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Networks-on-Chip (NoC) are becoming increasingly susceptible to emerging reliability threats. The need
to detect and localize the occurrence of faults at runtime is steadily becoming imperative. In this work, we
propose NoCAlert, a comprehensive online and real-time fault detection and localization mechanism that
demonstrates 0% false negatives within the interconnect for the fault models and stimulus set used in this
study. Based on the concept of invariance checking, NoCAlert employs a group of lightweight microchecker
modules that collectively implement real-time hardware assertions. The checkers operate concurrently with
normal NoC operation, thus eliminating the need for periodic, or triggered-based, self-testing. Based on the
pattern/signature of asserted checkers, NoCAlert can pinpoint the location of the fault at various granularity
levels. Most important, 97% of the transient and 90% of the permanent faults are detected instantaneously,
within a single clock cycle upon fault manifestation. The fault localization accuracy ranges from 90% to
100%, depending on the desired localization granularity. Extensive cycle-accurate simulations in a 64-node
CMP and analysis at the RTL netlist-level demonstrate the efficacy of the proposed technique.
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1. INTRODUCTION

Incessant technology scaling has enabled immense transistor integration densities.
Nevertheless, the march toward manycore microprocessors has been marred by the
emergence of an ominous threat: waning reliability [Nassif et al. 2010]. Transis-
tors are more susceptible to both permanent and transient faults. In addition to
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manufacturing and early-life failures, future designs are anticipated to be increasingly
vulnerable to aging and wear-out artifacts. Just like any on-chip component, the inter-
connection backbone is also affected by decreasing reliability [Nicopoulos et al. 2010].
A multitude of approaches to increase the fault tolerance and reliability of the NoC
have been proposed. However, the vast majority of these approaches concentrate on
fault prevention [Constantinides et al. 2006] and/or recovery [Fick et al. 2009b; Kakoee
et al. 2011b]. The equally important aspect of fault detection and localization has
not been adequately addressed.

Traditionally, fault detection is undertaken by Built-In Self-Test (BIST) mechanisms.
The BIST process may be executed by the manufacturer prior to shipment, or it may
constitute part of system boot-up [Strano et al. 2011; Hosseinabady et al. 2007]. Run-
time BIST is also possible, but system operation is (partially) halted while the module
under test is examined [Fick et al. 2009b; Kakoee et al. 2011a].

Near-instantaneous fault detection may be achieved in the datapath of the inter-
connect through the use of error -detecting codes. While this methodology guarantees
protection of the message contents, faults within the control logic of the NoC may still
wreak havoc with the operation of the entire CMP. Hence, what is needed to guarantee
functional correctness within the NoC is to protect the NoC’s control logic (assuming
that the flit contents are protected by error-detecting/-correcting codes).

We hereby propose a comprehensive online fault detection and localization
mechanism, aptly called NoCAlert, which provides full fault coverage for all on-chip
network control logic components and achieves instantaneous detection of any erro-
neous behavior caused by single-bit, single-event faults. More specifically, NoCAlert
can detect (a) single stuck-at (permanent) faults, and (b) single-event transient faults.
Moreover, the proposed mechanism is also able to pinpoint (localize) the fault with ex-
tremely high accuracy. The NoCAlert mechanism is based on the notion of invariance
checking, in which the system is continuously checked for illegal outputs as a result
of upsets. An illegal output is defined here as an operational decision that violates
the functional correctness rule(s) of a particular component. The underlying principle
of this technique is inspired by prior efforts to protect the microprocessor by using
invariances [Meixner et al. 2007]. NoCAlert comprises several checker micro-modules
distributed throughout the NoC router. The checkers never interfere with, or interrupt,
the operation of the NoC and provide real-time online fault detection. In essence, No-
CAlert implements extremely lightweight real-time hardware assertions that can
detect illegal outputs within the NoC’s control logic. Upon detection of a fault, NoCAlert
can analyze the pattern of raised assertions to determine the fault location.

Overall, the main contributions of this work are:

(1) The development of a comprehensive online and real-time fault detection and lo-
calization mechanism for the control logic of the NoC. NoCAlert ensures 0% false
negatives within the interconnect for the fault models (single-bit, single-event
transient and permanent) and stimulus set used in this study, with 97% of the
transient and 90% of the permanent faults detected instantaneously.

(2) The NoCAlert framework is extensively evaluated at two abstraction levels: (a) at
the RTL netlist-level, in which faults are injected in all possible locations (ap-
proximately 22,000) of a Verilog-implemented and synthesized NoCAlert router;
(b) within a high-level, eycle-accurate simulation framework, in which faults
are injected in all possible locations within the NoC of a 64-node CMP.

(8) NoCAlert is augmented with a fast and lightweight fault -localization mechanism,
which can rapidly analyze the patterns of asserted checker flags (upon fault de-
tection) to pinpoint the location of the fault. The proposed technique is fully dis-
tributed, with no need for central aggregation/processing.
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(4) Three different fault -localization granularities are supported: (a) router-level (i.e.,
the faulty router is identified), (b) pipeline-stage-level (i.e., the faulty pipeline stage
within the faulty router is identified), and (c) input/output-port-level (the fault is
localized down to a single input/output port). The first two granularity levels yield
100% accurate fault localization. The accuracy under the third granularity level
ranges from 90% to 100%. However, an accuracy of less than 100% simply means
that NoCAlert provides more than one possible fault location, with the actual fault
location always included in the reported candidate locations.

(5) Hardware synthesis results using commercial 656nm standard-cell libraries indi-
cate minimal area and power overhead of 3% and less than 1%, respectively, for the
detection mechanism. More important, the critical path of the router is shown to
be negligibly affected (around 1%). For the fault localization mechanism, hardware
synthesis results indicate similarly low area and power overhead, while fault local-
ization is achieved within a single clock cycle. Additionally, NoCAlert is shown to
outperform ForEVeR [Parikh and Bertacco 2011, 2014], a recently proposed state-
of-the-art fault detection and recovery framework.

To the best of our knowledge, this work, together with our previous results in
Prodromou et al. [2012], constitutes the first attempt to utilize real-time hardware-
based assertion checkers to detect and localize faults within the NoC.

2. RELATED WORK

In general, research in the field of fault tolerance revolves around two fundamental
axes: (1) Fault Detection/Localization, and (2) Fault Recovery/Protection/Isolation.
The following sections will concentrate on these two elemental axes (detection and
recovery) of fault-tolerant NoC systems.

2.1. Detection/Localization

The concept of exploration/scouting packets [Puente et al. 2008] has been employed
to identify faulty nodes ahead of regular data packets. Similar to scouting packets,
a common method used for fault detection is the broadcasting of test vectors, either
during boot-up [Strano et al. 2011; Hosseinabady et al. 2007] or at runtime. In order
to mitigate the performance degradation caused by testing interruptions, token-based
mechanisms have been explored [Kakoee et al. 2011a, 2014] as well as hardware for
monitoring specific modules, such as the router arbiters [Park et al. 2006] or datap-
ath components [Seitanidis et al. 2014]. A well-established technique to the problem
of compromised/corrupted transmission of packets between routers is the use of Er-
ror Detecting/Correcting Codes (EDC/ECC). The designs in Fick et al. [2009b] and
DeOrio et al. [2012] employ EDC codes to detect faults, then rely on specialized BIST
testers for more extensive diagnosis. Forward Error Correction (FEC) could be used to
monitor link traversal, while the error syndromes could provide fault localization. In
Pellegrini and Bertacco [2014], fault detection is implemented in hardware, whereas
the supported reconfiguration is conducted through software. EDC/ECCs have also
been used in conjunction with other techniques, such as packet/flit counting [Ghofrani
et al. 2012]. The ForEVeR framework [Parikh and Bertacco 2011, 2014] complements
the use of formal methods and runtime verification to ensure functional correctness
in NoCs. While ForEVeR’s goal is to protect against escaped design-time verification
errors with a runtime technique, the scheme may also be used to provide robustness
against runtime faults.

ForEVeR relies on time epochs and counters, which, if needed, trigger a recovery
mechanism, which delivers the in-flight data to the intended destination via an ad-
ditional lightweight checker network that is assumed to be 100% reliable. The use of
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timing intervals implies the nontrivial task of finding the optimal epoch duration to
minimize false positives. More important, the use of an end-to-end, epoch-based scheme
results in significantly delayed fault detection. A comparison between NoCAlert and
ForEVeR [Parikh and Bertacco 2011, 2014] is presented in Section 5.

NoCAlert will be empirically demonstrated to provide 100% fault-detection cover-
age. While 100% fault-detection coverage is also offered by some existing techniques,
those primarily operate using periodic testing. Periodic testing is typically associated
with system/service interruption, and long detection latencies. NoCAlert’s concurrent
approach does not suffer from these weaknesses.

2.2. Recovery/Protection/Isolation

Several fault-tolerant NoC systems focus on the links interconnecting the network’s
routers. Disabled interrouter links in the network reduce connectivity. One approach
to maintaining connectivity is the use of additional links in the form of escape
paths [Koibuchi et al. 2008; Iordanou et al. 2014; Kakoee et al. 2011b]. A more radical
approach is to replace simple links with Quad-Function Channel buffers [DiTomaso
et al. 2014]. The Parikh and Bertacco [2013] design considers the links as pairs of
unidirectional links, in which only one of the two would be affected by a single fault.

A less pessimistic and more realistic approach to model the effects of faults within
links is to allow for partially faulty links. It is this realization that has led researchers
to look into ECC as a means to correct faults [Park et al. 2006; Shamshiri et al. 2011;
Boraten and Kodi 2013]. Retransmission mechanisms are typically required to cooper-
ate with ECC schemes [Park et al. 2006]. Researchers have devised methodologies to
transfer flits using these partially faulty links through shifting and multicycle trans-
missions. Techniques have been proposed to partition each link into sections [Palesi
et al. 2010; Chen et al. 2012] to reconstruct the flit at the receiver [Vitkovskiy et al.
2012] and to use spare wires [Shamshiri et al. 2011].

Several fault-tolerant routing algorithms have been proposed in the literature; we
focus here on some recent developments. The algorithms in Rodrigo et al. [2010] and Yu
et al. [2012] obviate the need for fault-susceptible routing tables (through logic-based
routing) in regular and high-radix topologies. Stochastic routing algorithms [Dumitrag
et al. 2003] have been employed to bypass faulty links in the network. Dynamically
reconfigurable routing [Fu et al. 2011] determines forbidden turns at runtime to avoid
deadlocks, while bypassing faulty components. Routing reconfiguration was also im-
plemented in a distributed manner in Aisopos et al. [2011] by leveraging up*/down*
routing. BLINC is also a distributed algorithm that uses routing metadata to compute
alternative (emergency) routes locally [Lee et al. 2014]. Deflection-based [Moscibroda
and Mutlu 2009; Kohler and Radetzki 2009], distributed [Fick et al. 2009a], and mul-
tipath [Murali et al. 2006] routing strategies aim to evenly spread network traffic over
a faulty network topology without deadlocks. Adaptive routing has been used to ad-
dress the emerging issue of hardware wearout [Ancajas et al. 2015; Wang et al. 2014].
Finally, the work in Ren et al. [2014] uses acyclic dependency graphs (calculated offline)
to achieve deadlock freedom without the need for virtual channels.

A lot of research has targeted the datapath and control logic of NoC routers.
The router in Kim et al. [2006] provides graceful degradation by decomposing the
router into two independent modules and by employing resource sharing. Bulletproof
[Constantinides et al. 2006] proposes various online repair and recovery techniques.
Architectural modifications have also been proposed for each pipeline stage [Poluri
and Louri 2013]. The TRNoC mechanism provides a low-cost solution to variation-
induced timing errors [Panteloukas et al. 2015]. The issue of hardware wearout has
been addressed by powering off stressed components [Zoni and Fornaciari 2013], or by
“exercising” ones with low load [Kim et al. 2013, 2015].
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Fig. 1. Example of an NoC invariance. A malfunctioning XY routing computation unit attempts to route a
packet in a forbidden direction (S: Source node; D: Destination node).
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3. INVARIANCE CHECKING WITHIN THE NETWORK-ON-CHIP

The NoCAlert mechanism is based on the concept of invariance checking. The system
is continuously examined for illegal outputs as a result of some kind of fault. The term
illegal output is defined here as an operational output that is impossible to occur, based
on the set of functional correctness rules of a given component. The assertions are
implemented in hardware to provide fast detection of anomalies. The pattern of raised
assertions is then used to pinpoint the location of the detected fault.

The salient characteristic of invariance checking is the fact that only functionally
illegal outputs are flagged as violations. A fault that causes the generation of an
erroneous, yet functionally legal, output will not be identified as a breach of correctness.
What we aim to explore in this work, among other issues, is how often and under what
conditions such noninvariant faults could potentially lead to compromised network-
level correctness.

Note that this work assumes a typical router micro-architecture [Peh and Dally
2001]. The baseline router has five pipeline stages: Routing Computation (RC), Virtual
channel Allocation (VA), Switch Arbitration (SA), Crossbar (XBAR) traversal, and Link
Traversal (LT).

As an indicative example of an NoC invariance, let us investigate the XY routing
algorithm, assuming the 4 x 4 mesh network in Figure 1. The XY routing algorithm first
routes a packet along the X dimension until the intended destination’s X-coordinate
has been reached, then along the Y dimension until the destination node has been
reached. Suppose that the origin of the Cartesian system is the bottom left router, and
assume that a packet is injected in router (1,1) with destination (1,3). Upon reaching
router (1,2), a fault in the RC unit of said router forwards the packet to the East
output port, toward router (2,2). This action constitutes an invariance violation, since
a packet arriving from the Y dimension may not make a turn to the X dimension under
XY routing. Such an invariance violation indicates a malfunctioning RC unit.

In the case of NoC routers, invariance identification is possible, because of the inher-
ent modularity of the constituent modules. Each router module is usually responsible
for a very specific task. For example, the RC unit is tasked only with the determination
of the output direction of a particular incoming packet. An arbiter grants one out of a
number of requests, and the crossbar module is responsible for interconnecting input
and output ports.

In this work, invariances were constructed by observing the operation and behavior
of each functional module. Specifically, the list of invariances is constructed using a
bottom-up approach. The NoC router design is implemented in a modular and hier-
archical manner; for example, FIFO buffers — Arbiters — Input Port — Crossbar
Switch — ... — Entire Router. The algorithm responsible for the functional operation
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of each module (e.g., the routing algorithm) is then exhaustively inspected to identify
all functional rules. Hence, the assertions are derived from each functional rule in the
algorithm that describes the operation(s) of each module. This methodology is repeated
for higher levels in the design hierarchy until the whole router is covered. Finally,
end-to-end invariances at the network level (considered to be the highest level in the
hierarchy) are also identified. To be able to follow the same procedure, designers must
keep the design modular to enable the decomposition of each module’s operation.

The completeness of invariances depends on the completeness of the functional anal-
ysis of the design itself. If the invariance checkers cover all functional rules, NoCAlert
will detect any illegal behavior. In the case of the baseline NoC router microarchi-
tecture, a total of 32 invariance types (categories) were identified and documented
in Prodromou et al. [2012]. A list of all identified invariance types is also presented
in the Electronic Appendix of this article. Note that the original 32 invariance types
have been extended with 3 additional invariance types, which are required to detect
permanent faults. The purpose of the new invariances is to monitor for legality of inac-
tion. For example, when an active VC is eligible for VA/SA arbitration, it should always
issue a request to the respective arbiter. An absence of such a request may indicate
a stuck-at-0 fault in the request signals. If the request signal referring to a VC gets
stuck at 0, that particular VC will be starved. On the other hand, this is at most a
performance issue in the case that the fault is transient, since normal operation would
resume in the subsequent cycle.

In total, the 35 invariance categories translate to 35 extremely lightweight checker
modules. The checker modules’ outputs are not registered (i.e., stored); they are fed
directly to the localization logic of NoCAlert, as will be explained later.

It should be stressed that our focus is on the control logic of the NoC. Our assumption
in this article is that the contents of the flits/packets (i.e., payload and network overhead
bits) are protected by a simple EDC scheme.

4. NOCALERT: AN ONLINE, HARDWARE-ASSERTION-BASED FAULT DETECTION
AND LOCALIZATION MECHANISM FOR NETWORKS-ON-CHIP

The proposed NoCAlert framework utilizes the principle of invariance checking, and
implements it in the form of real-time hardware-based assertions. The key idea
is to have a simple hardware checker module for every NoC component. This checker
module will take as input the inputs and outputs of the protected component and will
check whether any functional rule is broken during the component’s operation.

Note that the two assumed fault models in this work are both single-event (see
Section 5.2.1 for more details). Thus, if a fault occurs within the NoCAlert framework
itself—e.g., within a checker, or one of the Localization Units—then the logic of the
actual NoC must, by definition, be fault-free. Consequently, the impact of a fault in the
NoCAlert logic is, at worst, equivalent to a false-positive scenario.

4.1. Ensuring Network Correctness Using Invariances

Prior research [Borrione et al. 2007; Parikh and Bertacco 2011] has identified four
main conditions that ensure functional correctness within the network: (1) no packets
are dropped, (2) delivery time is bounded, (3) no data corruption occurs, and (4) no new
packet is generated within the network. These four conditions guarantee functional
correctness [Borrione et al. 2007; Parikh and Bertacco 2011]. The 32 identified invari-
ances were categorized according to the aforementioned four general requirements, as
described in Prodromou et al. [2012]. The 3 new invariances target the second require-
ment, that is, bounded delivery, since they mainly monitor for packets/flits that may
get stuck in some router due to a fault.
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Fig. 2. An example of an NoCAlert checker circuit.

4.2. Hardware Complexity of the NoCAlert Checkers

The NoCAlert fault detection mechanism consists of an array of distributed hardware
checkers, which constantly monitor the modules comprising the control logic of the
router. Each checker is a simple combinational circuit performing a specific check,
according to the rules of the module being monitored. An example of a checker circuit
is shown in Figure 2. This checker is responsible for monitoring an arbiter module and
detecting whether there is an active grant signal without any requests at the arbiter’s
inputs. Invariance checking relies mostly on value comparison, which, in hardware
terms, translates into simple combinational circuits consisting of inverters, AND, OR,
and XOR gates. Therefore, the NoCAlert checkers provide a lightweight approach to
runtime fault detection.

4.3. Faults That Do Not Cause Invariance Violations

As previously mentioned, invariance checking detects only illegal outputs, not nec-
essarily incorrect ones. Faults that give rise to functionally legal outputs will not be
detected. The two elemental questions here are the following:

—If such noninvariant upsets cause some other functional/invariance violation later on
in the network, will the fault be caught by one/some subsequent NoCAlert checkers?

—If these noninvariant upsets do not cause any other functional/invariance violation
later on in the network (i.e., they are never caught by any NoCAlert checker), do
they end up affecting the overall network correctness (as defined in Section 4.1 and
Borrione et al. [2007]; Parikh and Bertacco [2011])?

The extensive simulations of Section 5 will answer these two important questions.
It turns out (empirically) that all the noninvariant faults that end up causing a func-
tional error later are, indeed, successfully captured by subsequent NoCAlert checkers,
whereas the noninvariant faults that do not cause any other invariance violation later
turn out to be benign as far as overall network correctness is concerned.

4.4. Applicability of the NoCAlert Framework to Any Router Microarchitecture

The invariance concept is closely related to the microarchitecture under test. However,
the underlying principles will still be the same: study each individual module and
identify invariances, while gradually moving up to coarser granularities. Any alter-
ations to key router components or the addition of new modules within the router will
simply generate new invariances based on the modified/new functional specifications.
As long as the procedure outlined earlier is followed, a new set of invariances can
be produced to describe any router microarchitecture. Examples of new invariances
describing more elaborate NoC designs are described in Prodromou et al. [2012].

4.5. Enabling Fault Localization

To minimize the impact on performance and the disruption in the system’s opera-
tion, two NoCAlert delay elements must be minimized: (a) the delay between the
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manifestation of a fault and its detection, and (b) the delay between detection and
localization. Most important, ambiguous (imprecise) fault localization leads to overly
pessimistic/conservative solutions. For example, the inability to pinpoint a single
permanently faulty component within an NoC router may lead to the disconnection
of the entire router from the network. Given a quick and accurate fault localization
unit, recovery mechanisms can be fine-tuned accordingly to yield a near-optimal
fault-tolerant system with respect to performance degradation and service disruption.

To enable fault localization, NoCAlert utilizes the output of its detection checkers.
The outputs of all checker modules within a router may be grouped into a single
vector, in which each bit corresponds to the output of a single invariance checker.
Whenever a checker detects a fault, this bit vector is updated to reflect the distur-
bance. Essentially, the fault-detection vector can be viewed as a fault-detection trace,
which, according to the generated vector pattern, could potentially yield the location
of the fault. It should be noted that fault localization is useful for both transient and
permanent faults (the two fault models investigated in this work). While the utility of
localization for transient faults may seem limited, the ability to identify the component
that sustained a transient fault may still be exploited by higher levels in the computing
stack, for diagnostic/logging purposes, and to complement any checkpointing/rollback
schemes. In addition to isolating faults, the NoCAlert detection and localization pro-
cesses could also be potentially used to detect and isolate design and runtime bugs,
which may have escaped other verification/validation mechanisms.

4.5.1. The Localization Unit. Detecting the occurrence of a fault in a system is only the
first step in providing fault tolerance. The reaction to a fault-detection event typically
depends on the fault type, that is, whether it is permanent, transient, or intermittent.
The ability to localize a fault would, in turn, help identify the fault type; for example, a
repeating fault at the same location would indicate intermittent or permanent failure.
Once the fault type is identified, an appropriate reaction could be triggered (if such
functionality is supported). The Localization Unit introduced here—one per router—
tries to tackle the issue of identifying (i.e., localizing) the fault-afflicted NoC router
component by analyzing the assertions of the NoCAlert checkers that have detected
the fault. The output bits of all NoCAlert checker modules within each router are fed
directly into the router’s Localization Unit, and are not latched at the end of each cycle.
As soon as an assertion is raised by any one of the checker modules within a router, the
Localization Unit of said router is triggered into action; that is, it generates a so-called
Assertion Vector, which includes the status (asserted/deasserted) of all checkers in the
local router at the instant of the first raised assertion (i.e., the instant of first detection).
The size of the Assertion Vector for the 5-port baseline router described in Section 5.1 is
300b. This Assertion Vector is then used by the Localization Unit to identify the fault’s
location within the router. Hence, the Localization Unit in each router is triggered
into operation only when a fault is detected, i.e., as soon as at least one invariance
assertion is raised. To minimize complexity, the Localization Unit operates only on
the first-detection Assertion Vector; any subsequent repeated assertions (in following
cycles) by permanent faults are ignored until the first event is localized.

Each Localization Unit operates using only the assertions of a single router. Thus,
the localization process is distributed across routers, and each one of the local-
ization units is independent, that is, does not need to communicate with other routers’
units to identify the fault location. This valuable attribute is a direct consequence of the
instantaneous fault detection capability of NoCAlert, which implies that the detection
assertions are spatially close to the fault location. Experimental evaluations later on
will validate this NoCAlert property. In general, fault localization is the process of ar-
bitrarily dividing a module, for example, the NoC router, into multiple sectors and then
pinpointing the fault location to within a particular sector. The size and granularity of
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Table |. Abstract Examples of Pairs Matching Specific
Fault Locations to Specific Assertion Vectors

Fault Assertion
Location Vector ID
RC Unit 1

In Port: South 2
VCID: 0 3
VA1 Arbiter 4
In Port: North ...
VCID: 2 10

these sectors will be discussed further in Section 4.5.2. The Localization Unit consists
of a combinational circuit, which calculates whether one of the aforementioned sectors
could be the faulty one. This circuit is empirically created, based on a large number
of fault-injection simulations. For each simulation, a pair is created, which correlates
the specific Assertion Vector created at the instant of detection (henceforth termed the
first-detection cycle) with the location where the fault was injected. Each distinct as-
sertion vector is given a unique Assertion Vector ID for identification purposes; that is,
the ID is used to refer to a specific Assertion Vector, which is matched to a specific fault
location. Abstract examples of such pairs are shown in Table I. Note that each fault
location can be matched (paired) with multiple Assertion Vectors, as shown in Table I,
because a fault at a specific location may violate any number of different invariances.
For instance, in Table I, a fault in the RC unit of VCO in the South input port of a router
is matched to three different Assertion Vectors, indicated with Assertion Vector IDs
1, 2, and 3. All these pairs are then analyzed to deduce signatures that could identify
whether a fault happened at a specific location. The process of building and optimizing
these pairs/correlations is heuristic-based and makes use of the Espresso logic mini-
mizer tool [Brayton et al. 1984]. Initially, all fault injection simulations are inspected.
For every simulation that results in a fault detection (i.e., at least one checker module
is asserted), a pair is generated. The pair consists of (1) the location of the fault (as
injected in that specific simulation), and (2) the corresponding Assertion Vector created
in the first-detection cycle of that simulation. For example, consider the case in which
a fault in the SA1 arbiter of the East input port of router X forces its output to a state
that is not one-hot. The resulting Assertion Vector (which consists of specific asserted
checker flags) is given a unique Assertion Vector ID, and is “linked” to the specific
fault location (i.e., SA1 arbiter of the East input port of router X). Next, the Assertion
Vector’s information is simplified (compacted), as will be described in Section 4.5.3.
All simplified pairs are then fed into the Espresso logic minimizer tool [Brayton et al.
1984], which calculates the logic equations governing the Localization Unit’s output.

Based on these generated pairs, when the Localization Unit receives one of these
Assertion Vectors as input, it will output the respective fault location. The size (in bits)
of the Localization Unit’s output depends on the localization granularity, as will be
explained in the next section. This output is registered, so that it can be subsequently
used for diagnostic and/or recovery purposes by another mechanism (if it exists), or a
higher level in the system stack.

Furthermore, since the Localization Unit uses the Assertion Vector created by the
NoCAlert checkers at the instant of detection, the localization process is valid for the
same fault models as the ones supported by the NoCAlert detection phase, that is, both
single-bit transient and permanent faults.

4.5.2. Localization Granularity. The complexity of the localization unit is a trade-off be-
tween localization ambiguity (imprecision) and granularity. Ambiguous localization
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Fig. 3. The NoCAlert framework supports three different localization granularities: (a) identification of the
faulty router; (b) identification of the faulty pipeline stage in the affected router; and (c) identification of not
only the pipeline stage of the afflicted router, but also the affected input/output port of said router.

occurs when the localization unit yields more than one possible fault location, that
is, the fault may have occurred in any one of two (or more) locations. The reason for
such ambiguity in the localization unit’s output is the nonuniqueness of the Assertion
Vector itself. Localization granularity refers to the size of the reported fault location.
This is related to the size of the “sectors” described in Section 4.5.1. As can be seen in
Figure 3, the NoCAlert framework supports three different localization granularities.
At the coarsest granularity (router level), the Localization Unit of each router tries to
identify if the fault has occurred within the router or in any one of its 4 neighboring
routers (this decision is based solely on the local Assertion Vector). The next granularity
level (pipeline-stage level) is finer; the Localization Unit can pinpoint a location within
a single pipeline stage of the affected router. In this work, the router pipeline consists
of 4 stages: Routing Computation (RC), Virtual-channel Allocation (VA), Switch Arbi-
tration (SA), and Switch Traversal (ST). The Link Traversal (LT) stage is assumed to
be protected by ECC, since it is part of the datapath. Pipeline-stage-level localization
granularity could, for instance, facilitate more targeted diagnosis, focusing only on the
particular hardware units of the affected pipeline stage. Finally, the finest localization
granularity supported is at the router’s port level. The Localization Unit not only distin-
guishes the pipeline stage of the afflicted router, but also the affected input/output port
of said router. Such fine granularity could be very beneficial if the fault is determined
to be permanent (recall that the ability to localize a fault can help identify whether
the fault is transient/intermittent or permanent). If the fault is permanent, then a
recovery mechanism—assuming that it is supported by the system—could decide on
an appropriate action, for example, some form of reconfiguration.

The size (in bits) of the output of each Localization Unit depends on the chosen
localization granularity, and varies from 5 (coarsest) to 44 (finest). In the absence of
localization ambiguity, the output is a one-hot bit vector, which uniquely identifies the
fault location (at the supported granularity level). On the other hand, an ambiguous
output is a bit vector that is not one-hot, with each “1” indicating a unique (and separate)
possible fault location.

It will be demonstrated empirically later that the first two localization granularities
always yield unambiguous and correct fault locations. However, the finest granularity
level may occasionally suffer from some ambiguity, that is, more than one input/output
port might be reported as the possible fault location. This means that the Localization
Unit’s output is not one-hot, indicating multiple possible fault locations. Nevertheless,
the correct location is always included in these ambiguous results. Thus, the Local-
ization Unit always identifies the fault location correctly. The ambiguity is due to the
fact that fault injections in different locations may yield the same Assertion Vector.
Since the Localization Unit cannot distinguish between these locations, it reports all
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of them as possible fault sites. As will be demonstrated in Section 6.1.2, the degree
of ambiguity is low (on average, 1.3 input/output ports are reported out of a total of
5 input and 5 output ports), and—as mentioned before—the correct fault location is
always part of the reported set.

4.5.3. Simplifying the Localization Logic. The Localization Unit relies on the analysis of
the Assertion Vector, which is generated from the outputs of the hardware checkers
(i.e., the detectors). However, not all bits in the Assertion Vector are always necessary
to yield a fault location. This fact allows us to perform several optimizations in order to
minimize the information processed by the Localization Unit. This, in turn, simplifies
the entire localization logic. Specifically, we employ two optimizations: (a) compacting
the Assertion Vector, and (b) discarding portions (i.e., pruning) of the Assertion Vector
for each localization granularity level.

When localization happens at the router- or pipeline-stage-level granularities, the
specific instance of the asserted hardware checker is not significant. In many cases,
the only required information is the specific invariance type (category) to which the
asserted checker output bit belongs. Thus, the Assertion Vector can be reduced to
include only one “summary” bit for some invariance types.

Moreover, since the Localization Unit is created based on a set of empirically gen-
erated pairs of Assertion Vectors and corresponding fault locations, portions of the
Assertion Vector might, in fact, be redundant. For example, several checkers have the
same value for all faults injected in a particular location (i.e., some checkers are ei-
ther always asserted, or always deasserted). The employed pruning process carefully
analyzed the contribution of every single entry in the Assertion Vector to identify the
“utility” of each checker with respect to the localization process. Pruning also took care
of situations in which two (or more) checkers were always simultaneously asserted.
Thus, using only one of those checkers would be enough for localization. Eventually,
the pruning process yielded a smaller Assertion Vector that included only the check-
ers that were responsible for correct and accurate fault localization. Specifically, the
original 300b of the Assertion Vector were pruned to 170b (for the router-level local-
ization granularity), or 225b (for the pipeline-stage-level and input/output-port-level
localization granularities).

In order to understand the simplification process, let us consider the toy example
illustrated in Figure 4. This example assumes (for simplicity) that there are only five
invariance types (categories), and each invariance type has three instances, that is,
three single-bit checkers. This means that the initial (before simplification) Assertion
Vector consists of a total of 15b. Let us now assume that, after all conducted simu-
lations, a specific fault location L within the router has been matched to 4 different
Assertion Vectors (differentiated by their distinct Assertion Vector IDs), as indicated
in the figure. First, these four Assertion Vectors are inspected to identify essential in-
variance types, if there is an Assertion Vector with asserted bits of only one invariance
type. For instance, Invariance Type 3 is essential for Assertion Vector 2 in Figure 4.
After establishing all essential invariance types, the Assertion Vectors are inspected
for invariances that are redundant for the specific fault location. For example, Invari-
ance Type 5 was never asserted; thus, its associated bits can be removed. Finally, the
simplification process investigates whether any of the remaining invariance types (1,
2, and 4 in this example) can also be removed. The invariance types are investigated
in an ascending order, based on the total number of asserted bits in all four Assertion
Vectors. This is a greedy approach in trying to remove as many invariances as possible.
Invariance Type 4 is inspected first, since it has the lowest number of total asserted
bits (2). By removing Invariance Type 4, all four vectors are nonzero (detection is still
possible); thus, Invariance Type 4 can be removed. Next, Invariance Type 2 is investi-
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Fig. 4. A toy example to demonstrate the simplification process of the input to the Localization Unit. In this
example, the process allows the compaction of the Assertion Vector from (initially) 15b to only 6b.
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Fig. 5. An example of the fault localization process, which focuses only on a single router component: an
SA arbiter. Assuming that a faulty arbiter may yield any one of three possible errors, three corresponding
Assertion Vectors are “matched” to this particular router location (i.e., the SA arbiter).

gated. By removing Invariance Type 2 (after having removed Type 4), Assertion Vector
4 is left with all zeros; thus, Invariance Type 2 cannot be removed. Finally, using the
same concept, Invariance Type 1 can be safely removed. After completing the sim-
plification process, it is evident that only the checker bits of Invariance Types 2 and
3 must be provided to the Localization Unit. In this example, the simplification pro-
cess has compacted the Assertion Vector (i.e., the input to the Localization Unit) from
15b to 6b.

4.5.4. An Example of the Fault Localization Process. To demonstrate how the fault localiza-
tion process works, let us assume the use of the finest localization granularity supported
by NoCAlert (i.e., port-level), and let us focus on the SA arbiter of output port P in
router X. Recall that the SA arbiter is used for switch allocation in the SA pipeline
stage. If a fault occurs in this particular SA arbiter, the Localization Unit should be
able to pinpoint the fault, that is, identify the SA arbiter of output port P in router X.

A faulty SA arbiter may yield any one of these possible erroneous results: (a) grant
more than one output port to a requesting input port; (b) grant an output port that
has no credits, without a request being made for that port; and (¢) grant multiple
output ports to a single input port, with one/some of the granted output ports having no
credits, and/or no corresponding requests (i.e., simultaneously having scenarios (a) and
(b)). These three cases are illustrated in Figure 5. In reality, there may be more than
these three erroneous possibilities, but let us assume in this example—for the sake
of simplicity—that these three are the only possibilities. Erroneous scenario (a) will
trigger a violation of Invariance Type 6 (see Table A in the Electronic Appendix),
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erroneous scenario (b) will violate Invariance Types 4 and 7, while scenario (¢) will
violate Invariance Types 4, 6, and 7. Thus, the location of this particular arbiter will
be “matched” to three distinct Assertion Vectors, with each corresponding to one of the
three aforementioned scenarios. This matching process results in three distinct pairs,
with each linking a specific fault location (the arbiter) to a specific Assertion Vector. If
any of the three Assertion Vectors is sent as input to the Localization Unit, the latter
will correctly and accurately identify the fault location.

Of course, the simplification process described in Section 4.5.3 can simplify the re-
quired localization logic by compacting the Assertion Vector. For the specific fault
location, all invariance types other than 4, 6, and 7 are irrelevant. Additionally, In-
variance Type 4 can be ignored without affecting the localization capability for the SA
arbiter. Hence, the Localization Unit will identify the correct fault location (the specific
SA arbiter in the specific output port), if the input Assertion Vector has asserted bits
corresponding to Invariance Types 6 or 7.

Note that, even at the finest localization granularity supported by NoCAlert (i.e.,
input/output port-level), the number of possible fault locations within the router is by
no means excessive.

5. EXPERIMENTAL METHODOLOGY
5.1. Experimental Setup

The goal of the experimental evaluation is to thoroughly assess the efficacy and effi-
ciency of the NoCAlert mechanism in a realistic environment. Our evaluation approach
is double-faceted, covering two abstraction levels: (a) a commercial, cycle-accurate
simulation framework implemented in C++ is used to assess NoCAlert at the net-
work level; faults are injected in all possible locations (according to the employed fault
models) within the NoC of a 64-node CMP arranged in an 8 x 8 mesh. (b) NoCAlert’s
functionality is also verified at the RTL netlist level, whereby faults are injected in
all possible locations (approximately 22,000) of a Verilog-implemented and synthesized
NoCAlert router.

For the network-level evaluation, the cycle-accurate GARNET NoC simulator
[Agarwal et al. 2009] is employed. GARNET models the packet-switched routers down
to the microarchitectural level. The simulator was further extended with all the No-
CAlert checker and localization modules and a fault injection framework, which will
be described in Section 5.2. Since the focus of this work is the fault detection and lo-
calization performance of NoCAlert (not the network/system performance), the use of
synthetic traffic patterns in an 8 x 8 mesh suffices to accurately capture the salient
characteristics of the design. Synthetic traffic patterns are typically more effective in
stressing the router design to its limits and isolating the inherent attributes of the
network itself. Hence, we employ synthetic (uniform random) traffic at various injec-
tion rates to ensure that all router components are stressed over a range of traffic
intensities.

The NoCAlert framework is also compared to ForEVeR [Parikh and Bertacco 2011,
2014], a state-of-the-art fault detection and recovery framework (see Section 2). The
ForEVeR mechanism was cycle-accurately implemented within GARNET with all three
of its key fault-detecting techniques: the secondary checker network (including the
counters and timers), the Allocation Comparator from Park et al. [2006], and the end-
to-end checker. Without loss of generality, the router architecture assumed in this
evaluation is the baseline implementation described in Peh and Dally [2001]. The
router is 5-stage pipelined (4 intrarouter stages + 1 link traversal stage), with four 5-
flit deep VCs per input port, and 128b interrouter links. Atomic VC buffers, wormhole
switching, and credit-based flow control are also assumed. The routing algorithm used
is deterministic XY.
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For the hardware evaluation and RTL simulation parts, we implemented the base-
line NoC router augmented with the NoCAlert detection and localization mechanisms
in Verilog Hardware Description Language (HDL). The resulting design was synthe-
sized using Synopsys Design Compiler and 656nm commercial TSMC libraries at 1V
operating voltage and 1GHz clock frequency. The results were used to perform detailed
area/power/timing analysis and to evaluate the overhead footprint of NoCAlert. Fur-
thermore, the resulting netlist (after synthesis) was used for the aforementioned RTL
netlist-level evaluation of NoCAlert.

5.2. Evaluation Framework

5.2.1. Fault Models. Throughout the evaluation, we assume the occurrence of single
faults in the NoC mesh. Specifically, two single-bit, single-event fault models were
employed: (a) transient, and (b) permanent stuck-at faults (stuck-at-0 and stuck-at-1).
The simulations involve injections of such faults at different locations and at different
instances (network states). The implementation of NoCAlert is near identical for both
transient and permanent stuck-at faults. However, there are some additional require-
ments for the detection of permanent faults, as described in Section 3.

Single-bit fault models were chosen over multibit ones, because of two important
reasons: (1) modeling multibit faults would exponentially increase the required sim-
ulations, since all combinations/permutations of multiple bit flips would have to be
conducted; (2) tests for single-stuck-at faults have been shown to cover a very high
percentage (greater than 99.6%) of multiple stuck-at faults [Agarwal and Fung 1981].
Therefore, being able to detect single-bit stuck-at faults will also detect (with a very
high probability) multiple stuck-at faults.

Nevertheless, it should be stressed that NoCAlert’s overarching concept of invariance
checking is not tied to a particular fault model. The underlying principles and ideas are
the same, irrespective of the fault model: NoCAlert monitors against illegal outputs,
irrespective of how the illegal output was generated.

5.2.2. Network-Level Evaluation Methodology. For the network-level evaluation, our fault
models view the router microarchitecture at the fine granularity of individual
subcomponents. These subcomponents comprise all the modules responsible for the
router’s control logic: individual RC units, control status tables, VC buffer status, ar-
biters in both VA and SA, and the crossbar control logic. Our only assumption is that
the packet/flit contents are already protected by EDCs; thus, the datapath of the router
is also covered. Our model has the capability of injecting single-bit faults at the inputs
and the outputs of each individual module. The fault injection framework is illustrated
in Figure 6. By looking at the router microarchitecture at this fine granularity, we
are able to inject single-bit faults at 205 different locations within a single 5-port NoC
router. Taking into account corner and edge routers (which have fewer ports), the total
number of fault locations is 11,808 in an 8 x 8 mesh network.

One simulation run at a single traffic injection rate and one network state con-
sists of 35,424 different simulations (to exhaustively inject faults in all 11,808 pos-
sible locations of an 8 x 8 mesh, assuming the specific single-fault injection models
used in this work, i.e., transient bit-flips, and permanent stuck-at-0 and stuck-at-1
faults). The traffic injection rate was varied from low to high (0.1-0.4 flits/node/cycle)
in steps of 0.05 flits/node/cycle. Moreover, three different scenarios of fault injection
instances were studied (fault injection at cycle 0, 32,000, and 64,000). Hence, 21 dif-
ferent scenarios were investigated (7 injection rates x3 injection times), for a total of
21 x 35,424 ~ 744,000 fault-injection simulations.

The exact same experiments were also run in a fault-free environment, and detailed
flit ejection logs were collected and compiled in a so-called Golden Reference (GR)
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Fig. 6. Abstract view of the employed fault injection framework. Single-bit faults are injected at the inputs
(a) or outputs (b) of each individual router module.

report. The GR is then used to ensure that no violations of the four network correctness
rules of Section 4.1 and Borrione et al. [2007] and Parikh and Bertacco [2011] occur.
Furthermore, the GR also detects any changes in the intrapacket flit order (such order
violations constitute erroneous behavior). Since NoCAlert captures only faults that
cause invariance violations, the GR is used to facilitate the investigation of the two key
questions posed in Section 4.3. Moreover, by comparing the GR with the equivalent
under-fault log report, we can study the effects of any fault occurrence on overall
network correctness. This allows us to assess the false-positive (assertions that prove
benign) and false-negative (undetected network correctness violations) performances
of both NoCAlert and ForEVeR [Parikh and Bertacco 2011, 2014].

5.2.3. RTL Netlist-Level Evaluation Methodology. While high-level (e.g., implemented in
C++) simulators are useful in evaluating large designs, they are typically not as detailed
as lower-level implementations, for example, RTL-based designs. The latter are much
closer to the actual hardware implementation; thus, they capture all intricacies and
salient features of the design. Such fine-grained modeling detail is very important when
assessing fault-tolerant mechanisms; since faults can affect any bit in the design, the
use of a detailed hardware model is insightful. Recall, for instance, that the high-level
simulator allows only for the injection of faults at the inputs and outputs of modules,
not inside the intramodule logic. Here, we present the methodology employed to inject
faults at the netlist level, that is, at any location in the router’s logic.

Note that the purpose of the RTL netlist-level analysis is the following: any internal
fault (i.e., a fault injected within a module, not only at its inputs/outputs) should
manifest as one of two cases: (1) masked fault (by internal logic), which would yield no
error; or (2) error at a module’s output, which would be captured by the checker (i.e., the
case covered by the input/output approach of the network-level evaluation). Thus, the
netlist-level analysis will primarily shed light on the percentage of the single-bit faults
masked by internal logic, that is, faults that do not propagate to the module’s output,
due to intramodule masking. This analysis identifies the percentage of netlist-level
injected faults that are actually relevant, that is, not internally masked.

A single fully functional NoC router employing the exact same microarchitecture
and specifications as those used in the network-level evaluations (Section 5.1) was
implemented in Verilog HDL. The router was also augmented with the NoCAlert de-
tection framework, that is, all hardware checkers and all required logic. After carefully
validating the functional correctness of the design with an appropriate test bench, a
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Synopsis design compiler was used to obtain the netlist of the entire router. The gener-
ated netlist was subsequently analyzed to identify all fault injection locations within
the router design. Clearly, this approach allows us to inject faults in every net of the
design; this is precisely the benefit of performing fault injection experiments at such a
low-level hardware implementation. Specifically, the number of fault injection locations
at the RTL netlist level was about 22,000, as compared to the 205 locations available
in our GARNET-based (network-level) simulator. It is important to note that—for this
RTL-level analysis—we evaluated NoCAlert in a single NoC router only, since RTL-
based simulations of an entire NoC would be prohibitively slow (especially given the
large number of separate simulations required for complete assessment). Regardless,
this analysis still yields significant insight into the effectiveness of NoCAlert.

To evaluate NoCAlert at the RTL netlist level, we injected faults at the output of
every standard cell that resides in the router’s control path. There is no need to inject
faults at the inputs of a standard cell due to the fact that the input is merely another
standard cell’s output. Clearly, the first level of standard cells is treated differently; in
those cases, we also inject faults at the inputs of the modules.

The goal was to verify whether an injected fault actually affected a module’s output
and/or the entire router’s output. In such a fine-grained implementation, it is expected
that the effects of some faults would be masked (e.g., logical masking) and not propagate
towards a module’s output. The same fault was injected (in each and every possible
fault location) 30 distinct times. In every iteration, the fault injection cycle was altered
to create a range of fault injection instants spanning 30 cycles. Thus, each fault was
injected at cycle x in one simulation, at cycle x + 1 in the next simulation, and so on,
until cycle x + 29. This increases the probability of a fault affecting the module during
its operation; also, the state of the network is different during each of these cycles, thus
simulating a variety of network states. Faults were injected within the cycle ranges of
10 to 39 (idle router), 100 to 129 (moderately warmed-up router), and cycles 200 to 229
(warmed-up router). This resulted in a total of 670,000 distinct simulations.

6. EVALUATION RESULTS
6.1. Network-Level Simulation Results

6.1.1. Fault-Detection Evaluation. As discussed in Section 5.1, simulation experiments
were performed in an 8 x 8 2D mesh network using synthetic traffic patterns. In this
section, we present a quantitative analysis of NoCAlert’s efficacy and efficiency, as well
as a comparison with the ForEVeR [Parikh and Bertacco 2011, 2014] framework.

It is important at this point to differentiate the injected faults from the actual errors
manifesting themselves at the network level (as defined in Section 4.1 and [Borrione
et al. 2007; Parikh and Bertacco 2011]). NoCAlert’s ultimate goal is to ensure that no
actual error at the network level escapes detection. Therefore, injected faults that do
not cause a real functional error within the network are viewed as benign. Based on
this crucial differentiation, we classify each of NoCAlert’s detection outcomes into one
of four main categories:

—True Positive: Event detected by NoCAlert when the injected fault causes an actual
error at the network level (network correctness violation).

—PFalse Positive: Event detected by NoCAlert when the injected fault turns out to be
benign.

—True Negative: Nothing detected by NoCAlert when the injected fault turns out to
be benign.

—False Negative: Nothing detected by NoCAlert when the injected fault causes an
actual error at the network level (network correctness violation).
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Fig. 8. Cumulative fault-detection delay distribution for True Positive faults under (a) transient and (b) per-
manent faults. The epoch duration in ForEVeR was set to 1,500 cycles.

Recall that if a fault (either transient or permanent) occurs within the NoCAlert logic
itself, the impact would be equivalent to a false-positive scenario. The single-event fault
models assumed in this work imply that a fault can either be in a checker/localization
unit or in the remaining NoC logic, but not in two locations simultaneously.

In order to identify which injected faults turned out to be malicious, we used the
GR log report described in Section 5.2.2. The simulation results under both examined
fault models are summarized in Figures 7 and 8. Specifically, Figure 7 presents a
breakdown of the fault detection performance at two different fault injection instances:
cycle 0 (empty NoC) and cycle 32K (warmed-up NoC). The results at cycles 32K and
64K are very similar; thus, the 64K results are omitted for brevity. Figure 8 shows
the cumulative fault-detection delay distribution for True Positive faults. Overall, the
evaluation of the detection capabilities of the two architectures under comparison yields
5 key observations:

(1) Out of all simulations, NoCAlert registered zero false negatives under both fault
models, that is, all faults that violated network correctness were successfully cap-
tured by NoCAlert. The same was true for ForEVeR [Parikh and Bertacco 2011,
2014].

(2) Comparing the results between the transient and permanent fault models in
Figure 7, the trends are similar, but there is a significant difference: permanent
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stuck-at faults give rise to a higher percentage of True Positives. Since permanent
faults are persistent, they are much more likely to eventually cause an error.

(3) As can be seen in Figure 7, the true-positive percentages are identical for both
NoCAlert and ForEVeR, since they both detected all network correctness violations.
There is a notable difference in the False Positives. This is attributed to the real-
time nature of NoCAlert, whereas ForEVeR’s epoch-based approach allows for some
benign faults to be masked. The False Positive events that did not cause ForEVeR
to raise an assertion were faults in the RC and VA logic. In the former case, packets
were just misrouted; in the latter case, packets would miss some arbitrations before
eventually being assigned to a fault-free VC. This difference in False Positives
can be markedly reduced by introducing “NoCAlert Cautious,” whereby low-risk
invariances are not immediately flagged as errors. Instead, the error is flagged
only if further evidence indicates a problem [Prodromou et al. 2012].

(4) NoCAlert provides near instantaneous fault detection, with 97% of all true-positive
transient faults and 90% of all true-positive permanent faults captured at the in-
stant of manifestation (same cycle), as depicted in Figure 8. The worst-case de-
tection latency—after fault manifestation—is only 28 cycles for transient faults
and 32 cycles for permanent faults. NoCAlert achieves several orders of magnitude
lower fault-detection latency than ForEVeR [Parikh and Bertacco 2011, 2014].

(5) Injected faults that do not cause any invariance violation in the network are al-
ways benign (i.e., they never cause any network correctness violation). Moreover,
noninvariant upsets that cause a subsequent invariance violation are always suc-
cessfully captured by NoCAlert. These fundamental results answer the two key
questions posed in Section 4.3.

Our experiments indicate that at least one checker from every invariance type de-
tected invariances in the absence of any other invariance type’s checker assertions.
This fact indicates that no single invariance type is redundant. More detailed results
pertaining to NoCAlert’s detection capabilities can be found in Prodromou et al. [2012].

6.1.2. Fault-Localization Evaluation. NoCAlert’s Localization Units utilize the Assertion
Vector generated only at the instant of detection, that is, at the cycle in which the first
hardware checker(s) are asserted. While more checkers may raise assertions later, our
experiments indicate that fault localization can still be effectively facilitated through
the first generated Assertion Vector. Further, by looking only at the first-detection
cycle, localization can exploit the fast detection times and ascertain that the fault has
not had the time to cause widespread system malfunction. As illustrated in Figure 9,
which combines the results of both transient and permanent fault models, over 99%
of the assertions raised during the first-detection cycle are within the affected router,
and all assertions are at most one hop away. This implies that, on detection, it is
known—without any further action—that the faulty router is either the one with the
assertion(s) or one of its four neighbors. Since the Localization Unit operates solely
on the single Assertion Vector generated during the first-detection cycle, any repeated
assertions in subsequent cycles (e.g., by permanent faults) are ignored, until the first
event is localized. This simplifies the logic of the Localization Unit.

The following analysis is based on all the simulation results from both examined fault
models (permanent and transient). The results were combined because the trends were
very similar between the two fault types.

The average number of raised assertions (i.e., bits with value 1) in the Assertion
Vector at the first-detection cycle tends to be small, thus expediting the localization
process. As illustrated in Figure 10, in more than 65% of the simulations, there were
up to three raised assertions in the Assertion Vector; the highest number of raised
assertions was 17.
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Fig. 11. Localization capabilities of each NoCAlert invariance checker module. The fault locations that each
invariance type’s checkers can help identify are indicated. There are invariance checker modules capable
of localizing faults on their own. Invariance checker module 27 is missing, since it is only applicable to
nonatomic VC buffers.

Figure 11 summarizes the localization capabilities of each NoCAlert hardware
checker module. The x-axis lists the 35 NoCAlert invariance types; the y-axis indi-
cates the fault locations that each checker can help identify, based on all conducted
experiments. For instance, whenever a checker of invariance type 4 was asserted, the
fault was located in a VA arbiter in 72.6% of the conducted experiments (dark-gray
portion of the bar), while the fault was located in an SA arbiter in the remaining 27.4%
of the times (gray portion). It is evident in Figure 11 that some checkers can, by them-
selves, determine the fault location, with no need to inspect other checker outputs. For
example, invariance type 2 checkers—that is, the Invalid RC Output Direction invari-
ance type—always pinpoint the fault location to the RC pipeline stage, as shown in
Figure 11, since no other fault triggers this particular checker module.

NoCAlert’s Assertion Vector allows for a fast and highly accurate localization solu-
tion. As discussed in Section 4.5, localization is achieved by identifying “signatures”
(patterns) inside the Assertion Vectors that uniquely correspond to a specific fault loca-
tion. When operating at the coarsest localization granularity (router-level), the output
of the Localization Unit is unambiguous (i.e., only one possible faulty router is identi-
fied) and 100% accurate. The Localization Unit will either identify the local router as
the affected one or a specific one of the 4 neighboring routers. Recall that there is one
Localization Unit in each router, and each unit operates only on local information (the
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Fig. 12. Probability of ambiguity in the output of the Localization Unit, when faults are localized at the
port-level granularity.

Assertion Vector generated within each router). The output is also unambiguous and
100% accurate when operating at the pipeline-stage-level localization granularity.

Ambiguity (aliasing) in the Localization Unit’s output appears only at the finest
localization granularity, the port level. Figure 12 presents the probability of ambiguity
in the output of the Localization Unit, when faults are localized at the port-level
granularity. Obviously, the output is ambiguous only 10% of the time, that is, the output
lists only one possible faulty input/output port in around 90% of the examined cases.
When the output is unambiguous, the reported fault location is 100% accurate. When
the output is ambiguous (10%), the Localization Unit reports more than one (up to 5)
possible faulty ports in the affected router, as shown in Figure 12. Recall that there are
a total of 10 ports, 5 input and 5 output, in the router. However, even in those ambiguous
cases, the actual faulty port is always included in the list of reported suspects. Thus, if
the Localization Unit reports two possible ports, the fault is guaranteed to be in one of
those two ports.

As expected, the three supported localization granularity levels have different hard-
ware implementation complexities. Finer-grained granularity incurs additional com-
plexity and cost. The entire Localization Unit is implemented in combinational logic.
The hardware cost of the Localization Unit (for all three supported fault localization
granularities) is presented in Section 6.3. It will be shown that increasingly finer lo-
calization granularity results in higher (hardware) implementation cost. Thus, the
localization granularity is a design trade-off between desired localization accuracy and
incurred hardware cost. Often, the localization accuracy is closely intertwined with the
employed recovery mechanism, that is, the recovery scheme may dictate the required
localization accuracy. A coarse localization granularity could serve as a fast first-order
solution that can swiftly isolate the faulty component for further in-depth diagnosis.

While the fault localization process is typically expected to merely identify the lo-
cation of a fault, it is interesting to investigate whether a similar process could be
utilized to identify the fault #ype, that is, permanent or transient. Note that the pro-
cess of identifying the fault ¢ype is orthogonal to the process of identifying the fault
location (at any granularity level) since both process types operate on the same in-
put data, that is, the Assertion Vector in the first-detection cycle, but they output a
different result. Nevertheless, it turns out that the single Assertion Vector generated
in the first-detection cycle is not sufficient to accurately identify the fault type. Our
experiments using the same simulations as previously described indicate that the fault
type could be correctly identified in only 67.33% of all examined cases. Obviously, such
accuracy is not sufficiently high for any practical purposes. In order to increase the
accuracy and successfully support fault-type identification, more than one Assertion
Vector would be needed (i.e., more than one time “snapshot,” captured at different time
instants after the first-detection cycle).
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6.2. RTL Netlist-Level Evaluation

As described in Section 5.1, a baseline NoC router augmented with the NoCAlert detec-
tion mechanism was implemented in Verilog HDL and synthesized using 65nm com-
mercial standard-cell libraries. The obtained netlist was used to evaluate NoCAlert’s
detection performance at the RTL netlist level. The evaluation process at this level was
kept the same as the corresponding high-level (network-level) methodology. Experi-
ments were performed under a fault-free scenario to generate a GR, which was later
compared with the output logs of the fault-injected simulation runs. The goal was to
verify whether the router was able to route all the flits to the required output ports.
The main difference with the high-level evaluation is that we are now considering a
single router as the unit under test instead of the entire network.

Similar to Figure 7, Figure 13 presents a breakdown of the RTL netlist-level fault
detection performance over two different fault-injection time periods: cycles 10 to 39
(empty NoC), and cycles 100 to 129 (warmed-up NoC). Note that the RTL netlist-level
evaluation was conducted using only the transient fault model. Thus, we compare the
RTL results of Figure 13 with the corresponding “Transient” bars in Figure 7. The
first major observation is that, even under this extremely detailed evaluation,
NoCAlert yields 0% False Negatives, thereby demonstrating full fault coverage. One
obvious difference between the network-level and RTL netlist-level results is the large
decrease in the percentage of True Positives in the RTL case. Figure 14 illustrates
the reason behind this observation: a vast percentage of the injected faults at the
netlist level turn out to be benign due to masking. On the other hand, the high-level
evaluation process injects faults only at the inputs/outputs of modules. Such fault
injections have a much higher probability of affecting the module’s output, while the
probability of intramodule masking is significantly reduced. Regarding the decreased
number of False Positives, the reason remains the same. Faults are now also injected
within a module (not only at its inputs/outputs), which results in a higher probability
of masking before the fault propagates to the module’s output. If the fault “disappears”
(through masking) before reaching the module’s output, it will not cause any checker
assertions.

Finally, Figure 15 shows the cumulative fault-detection delay distribution for True
Positive faults; it is the RTL netlist-level equivalent of Figure 8. The RTL delay trend is
very similar to the network-level behavior, while the worst-case fault-detection latency
is almost identical to the one reported at the network level.
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Fig. 16. The NoCAlert fault detection mechanism’s area overhead as a function of the number of VCs per
input port. A comparison with double modular redundancy in the control logic (DMR-CL) is also presented.

6.3. Hardware Overhead Analysis

The Verilog-implemented and synthesized NoC router of Section 6.2 was also used to
evaluate NoCAlert’s hardware overhead (in terms of area, power, and timing) for both
the fault-detection and -localization mechanisms.

We start with the analysis of the fault-detection mechanism of NoCAlert. In order to
assess the scalability of NoCAlert, we vary the number of VCs per port from 2 [Vangal
et al. 2008] to 8 [Howard et al. 2011] and evaluate the detection mechanism’s percentage
area and power overhead. To better appreciate the size of NoCAlert, Figure 16 shows
a comparison in area overhead between NoCAlert’s detection mechanism, the baseline
router described in Section 5.1, and a design applying Double Modular Redundancy
(DMR) in the entire NoC control logic (denoted as DMR-CL). Recall that the baseline
router is five-stage pipelined (4 intrarouter stages + 1 link traversal stage), with 5-
flit-deep atomic VC buffers per input port, and 128b interrouter links. The router
uses wormhole switching, credit-based flow control, and deterministic XY routing. In
this particular experiment, the number of VCs per port is varied from 2 to 8, and the
results are normalized to the 2-VC baseline design. In general, DMR serves as the most
complete (albeit expensive) fault-detection solution. NoCAlert’s detection mechanism
incurs a minimal area overhead, ranging from 1.38% to 4.42%, while the percentage
overhead remains fairly constant. In contrast, the percentage area overhead of DMR
increases linearly from 5.41% to 31.32%, when using 2 and 8 VCs, respectively. The
detection component of NoCAlert was further evaluated with respect to the power and
timing (i.e., critical path delay) overheads. With the switching activity set to 50% for
all nets, the power overhead ranges from 0.3% to 1.2%. Finally, the critical path delay
increases by at most 3% (around 1%, on average) over all examined VC configurations.

Since the finest supported fault-localization granularity is at the input/output port
level (not at the VC level), the hardware of NoCAlert’s Localization Unit is minimally
affected by the number of VCs per port. Hence, for the analysis of the Localization
Unit, we focus on a router design with 4 VCs per input port, that is, same as in the
baseline router of Section 5.1. Table II reports the area/power overhead and timing
attributes of NoCAlert’s Localization Unit, with and without the compaction/pruning
of the Assertion Vector. The area/power overhead reported in the table is relative to
the baseline router of Section 5.1.

Note that, in the case of the nonsimplified localizer (i.e., the one using the full, non-
compacted Assertion Vector), the trend in area/power/timing is, in fact, the opposite
of what one would expect: the router-level granularity has the biggest overhead and
is the slowest of the three supported fault-localization granularity levels. This is due
to the following reason: since the Assertion Vector is not pruned in the nonsimplified
localizer variants, the presence of redundancy within the Assertion Vector is not ex-
ploited for simplification. Hence, the circuits for all three localization granularities are
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Table Il. Hardware Synthesis Evaluation of NoCAlert’s Localization Unit

Fault Nonsimplified (No AV compaction) | Simplified (After AV compaction)
Localization % Overhead at 1IGHz | Max. freq. | % Overhead at 1GHz | Max. freq.
Granularity Area Power (GHz) Area Power (GHz)

Router 6.7 1 1.16 1.4 0.48 1.66
Pipeline stage 6.5 0.95 1.20 2.1 0.52 1.64
Input/output port 6.2 0.92 1.37 4.4 0.66 1.42

Note: Results are presented for all three supported fault-localization granularity levels, and
for both “nonsimplified” and “simplified” variants. The “simplified” variants are obtained after
applying the Assertion Vector (AV) compaction process described in Section 4.5.3.

very similar; essentially, all three circuits include the logic of the finest granularity—
input/output-port-level—plus additional logic to aggregate/summarize the larger out-
put into a smaller output (to yield the router-level and pipeline-stage-level fault local-
ization granularities). On the contrary, when the simplification/compaction process of
Section 4.5.3 is followed, redundancies are appropriately removed beforehand for each
granularity level, and the resulting hardware overhead trends are as expected, i.e., as
the localization granularity becomes finer, the hardware cost increases.

As indicated in Table II, the biggest benefit of compaction is in the consumed area: the
overhead when using compaction is significantly lower (especially in the cases of router-
level and pipeline-stage-level fault localization granularities). There is a benefit in the
consumed power as well, but the power overhead of the nonsimplified localizer is still
relatively low. In terms of timing, both the nonsimplified and simplified Localization
Units can operate within a single cycle at 1GHz (the setup used in our experiments),
but the simplified/compacted variants have a smaller critical path delay, which means
that they could also achieve single-cycle operation at higher operating frequencies, as
indicated in the table.

The results of this section corroborate the fact that the checkers used to detect only
illegal outputs have significantly lower hardware cost than the units that they check.
Moreover, fault localization incurs minimal cost and only single-cycle latency.

7. CONCLUSIONS

This article proposes NoCAlert, a comprehensive online and real-time fault detec-
tion and localization mechanism that ensures 0% false negatives within the NoC,
under both transient and permanent faults. NoCAlert is based on the concept of invari-
ance checking, whereby the outputs of the control logic modules of the on-chip network
are constantly checked for illegal outputs based on current inputs. A collection of such
microchecker modules is used to implement real-time hardware assertions. The check-
ers operate concurrently with normal NoC operation, obviating the need for periodic,
or triggered-based, self-testing. Upon fault detection, the status of the checkers within
each router is analyzed by a Localization Unit, which can accurately pinpoint the fault
location at three different supported granularity levels.

Extensive simulation results, both at the network level and the RTL netlist level,
validate the efficacy of the NoCAlert mechanism and yield important insight as to the
behavior of the network when noninvariant faults (that evade the checkers) occur.
Specifically, noninvariant faults either cause some subsequent invariance violation
(and are captured) or they prove benign at the network/system level. Hardware syn-
thesis analysis using 65nm commercial libraries demonstrates the lightweight nature
of NoCAlert in terms of area/power/timing overhead. Furthermore, a detailed compari-
son with a state-of-the-art framework [Parikh and Bertacco 2011] highlights more than
100x improvements in detection latency, with no loss in detection accuracy and with
much lower overall complexity.
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In summary, this work demonstrates the potential for near-instantaneous fault de-
tection and swift, single-cycle fault localization within the NoC. This feat is achieved
using minimally intrusive hardware-based invariance checkers, and fully distributed
fault localization units.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
The appendix contains a list of all 35 identified invariance types.
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