both low and high network traffic.
Spending more than a single cycle in a ShortPath router
happens only when flits encounter contention. ShortPath
skips all uncontested stages and “fast-forwards” the flits
to the first point of contention. As a result, the (nominally)
3-stage pipeline dynamically collapses to the minimum
possible number of stages (i.e., 1- or 2-stage), based on
traffic conditions.



2

• A radical re-organization of the NoC router’s micro-
architecture allows for minimal intra-router latency (in
terms of cycles), while still enabling high-frequency
pipelining. The router’s allocation and switching tasks
benefit from a new parallel setup, which is further aided
by a pair of instrumental low-cost request queues.

• ShortPath’s operation is always productive: even if the
bypassing flit loses the arbitration at the first point of
contention it encounters, it will never be forced to re-
peat any of the already bypassed stages. This is unlike
existing bypassing approaches, which force flits to “re-
wind” and traverse a longer pipe. The lack of pipeline
stage repetitions is the result of the always non-speculative
operation of ShortPath, which allows each flit to keep (and
not kill, as done in speculative architectures) any of the
already allocated resources, even if the allocation of the
subsequent resources – deeper in the pipeline – is delayed
due to contention. This behavior ensures consistent effec-
tiveness (without the performance variability instilled by
speculation) under all traffic conditions.

The efficacy and efficiency of the proposed architec-
ture are validated using extensive cycle-accurate network
simulations and detailed hardware analysis of synthesized
and placed-and-routed designs (using commercial-grade 45
nm standard-cell libraries). The obtained results demon-
strate the high performance, low complexity, and highly
scalable nature of ShortPath, as compared to the state-of-
the-art. More specifically, ShortPath is shown to outperform
Scorpio [11] – the most efficient pipelined router organiza-
tion with pipeline-stage-bypassing capabilities – by up to
30% in terms of latency and 25% in terms of throughput,
with no additional hardware cost (i.e., no adverse impact
on area/power/delay). In fact, ShortPath’s new micro-
architecture yields a shorter critical path than Scorpio [11],
which translates to an equivalent increase (if desired) in the
maximum operating frequency.

The rest of the paper is organized as follows: Section 2
briefly reviews existing state-of-the-art NoC router archi-
tectures. Section 3 introduces the basic pipelined Short-
Path architecture, while Section 4 presents ShortPath’s fine-
grained pipeline-bypassing mechanism. Section 5 presents
experimental results and accompanying analysis. Finally,
Section 6 concludes the paper.

2 BACKGROUND & RELATED WORK

The design space of VC-based NoC routers has evolved sig-
nificantly over the past decade [10]. An abstract illustration
of a generic VC-based router architecture is illustrated in
Figure 1. Arriving packets are written into the input VC
buffers of the router (Buffer Write, BW). In the following cy-
cles, they must find their way to the proper output port, af-
ter going through several allocation steps [10]. The head flit
of a packet first calculates its destined output port through
Routing Computation (RC)1. Once the desired output port is
known, the head flit uses it to allocate an output VC (i.e., an
input VC in the downstream router) during VC Allocation
(VA). The allocated VC is “inherited” by all constituent flits

1. The selected output port could have been pre-computed in the
upstream router, using Look-ahead RC (LRC) [12].

of the packet. Then, each individual flit independently tries
to gain exclusive access to its desired output port, on a
cycle-by-cycle basis, through Switch Allocation (SA). The
winners of the SA stage traverse the crossbar during Switch
Traversal (ST), and are then written in an output pipeline
register. Finally, the flits move to the next (downstream)
router through Link Traversal (LT).

C
re

d
it
 C

o
u
n
te

rs

O
u
tp

u
t 
V

C
 S

ta
teinput port #0

SA

o
u

tp
u

ts

#0

#V-1

VA

RC

input port #N-1

#0

#V-1

ST

Fig. 1. The main modules of a generic baseline VC-based NoC router.

The router can implement all the required allocation
steps in one cycle, or in multiple cycles, when following
a pipelined organization. In the baseline case, shown in
Figure 2(a), the VA and SA stages are executed serially,
one after the other. Only the packets that have allocated an
output VC are allowed to move to the SA stage.

VA1
V:1

VC assignment

V:1
N:1

SA1
V:1

SA2
N:1

(a) Baseline

V:1
N:1

VC assignment

VA1
V:1

SA1
V:1

SA2
N:1

(c) Combined
V:1

N:1

VC assignment

VA1
V:1

SA1
V:1

SA2
N:1

(b) Speculative

mask

VA2
NV:1

VA2
NV:1

Fig. 2. The sequence/order of arbitrations and their dependencies in (a)
baseline, (b) speculative, and (c) combined allocators.

In VA, the head flit of a packet selects one output VC to
be requested – among possibly V candidates – in the VA1
phase. Each output VC then selects at most one input VC
requesting it, in VA2 (N × V input VCs in total – there are
N input/output ports in a router, with V VCs per input
port). The number of requests in VA1 and VA2 is reduced
when VCs are used to implement VNs, and each VN serves
a subset of the V VCs per input.

Upon completion of VA, the SA stage commences. Dur-
ing SA1, every input port independently selects one input
VC that will attempt to reach the selected output port (one
out of V input VCs is selected). Thereafter, in SA2, each out-
put port selects which input can access it (N inputs in total).
The winners of both the SA1 and SA2 steps are allowed to
move to the downstream router. The serial execution of the
arbitration steps limits the operating frequency of the router,
with VA2 typically being the slowest step.



3

As an optimization of the baseline setup, the allocation
process can be parallelized by speculatively performing SA,
in parallel to VA2, as shown in Figure 2(b), thereby allowing
a flit to arbitrate for port access, even though it has not been
allocated an output VC yet [13], [14]. In the case of mis-
speculation, a packet (still not owning an output VC) wins
in SA, but loses in VA2, and the output port is left unused in
the current cycle. In order to decrease the probability of mis-
speculation, the non-speculative requests (i.e., those made
by packets that already own an output VC) have a higher
priority over speculative ones. However, this approach re-
quires two full SA units to separately serve speculative
and non-speculative requests, and extra masking logic to
handle the two allocators’ conflicts. The VA1 stage is still
performed in series with SA, since we need to know which
output VC is selected by each input VC, in order to check
its availability (needed in VA2) and the existence of the
required downstream credits (needed in SA1 and SA2) [15].

Recently proposed architectures move one step forward
– beyond speculative allocation – by removing the VA2 stage
completely [15], [16], [17]. The VA process is simplified by
combining its functionality with that of SA in what is termed
combined allocation. Output VC assignment happens in the
SA stage, where flits may participate even if they do not own
an output VC yet (e.g., newly arrived head flits). If a head flit
wins in SA, it receives access to the selected output port and,
concurrently, it is assigned to the selected output VC. The
assigned output VC is selected in VA1, which is executed in
parallel to SA1, by exploiting the fact that it is not necessary
to know that the selected output VC is available and with
credits, but it suffices to know that at least one of the
candidate output VCs fulfills the necessary conditions [18].
The organization of such combined allocators is shown in
Figure 2(c). In some implementations [16], [19], [20], the VA1
stage is not explicitly used, and the allocated VC is received
by a queue/pool of free VCs at the output.

In addition to optimizing the allocation processes, state-
of-the-art router architectures combine fine-grained pipelin-
ing with pipeline stage bypassing to reduce the number of
cycles spent within each router when the traffic in the router
is low. For instance, the 3-stage pipelined router presented
in [21] and elaborated in [22] executes SA1, SA2, and ST in
different stages, and allows flits to bypass SA1 when only
one input VC is active within a specific input port.

SWIFT [19] and Scorpio [11] enhance the bypass option
by taking advantage of the fact that SA2 and ST are executed
in different pipeline stages, i.e., SA2 finishes one cycle before
ST. Hence, the result of SA2 is augmented with additional
header information, bundled in so called Look-Ahead (LA)
signals, and sent to the downstream router to set up the
allocation decisions one cycle prior to the arrival of the
actual flit. In this way, the incoming flit is able to bypass
all intermediate arbitration stages and directly perform ST
in the next router. However, if this lookahead procedure
fails for any reason (mostly due to contention from other
inputs), the flit has to traverse all 3 stages of the pipeline. In
cases where multiple LA requests are contending for the
same output port, the winner is declared through a sim-
ple masking process, named LA Conflict Check (LA-CC),
instead of a full-fledged arbitration, in an effort to reduce
the bypassing delay overhead as much as possible. This

approach however, leads to unproductive decisions, where
none of the contending flits manages to actually succeed
in bypass, but instead, all of them are forced to “re-start,” in
order to contend again in the normal pipeline 3 cycles later.

Additionally, even in normal (non-bypass-capable)
pipelined operation, not all allocation steps are used pro-
ductively when the SA1 and SA2 stages are performed in
different pipeline stages. For example, assume that a flit
that needs to reach an output VC – which has currently
enough credits available – performs SA1 and wins. In the
next pipeline stage, the flit participates in SA2, but loses. If
the flit only retries the SA2 step (assuming that it remains
the winning flit in SA1), then the selected output VC may no
longer have credits available. Thus, the flit is unable to move
forward and its request – that is now obsolete – should be
killed, until the credits of the corresponding output VC are
increased [11], [19], [21]. Thus, the SA1 winning step is not
used productively (behaving like mis-speculation), and the
allocation process should restart from the beginning.

Scorpio [11] constitutes the latest rendition of the three
key micro-architectural principles, i.e., combined allocation,
pipeline bypassing, and look-ahead signaling, and removes
many of the deficiencies of its predecessor [19]. For example,
Scorpio uses the same bypass mechanism and LA signals as
SWIFT, but in a more cost-effective way, without resorting
to Token Flow Control [23], as done in SWIFT [19], which in-
creases buffering requirements and incurs significant wiring
overhead across routers. More importantly, Scorpio’s critical
path is improved, thus reaching higher clock frequencies,
while still retaining the favorable characteristics of a bal-
anced pipelined organization and efficient pipeline bypass-
ing. However, Scorpio remains a speculative architecture and
still suffers from the inefficiencies of LA-based bypassing.

Nevertheless, the Scorpio design was actually fabri-
cated in silicon, based exclusively on standard-cell li-
braries, and incorporated into a fully-functioning 36-core
CMP. Clearly, the Scorpio architecture is a provably fea-
sible/practical state-of-the-art implementation of the latest
micro-architectural innovations in NoC design. Being the
most recent incarnation of all aforementioned techniques,
Scorpio [11] is the most relevant work to the newly pro-
posed ShortPath architecture. Hence, Section 5 will present
an in-depth and all-encompassing comparison between
the two designs.

3 THE SHORTPATH ROUTER ARCHITECTURE

This section describes the basic ShortPath pipelined micro-
architecture, which comprises three pipeline stages, as de-
picted in Figure 3. ShortPath is – by construction – non-
speculative by imposing to head flits a certain order of
acquiring the needed resources. A head flit should first
allocate an output VC for the whole packet, and then gain
access to its output port.

VC allocation is performed in the first pipeline stage
(only applicable to head flits) that executes the VA1 and VA2
stages in parallel, driven by a newly introduced FIFO struc-
ture, called the VA Request Queue (VARQ). Whenever a head
flit arrives at an input port, necessary control information is
enqueued in the corresponding VARQ. The exact operation



4

of VC allocation is analyzed in Section 3.1, while the details
of the VARQ’s operation are presented in Section 3.2.

The second stage allows all flits to perform SA1 and
push their requests into the novel SA Request Queue (SARQ),
which separates the SA1 and SA2 arbitration stages. Re-
quests to the SA1 stage can only be made by flits that
already own an output VC and refer to an output VC
that has available credits. Pushing the requests that win
in SA1 in the SARQ makes the allocation decisions always
productive. Even if a request is not satisfied in SA2, due to
contention, it does not have to replay the previous pipeline
stage, and it stays in the SARQ. In the third pipeline stage,
all flits perform SA2 and the ones that win traverse the
crossbar (ST), and are written in the output pipeline register
that separates router operation from link traversal (LT). If
desired, the SA2 and ST modules could be merged into
one combined fast module, using the structure of [24]. The
details of the switch allocation performed in the second
and the third pipeline stages of ShortPath are clarified in
Section 3.3.

VARQ

VC buffers

SARQ

LRC

VA1/VA2
LRCHead

Body/Tail

SA1-SARQ SA2-ST LT

stage 1 stage 2 stage 3

VA1
V:1

SA2
N:1

SA1-SARQ SA2-ST LT

ST

input
VC state

credit
check

SA1
V:1

free VC
check

VA2
N:1

1 arb/output

1 arb/input 1 arb/input
1 arb/output

input #i

Fig. 3. The organization of the 3-stage pipelined ShortPath router,
showing both the input and output arbitration logic, which guarantees
non-speculative operation at low cost, and the operations performed for
each flit in each pipeline stage.

Although the general order of resource allocation re-
sembles that of a baseline router architecture, ShortPath’s
allocation logic is: (1) significantly simplified, (2) it allows
for fine-grained pipeline partitioning of the allocation tasks,
and (3) it enables an always-productive pipeline-stage by-
passing mechanism. Note that three-stage router traversal
is the maximum (worst-case) pipeline depth that a flit may
experience. As will be described in Section 4, ShortPath’s
pipeline is dynamically collapsible to the minimum possible
depth allowed by the prevailing traffic conditions. Thus, flits
may traverse a single-, two-, or three-stage pipeline, based
on the encountered contention.

3.1 Virtual-Channel Allocation

In ShortPath, acquiring an output VC (relevant only for the
head flits of each packet) is performed in the first pipeline
stage and is governed by two allocation rules that greatly
simplify the hardware implementation of VC allocation,
without affecting negatively networking performance: in
each cycle, (a) at most one VC per input port is allowed
to allocate an output VC, and (b) at most one output VC
may be allocated per output port.

Based on the first rule, only one input VC (still not
owning an output VC) from each input port is allowed

to allocate an output VC. Specifically, the packet chosen
to participate in VC allocation is the earliest arriving one.
The order of arrival is maintained through the VARQ, as
shown in Figure 3, which enqueues the necessary control
information for every arriving head flit. The VARQ only
stores a few bits of control information for each head
flit, i.e., its VC ID, its destined output port (as calculated
in the previous router during LRC), and 2-4 bits of meta-
data required for the VARQ’s operation. The actual flit
still resides in its designated VC buffer. Once the packet
succeeds in allocating an output VC, the control information
is dequeued from the VARQ and the next head flit (in order
of arrival, as preserved by the VARQ) can allocate an output
VC to its destined output port.

Since at most one input VC is allowed to try to allocate
an output VC from each input port, and only one output VC
can be allocated per output port in a single cycle, there is no
need to make any distinction between requests made for
different VCs of the same output port. It is merely necessary
to select the input port that will receive an output VC in
the specific output port. Thus, one arbiter per output port
suffices to handle all the requests for that port, even if they
refer to different output VCs. This results in a VA2 arbiter
(one per output port) with only N inputs (requests), where
N is the number of input/output ports in the NoC router.
Thus, as opposed to a baseline organization, ShortPath
reduces both the number of VA2 arbiters per output (one
versus V ) and the requests that each arbiter receives (N
versus N ×V ). Even if the baseline VC allocation allows for
a marginal increase in throughput, its delay complexity and
the delay imbalance that it causes across the pipeline stages,
do not justify its adoption.

Once the head flit of an input VC (at most one per input
port) wins in VA2, it is assigned to the output VC selected in
parallel by VA1. If a packet is allowed to change VC while
moving from router to router (i.e., in-flight), the head flit
should prepare a vector of candidate output VCs from its
destined output port, while the unavailable ones should be
crossed off. From those VCs left, the head flit of each packet
should choose one. Thus, a single V : 1 arbiter per input is
enough to perform VA1.

3.2 VARQ Attributes & Operation
The VARQ is a low-cost hardware queue, which comple-
ments the VA operation and maintains the order of packet
arrival into each input port. Each incoming head flit (i.e., a
new packet) stores its VC ID and destined output port ID
into an empty slot in the VARQ. The head-of-line entry of
the VARQ feeds this pertinent control information to the VA
logic of the router, thereby enabling the corresponding head
flit to compete in the VA stage for an output VC.

Since packets from different VCs enqueue control infor-
mation in a single VARQ, it is imperative to ensure that this
serialization does not create any dependencies among the
VCs. The VARQ achieves this feat by employing a rotation
mechanism. If the packet at the head-of-line position of the
VARQ is unable to find a free output VC (i.e., all output
VCs are already allocated), the VARQ “rotates” this entry
by sending it to the back of the VARQ. This rotation allows
the next VARQ request in line to move into the head-of-
line position. Thus, if a packet is unable to find available



5

v0

oE
t0

v0

oN

v0

oE

VC#0 buffer

HoL ticket #

0

next ticket #

1

t=1

H

loses
in VA2

S

VARQ

VC#0 buffer

HoL ticket #

0

next ticket #

2

t=2

rotates
(no free VC)

S

VARQ

H

VC#0 buffer

HoL ticket #

0

next ticket #

2

t=3

rotates
(not HoL)

S

VARQ

H

VC#0 buffer

HoL ticket #

0

next ticket #

2

t=4

Succeeds
in VA2

S

VARQ

H
no match match

++

t0
v0

oE
t0

v0

oN
t1 t1

v0

oE
t0

v0

oN
t1

VC#0 buffer

HoL ticket #

0

next ticket #

0

t=0

VARQ

ticket #VC ID

output port

++

T T TS

++

Fig. 4. A cycle-by-cycle example of the operation of ShortPath’s VARQ. Only the activity of a single input VC is depicted here for clarity.

VC resources, subsequent packets belonging to different
VCs will not be blocked indefinitely from participating in
VA2. Since a packet of one VC can never block the progress
of a packet from another VC (due to the rotation mecha-
nism), the proposed VARQ guarantees the absence of across-
VC dependencies and, thereby, ensures deadlock freedom.
Moreover, the rotation mechanism preserves all the Quality-
of-Service (QoS) properties potentially imposed by switch
allocation, when VCs are used as an isolation mechanism
for the various QoS-driven message classes in the system.

However, the rotation process allows requests (already
enqueued in the VARQ) that do not correspond to head-
of-line packets in the actual VC buffers to appear at the
head of the VARQ. Additionally, the continuing arrival of
new packets – and, thus, new VARQ entries – while the
rotation takes place may mix up the request order within the
VARQ. Hence, the VARQ employs a simple mechanism to
keep track of the VARQ request order to ensure that no VC
allocation request is generated, unless it refers to a packet
that is at the head of its corresponding VC buffer.

Each VC keeps two separate counters, each one storing a
so called ticket #: (1) the next ticket # counter, and (b) the HoL
ticket # counter. The size of both counters is extremely small
(a few bits wide), since the ticket # field is bounded by the
VC buffer depth. These two counters are part of the three
basic rules governing the operation of the VARQ:

• Whenever a new packet arrives at a VC, it enqueues
the following control information in the VARQ: (a) its
VC ID, (b) its destined output port, and (c) the ticket #
value currently stored in the next ticket # counter of the
corresponding VC. This ticket # indicates the new packet’s
order of arrival among packets of the same VC. Once the
new incoming packet receives its ticket #, the next ticket #
counter is incremented.

• The request at the head of the VARQ is allowed to par-
ticipate in VA2 only if its ticket # matches the value in
the HoL ticket # counter of the corresponding VC. In other
words, the request at the HoL position of the VARQ is
only allowed to compete in VA2 if it belongs to the HoL
packet in the actual VC buffer. If not, the request rotates
to the back of the VARQ.

• If the ticket # of the request at the head of the VARQ
matches the value in the HoL ticket # counter, the packet is
allowed to participate in VA2. If there are no available/free
output VCs, the HoL VARQ request rotates to the back
of the VARQ. If there is at least one available output VC,
the packet competes in VA2. If the packet succeeds, the
HoL ticket # counter is incremented (to point to the next
packet eligible to perform VA). If the packet loses in VA2,
it retries in the following cycle, as long as the requested
output VCs are still available. Simply losing in arbitration

is not a reason for rotating at the end of the VARQ.

A cycle-by-cycle example of the VARQ operation is
depicted in Figure 4, which focuses on the activity of a
single input VC for clarity. A single-flit packet (‘S’) arrives
at VC#0 in cycle 0, and a VARQ entry is generated, which
consists of its VC ID (0), its destined output port (East),
and its ticket # (0). At the end of this cycle, the next ticket #
counter is incremented by one. In the following cycle (t=1),
a new head flit (‘H’) arrives at VC#0 and generates a VARQ
entry with the new ticket # of 1. Again, the next ticket #
counter is incremented by one. In this cycle (t=1), the single-
flit packet ‘S’ loses in VA2 arbitration, so it retries in cycle
2. This time (t=2), all output VCs of its destined output port
are occupied, causing the VARQ to perform a rotation (as
per the third rule above). However, the ticket # of the next
VARQ entry in line does not match the value in the HoL
ticket # counter, causing another rotation in cycle 3. In the
next cycle (t=4), the request of the head-of-line packet in
VC#0 reappears at the head of the VARQ, with a matching
ticket #. Assuming that an output VC has been freed, the
packet participates in VA2 and succeeds, causing a dequeue
in the VARQ, and an increment of the HoL ticket # counter.

The total number of packets (or head flits) that can be
present per input port of the router also determines the
depth of the VARQ. In the worst case, when the input VC
buffers are full with single-flit packets, the VARQ should
hold V × B pieces of control info, where B represents the
buffer depth per VC. Thus, even for small values of V and
B, the depth of the VARQ grows quickly.

However, the depth of the VARQ can become signifi-
cantly smaller than the worst-case scenario, by taking into
account one important characteristic of NoC traffic. On
average, the number of packets present in each input port is
equal to V × B/avg packet size. In most NoC configura-
tions, the packets that flow in the network have multiple
lengths. Read requests or control packets typically have
lengths of 1 to 2 flits, while reply or write-request packets
can have arbitrary sizes larger than 2 [25], [26]. The packet
size also depends on the width of the links of the NoC. The
average packet size is the average packet length seen by
the NoC, after taking into account the distribution of each
packet type in the injected traffic. For realistic scenarios,
that includes both single- and multi-flit packets selecting a
VARQ depth that is significantly shallower than the worst-
case of V ×B is enough for not compromising performance.
Hence, it is a reasonable choice to limit the depth of the
VARQ by controlling the number of packets (not flits) that
can be present in the VC buffers of each input port of the
router. Note that this limitation on the number of packets
has absolutely no impact on the performance of ShortPath,
as will be shown in Section 5.



6

BW
VARQ

0 1 2

H0 LT- SA1-SARQ

3 4 5 6 7

SA2-STVA1/VA2
LRC

LT

B0 LT - BW SA1-SARQ

T0 LT - BW SA2-ST LT

SA2

SA1-SARQ

SA2-ST LT

VARQ H

SARQ H BT BTH B T

H

output contention - flit loses in arbitration

flit not
head-of-line

Fig. 5. A cycle-by-cycle example of the operation of ShortPath’s 3-stage pipeline. The activity of only one input port is depicted here for clarity.

To limit the number of packets present in each input
port, we maintain a counter at each output port of the
router, which counts the number of packets (head flits)
that have already passed from the corresponding output
port. If the maximum packet number has been reached (this
number is elaborated in Section 5), the VC allocator stops
allocating any new output VC for the particular output port.
In any other case, the VC allocation operates normally. For
every head flit that leaves the output, the packet counter
is incremented. Once the tail flit of a packet is dequeued
from the VC buffers of the downstream router, the packet
counter is notified and decreased, restoring the operation
of the VC allocator for that output port. In order to avoid
the scenario of a single VC consuming all of the packets of
an output port, thereby introducing dependencies among
VCs, multiple counters (one per VC) may be added, to
guarantee that at least one packet is reserved for each output
VC. The negligible overhead of these counters is accurately
accounted for in the hardware evaluation of Section 5.1.

3.3 Switch Allocation
The flits belonging to packets that have already been al-
located with an output VC can participate in SA, which
is performed in two steps. During SA1, every input port
independently selects one input VC that will attempt to
reach the selected output port. Thereafter, in SA2, each
output port selects which input port can access it. The
winners of both the SA1 and SA2 steps traverse the crossbar
(ST) and are written to an output register.

State-of-the-art implementations, such as [21] and [11],
execute SA1 and SA2 in different pipeline stages, following
a prediction-based allocation policy. Prediction is required,
since the SA1 stage is only informed of the result of SA2 in
the following cycle. If the winner of SA1 acts pessimistically
and predicts that it will lose in SA2, it retries again in SA1 in
the next cycle by sending a second request. If the prediction
turns out to be wrong, and the first request is actually
granted, then another request will appear at SA2 in the next
cycle, which is possibly obsolete and should be killed (if
no other flit follows in the input VC buffer, or credits are
no longer available). Alternatively, if the winner of SA1 acts
optimistically and does not send a second request (assuming
that it will win in SA2), it may waste the successful SA1
allocation step, if the prediction turns out to be wrong and
the flit actually loses in SA2.

On the contrary, ShortPath avoids any predictions, by
guaranteeing that the winner of the SA1 stage has allocated
all resources required (i.e., an output VC with credits) to be
eventually granted in the next stage, SA2. Once a flit wins

in SA1, necessary control information – the VC ID and the
output port request of the winning flit – are enqueued into
the SARQ (again, the actual flit data remains in the input
VC buffers). The port request at the head of the SARQ feeds
the corresponding SA2 arbiter, and the VC ID drives the
V : 1 per-input data multiplexer to select the appropriate
input VC’s data (actual flit). If the SARQ is full, SA1 in that
input port is blocked. When multiple flits exist in a certain
input VC, multiple requests are sent to SA1 in consecutive
cycles, causing multiple requests to be pushed to the SARQ
(even if the result of SA2 is not yet known for the previous
requests). Eventually, once the input succeeds in SA2, a
dequeue operation takes place in both the input VC buffer
and the SARQ, thereby allowing the next request in line to
appear. If a request is not satisfied in SA2, due to contention,
it does not have to replay the previous pipeline stage, and
it stays in the SARQ, thus making the SA1 decision always
productive.

A cycle-by-cycle example of the operation of ShortPath’s
3-stage pipeline is shown in Figure 5. For clarity, the activity
of only one input port is depicted. In cycle 0, a head flit (H0)
arrives in VC 0, it is written in the input VC buffer (BW),
and its VC ID is enqueued into the VARQ. In the following
cycle, H0 successfully allocates an output VC in VA, as the
following flit (B0) arrives and is stored behind it in the input
VC buffer. In cycle 2, H0 performs SA1 and successfully
enqueues a request into the SARQ, as seen at the bottom of
Figure 5 (recall that only request identifiers are enqueued;
no data leaves the input buffer). In cycle 3, H0 wins in SA2
and traverses the crossbar, while B0 participates in SA1 and
wins, thereby enqueuing its request for SA2 into the SARQ.
The same procedure is followed by the tail flit (T0) in cycle
4. At this point, however, B0 loses in SA2 by a flit from
a different input port (not shown), and, thus, no dequeue
operation occurs in the SARQ. The flit retries and succeeds
in cycle 5, allowing T0’s request to appear at the head of the
SARQ in the next cycle.

Whenever the input VC enqueues a request into the
SARQ, it also consumes a credit in the selected output VC.
This ensures that the input side always stays in sync with
the output VC’s actual buffer state. This premature credit
consumption cannot create any problems, since a request
in the SARQ will succeed in SA2 within a finite amount of
time. This is guaranteed by updating the priority of the SA2
arbiters whenever a grant is generated; thus, once a request
appears at the head of the SARQ, it is guaranteed to succeed
after at most N − 1 cycles. Since every request entering
the SARQ (a) refers to an already allocated output VC, and
(b) it has already consumed an existing credit (i.e., space is



7

guaranteed in the downstream router), no entry in the SARQ
can cause indefinite blocking of any other entry. Hence, the
SARQ creates no dependencies and is deadlock-free by
construction.

For credit management, we adopt the proxy counter
approach of [15]. In this case, once a head flit is allocated an
output VC, its credit value is copied locally (per input VC)
to a proxy counter. Thus, credit checking is done locally per
input VC, without additional propagation and multiplexing
overhead. Multiplexing is only used for updating the value
of the proxy credit counter. Note that, due to the VA policy
restrictions, at most one output VC credit value from each
output may be copied to the input VC side in each cycle.

4 FINE-GRAINED PIPELINE BYPASSING

Pipelining translates into additional cycles to a packet’s la-
tency. Even if this extra latency is amortized by the increase
in clock frequency (due to pipelining), the ability to skip
pipeline stages whenever possible – with only a marginal
impact to the clock frequency – will always be beneficial.

Ideally, pipeline bypassing should be enabled, or dis-
abled, in any arbitration stage, depending on the contention
encountered in each stage. For example, whenever a head
flit is (a) the only flit in a certain input port, and (b) the
only flit requesting a particular output port, then said flit
should spend at most one cycle in the router. ShortPath’s
fine-grained pipeline bypassing mechanism facilitates the
bypassing of each and every pipeline stage (whenever possi-
ble), under both low and high traffic load. In fact, any flit
traversing a ShortPath router is guaranteed to spend the
minimum possible number of cycles in each router, depending
on the usage of the input/output ports.

VARQ
SARQ

LRC

VA1
V:1 SA2

N:1

ST

credit
check

SA1
V:1

free VC
check

VA2
N:1

VA1/VA2
LRC

Head flit: 1-stage pipeline traversal

LTST

VA1/VA2
LRC

LTSARQ SA2-ST

LTSA2-ST

HBO

HBI BI

HBO

HBI

BI

one
detect

Head flit: 2-stage pipeline traversal

Body/Tail flits: 1-stage pipeline traversal

Fig. 6. The fine-grained pipeline-stage bypassing mechanism employed
by ShortPath. Each individual pipeline stage may be skipped on-
demand, and any flit traversing a ShortPath router is guaranteed to
spend the minimum possible number of cycles in each router, based
on the usage of the input/output ports.

In ShortPath, the head flit completes VA2 and is assigned
to an output VC of a certain output port. If the SA2 stage
corresponding to the same output port does not see any
other request, then the grant of VA2 is, actually, the only
grant given by this output port to any input VC. Therefore,
the VA2 grant can be re-used and act as an SA2 grant, too. This
feature is unique to ShortPath, which imposes the rule that at
most one output VC can be assigned per cycle. In this way,

VA2 bypasses both SA1 and SA2, and it allows the head flit
to move directly to ST using the Head Bypass Output (HBO)
multiplexer, as illustrated in Figure 6 (blue path). Note that
the HBO path refers to control signals only – the actual flit
still uses the input’s multiplexer to access the crossbar in ST.
Additionally, in terms of hardware delay, both the normal
SA2-ST path and the bypass VA2-ST path exhibit the same
delay, since the VA2 step in ShortPath is implemented using
just a single N :1 arbiter per output port (similar to SA2).

The head flit may be impeded from traversing the router
in a single cycle in the following three cases: (a) the flit’s
destined output port is currently being requested by another
flit in SA2, either from the same, or from a different input
port; (b) the head flit loses in VA2; or, (c) another flit makes
a request in SA1 from the same input port. In all three cases,
the bypass opportunity is only lost due to contention, and
not because of any micro-architectural limitation. Actually,
the same behavior is expected under the same traffic condi-
tions in a single-cycle (non-pipelined) router.

It should be noted that the pipeline-bypass operation in
ShortPath always makes a productive step. If, for instance,
the head flit is the only one in its input port making a
request, while there are many contenders for the selected
output port (i.e., it cannot bypass SA2), then the flit can
alternatively bypass the SA1 stage (which is uncontested)
and access directly the SARQ. In that case, the head flit will
be able to traverse the router in two cycles. In the first cycle,
it completes output VC allocation (VA1/VA2) and moves
directly in the SARQ, from where it can reach SA2 in the
next cycle. This second bypass path is enabled by the Head
Bypass Input (HBI) multiplexer in Figure 6 (purple path).
The addition of this input bypass functionality enables the
overlapped (in time) execution of VA and SA in a fine-
grained manner; parallelism is even enabled for the first
time across the smaller arbitration stages of VA1 (V : 1
arbiter), VA2 (N :1 arbiter), and SA1 (V :1 arbiter).

ShortPath’s fine-grained bypassing skips all uncontested
stages, and “fast-forwards” a flit to the first point of con-
tention. Even if the bypassing flit loses the arbitration at
the first point of contention it encounters, it will never be
forced to repeat any of the already bypassed stages. This
is unlike existing bypassing approaches, which force flits to
“re-wind” and traverse a longer pipe [11], [19], [21]. The
truly non-speculative operation in each stage of ShortPath’s
pipeline and the careful use of queues (VARQ and SARQ)
– instead of mere pipeline registers – is the enabler for
this behavior. Most importantly, this bypass functionality is
achieved without changing the flow control, and without in-
troducing any look-ahead signals across routers, as needed
in [11], [19]. Additionally, whether flits follow a bypass path,
or not, depends solely on the traffic conditions (absence of
contention, or not) of the current cycle. There is no reliance
on past-cycle (probably stale) traffic conditions, or input-
output matchings, to make future bypass [11], or allocation
decisions [27], [28], [29].

Spending a single cycle within the ShortPath pipeline
is also possible for all flits that have already been allo-
cated with an output VC. If a flit finds no contention at
its input port, i.e., no other input VCs are active and the
SARQ is empty, the flit is allowed to bypass the SA1 stage
and directly participate in SA2 through the Bypass Input



8

BW
VARQ

0 1

H0 LT -
VA1
VA2

B0

T0

-ST

2

LT

-SA2-ST

H1

3

LTLT-BW

LT-BW

4

SA2-ST

SA1-SARQ LT

5

LT

SA2-ST

6

HBO

BW
VARQ

LT -
VA1
VA2

-SARQHBI

BI

1-cycle
router traversal

1-cycle
router traversal

2-cycle
router traversal

2-cycle
router traversal

VARQ H0

SARQ

H0

B0

H1 H1

T0H1 T0H1

Fig. 7. A cycle-by-cycle example of the operation of ShortPath’s fine-grained pipeline bypassing mechanism. All bypass paths are exercised here,
leading to single-cycle router traversal for the H0 and B0 flits, and two-cycle router traversal for H1. Due to contention, the T0 flit cannot exploit any
bypassing opportunities.

(BI) multiplexer, as shown in Figure 6 (green path). If no
contention is encountered at the output port, the flit is
granted access and departs immediately. If a flit bypassing
SA1 encounters contention in SA2, it pushes its request in
the SARQ, thus having the chance to retry SA2 directly in
the following (or a subsequent) cycle. On the other hand,
if the SA1-bypassing flit actually wins the SA2 arbitration,
then no request is pushed into the SARQ.

Figure 7 presents an example of the operation of Short-
Path’s pipeline, which includes bypassing functionality. For
clarity, we assume arrival of flits at only one input port of
the router. In cycle 0, a head flit arrives at input VC 0, and
its VC ID is enqueued into the VARQ. The flit succeeds
in VA in cycle 1 and, since there is no other input VC
active in the same input port, it tries to reuse the result
of VA2 to immediately reach ST. Assuming there is no
output contention, i.e., no other SA2 requests exist for that
output port, the flit successfully bypasses SA2 using the
HBO multiplexer (see Figure 6) and moves directly to the
output. In the next cycle (cycle 2), a newly arrived body flit
(B0) is the only active flit in its input port, and can, therefore,
completely bypass the SA1 step using the BI multiplexer
(Figure 6) and participate in SA2. As the flit wins in SA2 and
moves forward, a new head flit (H1) arrives at input VC 1.
The H1 flit succeeds in VA in cycle 3, but we now assume
that its destined output port is also being requested by a flit
from a different input port, thus blocking H1 from directly
reaching the output. However, H1 is alone in its input port
and can, therefore, bypass the SA1 stage and directly reach
the SARQ through the HBI multiplexer in Figure 6; i.e., H1
effectively “fast-forwards” to the first contested junction in
the pipeline. This scenario does not apply to subsequent flit
T0, which has no bypassing possibilities in cycle 4, since flit
H1 is trying to access ST. In cycle 6, all flits have left the
router in the least possible number of cycles, by exploiting
all bypass opportunities. The extra cycle spent by H1 is
simply the result of contention and not a limitation of the
router’s micro-architecture; the output port was still utilized
in that cycle, albeit by a different input port.

In general, spending more than a single cycle in a Short-
Path pipelined router happens only when flits encounter
contention. At ultra-low loads – e.g., as observed under
bursty traffic in a single input VC – a packet’s head flit
would perform VA2-ST in a single cycle, while the other
flits (body and tail) would perform SA2-ST, uninterrupted.
As traffic increases across different input ports, VA2/SA2
contention also increases, and pipeline bypass opportunities

are reduced. Flits may need to wait more cycles to be
assigned an output VC in VA2, or wait for the SA1 winners
in their input port to eventually win arbitration in SA2.
Nevertheless, this is a latency overhead that packets would
suffer in any NoC router architecture.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the ShortPath
architecture and compare it with Scorpio [11], which repre-
sents the most efficient router micro-architecture available
in the open literature, in terms of hardware complexity and
network performance.

5.1 Hardware complexity
ShortPath and Scorpio [11] routers (with look-ahead RC [12]
in both cases) were implemented in SystemVerilog, mapped
to a commercial low-power 45 nm standard-cell library
under worst-case conditions (0.8 V, 125 ◦C), and placed-and-
routed using the Cadence digital implementation flow. Our
goal is to evaluate the hardware complexity of both routers
under comparison for various number of input and output
ports and number of VCs per input port.

In all NoC configurations, the flit width was set to 64
bits and each VC buffer can host 5 flits. For ShortPath, the
VARQ was sized to 6 positions, meaning that it could host a
maximum number of 6 packets per input port. Note that our
network performance experiments indicate that increasing
the maximum number of allowed packets to values higher
than 6 (i.e., increasing the VARQ depth beyond 6) does
not yield any further improvement in latency/throughput.
The SARQ can host up to 2 pending requests for the third
pipeline stage.

The area/delay curves were obtained for all designs, af-
ter constraining appropriately the logic-synthesis and back-
end tools using the same parameters for all designs, and
assuming that each output is loaded with a wire of 2 mm.
During synthesis and placement-and-routing, we followed
a mixed Vt approach, where a mix of regular Vt (RVt),
Low-Vt (LVt), and High-Vt (HVt) cells were used for the
various implementations. LVt cells can switch at a much
faster speed than HVt cells, at the cost of extra leakage
power. All circuits were optimized by using LVt cells on
critical paths, while HVt cells were employed on the non-
critical paths to reduce leakage power [30].

Figure 8 shows the area-delay behavior of both routers
under comparison, for 2 and 4 VCs per input port assuming



9

28k

30k

32k

34k

36k

38k

40k

42k

0.5 0.75 1 1.25 1.5

A
re

a
 (

u
m

2
)

Delay (ns)

Scorpio
ShortPath632ps

1.58GHz

691ps
1.45GHz

673ps
1.49GHz

733ps
1.36GHz

52k

56k

60k

64k

68k

72k

0.5 0.75 1 1.25 1.5

A
re

a
 (

u
m

2
)

Delay (ns)

Scorpio
ShortPath

(a) (b)

5 ports / 2 VCs

50k

55k

60k

65k

70k

75k

0.5 0.75 1 1.25 1.5

A
re

a
 (

u
m

2
)

Delay (ns)

Scorpio
ShortPath

681ps
1.47GHz

782ps
1.28GHz

90k

95k

100k

105k

110k

115k

120k

0.5 0.75 1 1.25 1.5

A
re

a
 (

u
m

2
)

Delay (ns)

Scorpio
ShortPath

744ps
1.34GHz

846ps
1.18GHz

5 ports / 4 VCs

(c) (d)

8 ports / 2 VCs 8 ports / 4 VCs

Fig. 8. Hardware implementation (area/delay) comparison of 5- and 8-
port ShortPath and Scorpio [11] 3-stage pipelined organizations (includ-
ing pipeline bypassing), for 2 VCs, and 4 VCs per input port.

5-port routers, as needed by a 2D mesh network, and 8-port
routers that can be used in higher-radix topologies [31], or
in 2D meshes that employ concentration [32]. In all cases,
ShortPath is faster than Scorpio, achieving a 8% and 12%
smaller minimum delay (i.e., critical path delay), on average,
for the case of 5- and 8-port routers, respectively, due to its
highly parallel allocation architecture.

It should be noted that the delay numbers reported
here correspond to a low voltage of 0.8 V, which signif-
icantly increases the delay of the circuits. For example, a
close inspection of the clock frequency of ultra-fast, 3-stage
commercial routers [33], [34] optimized at the transistor
level – which offers additional speed benefits over standard-
cell-based design – reveals that their frequency marginally
surpasses the 1 GHz mark when operated at 0.8 V.

ShortPath routers are equally area-efficient as Scorpio
when sized under equal delay. Specifically, in the case of
5-port routers, at Scorpio’s maximum operating frequency,
ShortPath presents a minimal 5% area overhead, which de-
creases to 3% for the case of higher radix 8-port routers. Al-
though the two architectures are based on different pipeline
approaches, they eventually both require equal resources.
For instance, even though ShortPath’s use of the queues
(VARQ and SARQ) presents an area overhead, an equivalent
cost is paid by Scorpio, due to its data registers for the sep-
arate ST pipeline stage and the handling of the lookahead
signals.

The hardware complexity analysis is completed by re-
porting the energy behavior of the routers under compar-
ison. Energy (or area) comparisons are meaningful when
the compared circuits are optimized for the same delay.
Based on the delay profile reported in Figure 8, we select
the designs that correspond to a delay of 850 ps for the cases
of both 2 and 4 VCs. The energy consumed in each case is
reported in Figure 9. The energy analysis is reported after
taking into account all layout parasitics, as done in delay
analysis, while the switching activity has been computed

using delay-accurate simulations of the derived logic-level
netlists. The evaluated routers are all driven by the same
arriving packet sequence, which mimics uniform random
traffic of 1-flit and 5-flit packets at an injection rate of 0.2
flits/cycle. The traffic characteristics determine the header
contents of each packet, while the data contents – i.e., the
payload – of each packet is produced using a uniform
random number generator. In all cases, the energy required
to drive the output links is also included. The results in
Figure 9 clearly indicate that the energy efficiency of both
architectures is comparable, i.e., ShortPath achieves, under
equal delay, slightly larger – but comparable – energy per
cycle than Scorpio, for both 2- and 4-VC configurations.

Scorpio ShortPath

E
n

e
rg

y
/c

y
c
le

 (
p

J
)

2 VCs 4 VCs 2 VCs 4 VCs

8-port routers5-port routers

40

30

20

10

0

Fig. 9. The energy per cycle (in pJ) expended in ShortPath and Scor-
pio [11] routers, when operated and sized under equal delay (850ps),
for 5- and 8-port routers, with 2 and 4 VCs per input port.

5.2 Network performance
Network performance comparisons were performed using
the same SystemVerilog RTL models, thus offering maxi-
mum safety in terms of correctly/accurately modeling the
micro-architectural components of a NoC router. We employ
an 8×8 2D mesh network using 5-port routers with XY
dimension-ordered routing, and each router supports 4 VCs
per input port using the same parameters, in terms of buffer-
ing, as in the case of the hardware complexity evaluation.

In all cases, the injected traffic consists of two types
of packets to mimic realistic system scenarios: 1-flit short
packets (just like request packets in a CMP), and longer 5-
flit packets (just like response packets carrying a cache line).
For the latency-throughput analysis, we assume a bimodal
distribution of packets with 50% of the packets being short,
1-flit packets, and the rest being long, 5-flit packets, in accor-
dance to recent studies [35]. In many cases, the percentage
of 1-flit packets may be even higher. However, this behav-
ior – as tested by additional experimental results – does
not change the relative performance differences between
the routers under comparison. The 1-flit and 5-flit packet
sizes are typical of general-purpose CMP environments. In
application-specific embedded systems, larger packet sizes
may also be encountered. To account for these scenarios,
we have also conducted extensive experiments with larger
packet sizes (up to 20 flits per packet). However, since no
changes were observed in the overall trends, those results
are omitted for brevity.

The first set of performance evaluation experiments in-
volves Uniform Random (UR) and Bit Complement (BC)
permutation traffic. In UR traffic, every node sends its pack-
ets to all other nodes of the network with equal probability,



10

Load (Flits/Node/Cycle)

1-stage

F
lit

 P
e

rc
e

n
ta

g
e

0%
0.05 0.1 0.15 0.2

2-stage 3-stage

25%

50%

75%

100%
SC SP SC SP SC SP SC SP

(a) (b)
0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t 

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flit/Node/Cycle)

ShortPath
Scorpio

Fig. 10. (a) Latency vs. load curves, and (b) percentage of flits traversing
the 1-, 2-, or 3-stage router pipeline under various loads, for an 8× 8 2D
mesh network using ShortPath (“SP”) and Scorpio (“SC”) routers under
uniform random traffic.

while in BC, every node produces packets destined to a sin-
gle node, whose address is the bit-wise complement of the
source node. Other permutation traffic patterns have been
tested and exhibit equivalent behavior. The results for UR
and BC are depicted in Figures 10(a) and 11(a), respectively.
In order to get a better insight into the bypassing efficiency
of the two architectures and better interpret the latency
results, we also plot the percentage of flits that traverse
single-, two-, or three-stage router pipelines under various
loads. The flit percentages for Scorpio (“SC”) and ShortPath
(“SP”) are presented in Figures 10(b) and 11(b) for UR and
BC traffic, respectively. Note that the number of pipeline
stages traversed by a flit does not directly translate to an
equal number of cycles spent for intra-router traversal. In
fact, flits may actually spend more cycles in the router while
waiting in the input buffers behind other flits, or while
waiting to be granted access in various allocation stages.

Load (Flits/Node/Cycle)

0.05 0.1 0.15 0.18

1-stage 2-stage 3-stage

SC SP SC SP SC SP SC SP

F
lit

 P
e
rc

e
n
ta

g
e

0%

25%

50%

75%

100%

(a) (b)

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25

A
v
e
ra

g
e
 P

a
c
k
e
t 

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flit/Node/Cycle)

ShortPath
Scorpio

Fig. 11. (a) Latency vs. load curves, and (b) percentage of flits following
the 1-, 2-, or 3-stage router pipeline under various loads, for an 8× 8 2D
mesh network using ShortPath (“SP”) and Scorpio (“SC”) routers under
bit complement traffic.

At very low loads, both designs perform equally well, in
terms of latency, since bypass paths are frequently activated
and most flits spend a single cycle in each router. However,
at medium and high loads, contention stresses the bypassing
mechanism, causing Scorpio to miss bypassing opportu-
nities, mainly due to its allocator’s inherent speculation,
and, partly, because of the absence of actual arbitration in
conflicting LA bypassing requests. In any case, whenever
bypass fails, Scorpio forces a full 3-stage pipeline traver-
sal, as seen in Figures 10(b) and 11(b). Instead, ShortPath
dominates at such loads, exhibiting up to 30% lower packet
latency at medium loads, due to its dynamically collapsible

pipeline. The latter allows flits to traverse only as many
pipeline stages as imposed by the first point of contention.
Apart from its efficient bypass mechanism, ShortPath’s com-
pletely non-speculative and always productive allocation
logic allows it to sustain much higher loads, leading to
increased saturation throughput by 21% and 9% under UR
and BC traffic, respectively.

In addition to using purely synthetic traffic patterns,
we also employ traffic patterns that are derived from real
application workloads. Specifically, we employ the hot-spot
traffic model from [36], which synthesizes traffic that closely
resembles the traffic behavior of PARSEC application bench-
marks [37] running on a CMP. Under this PARSEC-derived
Hot-Spot (HS) traffic pattern, 20% of the nodes receive 50×
more traffic than the rest, while the remaining injected traffic
is uniformly distributed to all other destinations. Routers
support 3 Virtual Networks, as required by the MOESI
cache coherence protocol, with each one assigned a single
VC (3 VCs in total). In order to mimic the behavior of real
applications, VCs 0, 1 and 2 receive 77%, 22% and 1% of
the injected traffic respectively, while packet distribution
is skewed, with 1- and 5-flit packets being 70% and 30%
of the total packets injected respectively [36]. As seen by
the obtained results in Figure 12(a), ShortPath offers the
highest saturation throughput, which is increased by more
than 20% relative to Scorpio. It is worth mentioning that
the PARSEC-derived HS traffic pattern is dominated by 1-
flit packets, which significantly lower the average packet
size, thereby increasing the total number of packets present
in each input port, as described in Section 3.1. Despite this
increase, however, the chosen VARQ depth of 6 was still
sufficiently large to not generate any throttling.

Number of HS nodes (% of total nodes)

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t 

(F
lit

s
/N

o
d

e
/C

y
c
le

)

0.125

0.100

0.075

0.050

0.025

0.000
25%20%17%10%

Scorpio ShortPath

(a) (b)

decreasing traffic per HS node

constant overall HS traffic

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12

A
v
e
ra

g
e
 P

a
c
k
e
t 

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flit/Node/Cycle)

ShortPath
Scorpio

Fig. 12. (a) Latency vs. load curves for 8 × 8 2D mesh networks using
ShortPath and Scorpio routers, under the PARSEC-derived HotSpot
(HS) traffic model of [36], which closely resembles the traffic patterns
of PARSEC application benchmarks [37]. (b) The saturation throughput
of both router designs when decreasing the number of HS nodes.

In order to provide a better estimation of the perfor-
mance under the PARSEC-derived traffic patterns, we also
test scenarios with varying number of HS nodes and mea-
sure the saturation throughput of each design. In all ex-
periments, the percentage of HS-directed traffic, the packet
distribution, and the load for each VC are held constant,
as described above. Since all HS nodes always receive 50×
more traffic than the rest, as the number of HS nodes is
increased, the total traffic directed to these nodes decreases,
thus causing less congestion around these nodes. The effect
can be seen in the results of Figure 12(b), where the through-
put of both designs increases, as the number of HS nodes
increases. Still, in all cases, ShortPath outperforms Scorpio,



11

demonstrating an average increase of 18% in saturation
throughput.

It should be noted that the new micro-architecture con-
stitutes a fundamental overhaul of the router operation,
which yields improvements under all traffic conditions.
Hence, a different traffic pattern (as generated by some other
benchmark application) would not change the observed
trends; it would simply change the amount of performance
improvement achieved by ShortPath.

In summary, ShortPath outperforms Scorpio in all con-
ducted experiments, both in terms of latency and through-
put. Moreover, since ShortPath provides a faster implemen-
tation (due to its shorter critical path), if one also takes into
account the maximum operating frequency of each design,
the achieved performance gains are magnified. For exam-
ple, ShortPath’s saturation throughput, when measured in
Gbps, is increased – as compared to Scorpio – by 27%, 17%,
and 35% under UR, BC, and PARSEC-derived HS traffic,
respectively.

6 CONCLUSIONS

As the number of network nodes in multi-core systems
increases, NoC routers should be able to operate under high
frequencies through pipelining, while, at the same time,
offering low-latency packet transmission through efficient
pipeline bypassing. In this work, we present ShortPath, a
high-speed router architecture that manages to offer both
traits: a higher operating frequency, and an efficient alloca-
tion and pipeline-bypassing mechanism that achieves singi-
ficant latency reduction and throughput increase, as com-
pared to a current state-of-the-art router architecture [11].

These performance attributes of ShortPath stem from
the novel re-organization of the router’s allocation logic,
which allows – for the first time, to the best of our knowl-
edge – a truly non-speculative and parallel allocation to
be applied to pipelined routers combined with fine-grained
pipeline-bypass capabilities. The key distinguishing features
of ShortPath (relative to state-of-the-art architectures) are
the generation of always-productive pipeline bypass steps,
and the ability to “fast-forward” the flits to the first point
of contention. These features cohesively yield a smooth
linear increase in average packet latency with increasing
load. Finally, since ShortPath is orthogonal to the link-
level flow control policy, and it does not require any look-
ahead signals to achieve its bypass functionality, it can easily
incorporate partitioned input speedup as a low-cost vehicle
(only modest additional area, with no adverse impact on
delay) to further increase the saturation throughput.

REFERENCES

[1] S. Borkar and A. Chien, “The future of microprocessors,” Commun.
ACM, vol. 54, no. 5, pp. 67–77, May 2011.

[2] L. Benini and G. De Micheli, “Networks on chips: A new soc
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[3] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” in Proc. of the 38th Design Automation
Conference (DAC), Jun. 2001.

[4] A. Psarras, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos,
“PhaseNoC: TDM scheduling at the virtual-channel level for effi-
cient network traffic isolation,” in Proceedings of the 2015 Design,
Automation & Test in Europe, 2015, pp. 1090–1095.

[5] J. W. Lee et al., “Globally-synchronized frames for guaranteed
quality-of-service in on-chip networks,” in ISCA, 2008, pp. 89–100.

[6] A. Hansson, K. Goossens, and A. Rădulescu, “Avoiding message-
dependent deadlock in network-based systems on chip,” VLSI
design, vol. 2007, 2007.

[7] M. M. K. Martin and et al., “Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH Comput. Ar-
chit. News, vol. 33, no. 4, pp. 92–99, Nov. 2005.

[8] J. Duato, “A new theory of deadlock-free adaptive routing in
wormhole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
no. 12, pp. 1320–1331, 1993.

[9] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[10] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, Microarchitecture
of Network-on-Chip Routers: A designer’s perspective. Spinger, 2014.

[11] B. Daya, C.-H. Chen, S. Subramanian, K. Woo-Cheol, P. Sunghyun,
T. Krishna, J. Holt, A. P. Chandrakasan, and L. Peh, “Scorpio: A 36-
core research chip demonstrating snoopy coherence on a scalable
mesh noc with in-network ordering,” in International Symposium
on Computer Architecture, June 2014, pp. 25–36.

[12] M. Galles, “Spider: A high-speed network interconnect,” IEEE
Micro, vol. 17, no. 1, 1997.

[13] L.-S. Peh and W. J. Dally, “A delay model and speculative ar-
chitecture for pipelined routers,” in Proc. Intern. Symp. on High-
Performance Computer Architecture, Jan. 2001, pp. 255–266.

[14] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel
routers for on-chip networks,” in Proceedings of the International
Symposium on Computer Architecture. IEE, June 2004, pp. 188–197.

[15] D. Becker, “Efficient microarchitecture for network-on-chip
routers,” Ph.D. dissertation, Stanford University, 2012.

[16] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. K. Jha, “A
4.6tbits/s 3.6ghz single-cycle noc router with a novel switch
allocator in 65nm cmos,” in Proc. of the Intern. Conf. on Computer
Design, Oct. 2007, pp. 63–70.

[17] Y. Lu, C. Chen, J. V. McCanny, and S. Sezer, “Design of interlock-
free combined allocators for networks-on-chip,” in EEE 25th Inter-
national SOC Conference (SoCC), 2012, pp. 358–363.

[18] I. Seitanidis, A. Psarras, E. Kalligeros, C. Nicopoulos, and
G. Dimitrakopoulos, “ElastiNoC: A self-testable distributed vc-
based network-on-chip architecture,” in International Symposium
on Networks-on-Chip (NOCS), 2014, pp. 135–142.

[19] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P. Chiang,
“Swift: A swing-reduced interconnect for a token-based network-
on-chip in 90nm cmos,” in Computer Design (ICCD), 2010 IEEE
International Conference on. IEEE, 2010, pp. 439–446.

[20] C. Nicopoulos, S. Srinivasan, A. Yanamandra, D. Park,
V. Narayanan, C. Das, and M. J. Irwin, “On the effects of process
variation in network-on-chip architectures,” IEEE Trans. Depend-
able Sec. Comput., vol. 7, no. 3, pp. 240–254, 2010.

[21] M. Azimi, D. Dai, A. Mejia, D. Park, R. Saharoy, and A. S.
Vaidya, “Flexible and adaptive on-chip interconnect for tera-scale
architectures,” Intel Technology Journal, no. 4, pp. 62–77, 2009.

[22] M. Azimi, D. Dai, A. Kumar, and A. S. Vaidya, On-chip Interconnect
Trade-offs for Tera-scale Many-core Processors. Designing Network
On-Chip Architectures in the Nanoscale Era, Jose Flich and Davide
Bertozzi, Eds., CRC Press, 2011.

[23] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in
Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 2008, pp. 342–353.

[24] G. Dimitrakopoulos, E. Kalligeros, and K. Galanopoulos, “Merged
switch allocation and traversal in network-on-chip switches,”
IEEE Transactions on Computers, vol. 62, no. 10, pp. 2001–2012, 2013.

[25] J.-J. Lecler and P. Boucard, “Zero-latency network on chip (NoC),”
US Patent 2011/0 085 550, 2011.

[26] D. Jayasimha, J. Chan, and J. Tomlison, “Use of common data
format to facilitate link width conversion in a router with flexible
link widths,” US Patent 8 514 889, 2011.

[27] G. Michelogiannakis, N.Jiang, D.Becker, and W.J.Dally, “Packet
chaining: Efficient single-cycle allocation for on-chip networks,”
in Proc. Intern. Symp. on Microarchitecture, 2011, pp. 83–94.

[28] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga, “Pre-
diction router: A low-latency on-chip router architecture with
multiple predictors,” IEEE Transactions on Computers, vol. 60, no. 6,
pp. 783–799, 2011.

[29] Y.-Y. Chang, Y. S.-C. Huang, M. Poremba, V. Narayanan, Y. Xie,
and C.-T. King, “Ts-router: On maximizing the quality-of-
allocation in the on-chip network,” in Proceedings of the 2013



12

IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013, pp. 390–399.

[30] T. Karnik and et al., “Total power optimization by simultaneous
dual-vt allocation and device sizing in high performance micro-
processors,” in Proceedings of the 39th Annual Design Automation
Conference, ser. DAC ’02, 2002, pp. 486–491.

[31] R. Manevich, L. Polishuk, I. Cidon, and A. Kolodny, “Designing
single-cycle long links in hierarchical nocs,” Microprocessors and
Microsystems, vol. 38, no. 8, pp. 814 – 825, 2014.

[32] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proceedings of the 20th ACM International Conference
on Supercomputing (ICS), June 2006, pp. 187–198.

[33] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A
5-GHz mesh interconnect for a teraflops processor,” IEEE Micro,
vol. 27, no. 5, pp. 51–61, 2007.

[34] P. Salihundam et al., “A 2Tb/s 6x4 Mesh Network with DVFS and
2.3Tb/s/W router in 45nm CMOS,” in VLSI Circuits, 2010.

[35] S. Ma, N. Enright Jerger, and Z. Wang, “Whole Packet Forward-
ing: Efficient Design of Fully Adaptive Routing Algorithms for
Networks-on-Chip,” in Proc. of the Intern. Symp. on High Perfor-
mance Computer Architecture, Feb. 2012, pp. 467–478.

[36] J. Lee, C. Nicopoulos, H. G. Lee, and J. Kim, “TornadoNoC:
A lightweight and scalable on-chip network architecture for the
many-core era,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 10, no. 4, Dec. 2013.

[37] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques, October 2008, pp. 72–81.

Anastasios Psarras received the Diploma and
master’s degrees in electrical and computer
engineering from the Democritus University of
Thrace, Xanthi, Greece, in 2012 and 2013, re-
spectively, where he is currently pursuing the
Ph.D. degree.

His current research interests include system-
on-a-chip design, and in particular, on-chip inter-
connection networks.

Ioannis Seitanidis received the Diploma de-
gree in electrical and computer engineering from
the Democritus University of Thrace, Xanthi,
Greece, in 2013, where he is currently pursuing
the Ph.D. degree in computer engineering.

His current research interests include com-
puter architectures and on-chip interconnection
networks.

Chrysostomos Nicopoulos received the B.S.
and Ph.D. degrees in electrical engineering with
a specialization in computer engineering from
Pennsylvania State University, State College,
PA, USA, in 2003 and 2007, respectively.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engi-
neering, University of Cyprus, Nicosia, Cyprus.
His current research interests include networks-
on-chip, computer architecture, multi/many-core
microprocessor and computer system design.

Giorgos Dimitrakopoulos received the B.S,
MSc and Ph.D. degrees in Computer Engineer-
ing from University of Patras, Patras, Greece, in
2001, 2003 and 2007, respectively.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engi-
neering, Democritus University of Thrace, Xan-
thi, Greece. He is interested in the design of dig-
ital integrated circuits and computer architecture,
with emphasis in Network-on-Chip design and
ultra-low power systems.


