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Abstract. Early circuit performance estimation and easy-to-apply
methods for minimum-delay gate sizing are needed, in order to enhance
circuit’s performance and to increase designers’ productivity. In this pa-
per, we present a practical method to perform gate sizing, taking also
into account the contribution of fixed wiring loads. Closed-form bounds
are derived and a simple recursive procedure is developed that directly
calculate the gate sizes required to achieve minimum delay. The designer,
using the proposed method, can easily compare different implementations
of the same circuit and explore the energy-delay design space, including
in the analysis the effect of interconnect.

1 Introduction

The design of efficient digital circuits requires several decisions that need to
be made during the design cycle. One of the major tasks of the designer is
to choose the appropriate circuit topology and logic style, determine the sizes
of the resulting gates and add extra buffer stages when necessary. Due to the
increasing complexity of modern designs and the need for fast and low-power
operation, practical and easy-to-apply methods are needed to guide the designer
to the best implementation [1]. In this context, the method of Logical effort [2]
has been presented that allows the formulation of the gate sizing problem in a
simple and comprehensive way.

The problem of sizing simple paths of gates is well understood [3]. However,
in almost all cases, simple sizing rules do not suffice, since the effect of inter-
mediate wires should also be taken into account. Handling interconnect effects,
when sizing for minimum delay can be performed using sophisticated algorithms
or general optimization methods [4]. Such approaches, although solving the siz-
ing problem exactly, do not give the designer the intuition of how the optimal
solution was chosen and how performance will change, when choosing another
topology or changing the initial placement of the gates in layout. In order the
designer to be able to quickly identify which solution matches better the design’s
constraints, analytical results are needed that would approximate the optimal
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gate sizes including also the effect of interconnect. In high performance sys-
tems, a combined approach is followed. The circuit topology, the number of
stages and the logic style are chosen with custom design decisions, while after
final placement, a fine tuning step follows that globally optimizes the design
for a combined set of constraints [5]–[6]. We limit our discussion to small and
medium-sized wires, i.e., wires that scale [7]. Driving longer on-chip wires re-
quires, either the use of repeaters, or the use special signaling techniques [8].
In these cases, the corresponding driver and receiver circuits are designed sep-
arately from the modules they connect, and thus, they are not included in the
gate sizing procedure.

The problem of analytically approaching the optimal gate sizes, when con-
sidering intermediate interconnect capacitances, is considered hard to solve and
only a few solutions exist [9]–[10]. However, existing solutions have been derived
after making several simplifying assumptions and do not solve the problem in
the general case. In this paper, instead of trying to identify an exact solution,
we derive closed-form bounds of the gate sizes needed to achieve minimum de-
lay. The proposed bounds are tight enough that allow the approximation of the
exact optimal values with almost no loss of accuracy. Also, a simple recursive
procedure is developed that solves the problem for paths with multiple levels of
intermediate interconnect. The application of the proposed method is straight-
forward and can help in quickly identifying the optimal number of stages and
energy-delay efficient solutions.

The rest of the paper is organized as follows. Section 2 briefly describes
the logical effort delay model. Section 3 presents the basic formulation of the
proposed approach. In Section 4 the application of the proposed method in
selecting the optimal number of stages is described, while in Section 5 a recursive
procedure is given that handles gate sizing with multiple levels of interconnect.
Finally, conclusions are drawn in Section 6.

2 Gate Delay Model and Simple Path Sizing

Following the logical effort method [2], the delay of a gate is characterized by its
output load, its driving capability and its internal parasitic capacitance. These
parameters are modelled using the gate’s electrical effort h = Cout/Cin, its log-
ical effort g, and parasitic delay p, which are combined as d = τ( g · h + p ).
Constant τ is a technology specific parameter that is roughly equal to the de-
lay of unit-sized unloaded inverter. The product of logical and electrical effort
g · h is called the stage effort of the gate and it models the delay caused by the
gate current charging or discharging the load capacitance. The parasitic delay
models the delay needed to charge or discharge the gate’s internal parasitic ca-
pacitance. The delay model is a first-order approximation of gate’s delay yet it
is reasonably accurate [11]. In this paper a standard 0.18µm technology is used
for which τ ∼ 19ps and 1 FO4 inverter delay is roughly equal to 94ps, under
typical conditions and supply voltage of 1.8V.

According to the method of logical effort, a path of N gates achieves minimum
delay, when all gates of the path have equal stage effort f = (G · B · H)1/N .
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Fig. 1. Two inverter chains separated by fixed wire capacitance Cw

Variables G and B are the product of the logical effort and the branching effort
of the gates belonging to the path, and H is the ratio of the final stage loading
capacitance to the input capacitance of the first gate of the path. Branching
effort b of each gate represents the ratio of all off-path capacitances driven by
the gate, to the input capacitance of the following gate of the path.

When fixed off-path wiring capacitances exist in the path, the branching
effort of the gate driving the wire cannot be directly estimated [2]. For small
wires, the additional off-path loading capacitances can be safely ignored. How-
ever, in reality, the floorplan of the circuit imposes the connection of gates that
are placed several hundreds of µm apart. Exact analytical gate sizing under this
circumstances is efficiently solved by the proposed method.

3 Gate Sizing with Fixed Wiring Capacitance

At first, the proposed methodology will be presented for the case of two inverter
chains connected with a wire with capacitance Cw. In the following, the method
will be generalized to handle paths of arbitrary logic gates and multiple levels of
intermediate interconnect. The two chains of Fig. 1 consist of n inverters with
input capacitance wi, and k inverters with input capacitances xi, respectively.
The load capacitance CL and the maximum allowed input capacitance w1 of
the first inverter are considered constant. In many practical cases, the value of
the loading capacitance and the input capacitance of the path are not known in
advance. Therefore the designer should come up with some reasonable numbers.
The input capacitance of the first gate is best described by its maximum allowed
value. In this case, the inputs of circuit under consideration can be safely driven
without slowing down preceding paths.

Following the logical-effort delay model (ginv = 1, pinv = 1.08), the path
delay of the two inverter chains (normalized by τ) is equal to:

D =
w2

w1
+

w3

w2
+ · · · + Cw + x1

wn
+

x2

x1
+ · · · + CL

xk
+ (n + k)pinv

Taking the partial derivatives of D with respect to the input capacitances wi

and xi, and setting them equal to zero, it is derived that the delay is minimized
when equations (1) and (2) are satisfied.

f1 =
w2

w1
=

w3

w2
= · · · =

Cw + x1

wn
⇒ f1 =

(
Cw + x1

w1

)1/n

(1)

f2 =
x1

wn
=

x2

x1
= · · · =

CL

xk
⇒ f2 =

(
CL

x1

)1/k

(2)
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Variables f1 and f2 represent the stage efforts of the first and the second chain
of gates, respectively. Due to the fixed wire capacitance, the gates of the two
chains when sized for minimum delay need to have unequal stage efforts. The
goal is to find f1 and f2 that minimize the total path delay, since Dmin =
nf1 + kf2 + (n + k)pinv. From (1) and (2) two new equations are derived.

fn−1
1 (f1 − f2) = Cw/w1 (3)

fn−1
1 fk+1

2 = CL/w1 (4)

The solution of the two non-linear equations cannot be performed analytically.
However we will provide tight bounds on the optimal values of f1 and f2 that
allow the approximation of the exact values very accurately. Then, the optimal
input capacitances could be directly computed from the optimal stage efforts f1

and f2 given that wi = w1 · f i−1
1 and xi = CL/fk−i+1

2 .

3.1 Bounds of Stage Efforts

When the path of Fig. 1 is sized for minimum delay, then according to (3) the
optimal value of x1 is given by the solution of x

n(k+1)
1 = wk

1 Cn
L (Cw + x1)k(n−1).

The appropriate value of x1 strongly depends on the value of Cw. Increasing
Cw, also increases the resulting value of x1. This makes sense since the delay
optimization procedure tries to increase the value of x1 in order to make the
effect of the wire capacitance a small fraction of the total. Input capacitance
x1 assumes its minimum nominal value when Cw is equal to zero. Then, both
inverter chains form a single path and the problem is treated exactly the same
way as in logical effort, briefly described in Section 2. In this case the optimal
size of x1 is x1,min = w

k/n+k
1 ·Cn/n+k

L . Based on the definition of stage efforts f1

(Eq. (1)), for every other non-zero value of the wire capacitance Cw, the value
of f1 should be increased. In this way the last gate of the first chain can better
drive both Cw and x1. Therefore, the value of f1 should always be greater than
((Cw + x1,min)/w1)1/n. Defining XL and XW as,

XL = (CL/w1)n/n+k XW = Cw/w1 (5)

and by replacing the minimum value of x1, it follows that f1 > ( XW + XL )1/n.
According to (4), in order the delay to be minimized, every increase in f1 should
be followed by a proportional decrease of the stage effort of the second path.
Hence stage effort f2 is always less than

f2 < X
1/n
L ( 1 + XW /XL )(1−n)/n(k+1) (6)

We are interested in identifying more tight bounds for the stage efforts f1 and
f2. Bounding f1 suffices since the corresponding upper and the lower bounds
of f2 can be easily derived via (4). We will use equations (7) and (8), derived
from (3), (4), which express f1 as a function of f2 in two different ways.

f1 =
(

Cw/w1 + CL/(w1 · f2
k )

)1/n

(7)

f1 = f2 + (Cw/CL) f2
k+1 (8)
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Fig. 2. Optimal and estimated input capacitances of the second chain for various final
loads and wire capacitances. The path input capacitance is assumed to be 5fF. (a) The
case with three inverters in the first chain and one in the second. (b) The corresponding
case with three inverters before and after the wire

Replacing the maximum value of f2 (Eq. (6)) to (7) and after some algebraic
manipulations a tighter lower bound of f1 can be computed as

f1 > (XW + XL · δ )1/n
, where δ = ( 1 + XW / XL )k(n−1)/n(k+1) (9)

It can be observed that the lower bound of f1 has the same format as in the case
where the wire capacitance is ignored. The only difference is the multiplicative
term δ that increases the first lower bound closer to the optimal value. The
maximum value of f1 can be calculated via (9), (4) and (8), and is given by

f1 < XW ( XW + XL · δ )(1−n)/n + X
1/n
L ( δ + XW /XL )(1−n)/n(k+1) (10)

The equivalent tight bounds of f2 are derived by replacing in (4) the minimum
and the maximum value of f1.

(
CL/(w1f1,min

n−1)
)1/(k+1)

< f2 <
(
CL/(w1f1,max

n−1)
)1/(k+1)

(11)

The proposed bounds of the stage efforts are very tight and the expected values
of f1 and f2 can be derived by computing the geometric mean of their minimum
and maximum value, i.e, the square root of the product of the two extreme
points, f∗

1 =
√

f1,minf1,max. Consider for example the case that n = 2, k = 1
and w1 = 10fF, Cw = 50fF, and CL = 100fF. Solving (3) and (4) numerically
it is derived that the minimum value of D is (8.28 + 3pinv)τ and it is achieved
when x1 = 57.2fF and the stage efforts f1 and f2 are equal to 3.27 and 1.74,
respectively. Following the proposed approach, at first we compute XL = 102/3 =
4.642, XW = 5, and δ = 1.2. Then from (9)–(11) the stage efforts f1 and f2 are
easily bounded to 3.252 < f1 < 3.291 and 1.743 < f2 < 1.754. Therefore,
the expected values of f1 and f2 are equal to 3.271 and 1.748, respectively. It is
evident that the derived stage efforts and the precomputed values match exactly.

The proposed solution is accurate irrespective of the values of the design
parameters. Figure 2 shows the value of the optimal input capacitance x1 for
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Fig. 3. (a) The delay and (b) the total input capacitance of an example path for various
values of stage effort f2. The path consists of three inverters in the first chain and one
in the second. The wire and the loading capacitance are 50 and 100fF, respectively

several configurations, derived both exactly (asterisk points) using MATLAB,
and using the proposed bounds (solid line). For both cases the maximum absolute
error is less than 0.8fF, which is negligible. Sizing for minimum delay in the
presence of intermediate wire capacitances leads to increased gate sizes. Several
energy efficient solutions can be derived with a very little loss in delay. The
proposed formulation can serve as an upper bound to the designer so as to
calculate how much he can stress the design gaining a few more picoseconds.

Fig. 3(a) illustrates the delay of an example path, when stage effort f2 is
independently increased up to 2× its minimal value. For each case, stage effort
f1 is recalculated since the input capacitance of the second chain is gradually
reduced. Each line of Fig. 3(a) refers to an input capacitance between 1fF and
the maximum allowed, that is 10fF. In all cases when varying f2 the delay loss
is negligible (almost flat lines). The form of the delay plots, proves that a wide
variety of stage efforts give delays close to the minimum. This is the reason why
simplified solutions to the problem of gate sizing with intermediate intercon-
nect [9]–[10] work well in most practical cases. However, even small differences
of the input capacitance used by the path negatively affect the delay. In Fig. 3(b)
the normalized sum of the input capacitances of all the gates of the circuit is
shown. It is evident that the gain in area and energy can be of more than 20%
when increasing f2 1.5× its minimum value. The corresponding delay loss is less
than 4%. From both figures we conclude that significant gains can be achieved
when varying the stage effort of the rear paths with almost no delay cost. In
contrast it is advantageous to use the maximum allowed input capacitance of
the path, since for smaller values the delay rapidly increases without offering
significant energy savings.

3.2 Extension to Arbitrary Logic Paths

Real circuits contain several types of logic gates, characterized by different values
of logical effort and parasitic delay. Also the gates’ output are additionally loaded
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Fig. 4. A general logic path

via branching to other paths of the circuit. All these features of arbitrary logic
paths are well handled by the method of logical effort. The delay of a general
path with intermediate wire capacitance (see Fig. 4), can be expressed as

D = g11b11
C12

C11
+ g12b12

C13

C12
+ · · ·+ g1n

Cw + b1nC21

C1n
+ g21b21

C22

C21
+ · · ·+ g2k

CL

C2k

In order the delay of the path to be minimized, the stage efforts of the first and
the second chain of gates should satisfy the following equations.

fn−1
1 (f1−f2) = GA·BA·CW

C11
and fn−1

1 fk+1
2 = (GA ·GB)·(BA·BB)· CL

C11
(12)

GA is the product of the logical efforts of the gates of first chain (up to the
intermediate wire) and GB the corresponding logical-effort product of the gates
of the second chain (after the wire capacitance). The branching efforts of the
two paths BA and BB are defined in a similar way. The new equations have the
same format as in the case of the two inverter chains (Eq. (3) and (4)). However,
the new terms on the right side of both equations contain also the products of
the logical and branching effort of each path, which resembles the definition of
path effort [2]. The main difference is that when wire capacitance is considered,
two separate definitions of the path effort are needed.

The bounds (9)–(11) can also provide the stage efforts f1 and f2 in the case
of a general logic path by substituting CL and Cw with their effective equivalents.
The effective wire and load capacitances Cw,eff and CL,eff are defined as

Cw,eff = Cw

n−1∏
i=1

(g1ib1i) and CL,eff = CL

n∏
i=1

(g1ib1i)
k∏

i=1

(g2ib2i) (13)

It should be noted that CL,eff contains the product of the logical and the branch-
ing efforts of all the gates from the source up to the end of the path, while Cw,eff

uses only the gates before the wiring capacitance, excluding the last one. In the
general case, in order to compute the input capacitances of the gates, besides
the computed stage efforts, the logical and branching effort of each gate should
be also taken into account [2].

4 Optimal Number of Stages

Having an accurate and easy-to-use method for deriving the optimal stage efforts,
the designer can easily and quickly decide the number of stages n and k that
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Fig. 5. Selecting the optimal number of stages

are better suited to drive both the wiring and the output load capacitance. It is
well known that the best number of stages for the simple chain of gates with no
intermediate interconnect capacitance is roughly equal to log4(G ·B ·CL/Cin).

When interconnect capacitances are included, it is difficult to derive a simple
metric that gives the optimal number of stages. Hence, we propose a simple
approach that uses only the derived bounds. Assume for example that Cin = 5fF,
Cw = 300fF and CL = 100fF. We would like to simply evaluate in terms of delay
the two alternatives shown in Fig. 5. For the first case the effective loading and
wiring capacitances are equal to Cw,eff = 300×gnand×4, CL,eff = 50×g2

nand×(4×
15), where in our technology gnand = 1.18 and pnand = 1.71. Therefore, using (9)–
(11) the expected stage efforts are equal to f1 = 7.75 and f2 = 3.03 and thus the
expected minimum delay, including parasitic delays, is 36τ . Following the same
procedure for the second case the expected minimum delay is 31.3τ (f1 = 3.66
and f2 = 2.1). Therefore with just a few value substitutions we conclude that
the second alternative, i.e., five stages in the first chain, is advantageous and
gives a 13% faster design. When dealing with large intermediate wire loads it is
better to add more stages before the wire load so as to minimize its effect.

5 Handling Multiple Levels of Interconnect

In cases that more than two logic paths are separated by fixed interconnect
capacitances, the optimal stage effort of each path can be computed using a
simple repetitive procedure. In practice, no more than three or four stages of
considerable intermediate wire capacitances exist before some form of latching
occurs to the outputs of the combinational logic. The proposed method aims in
closely approximating the required stage effort of the first chain of gates and
then recursively compute the efforts of the remaining gates so as delay to be
minimized. Consider for example the path shown in Fig 6. Differentiating the
delay of the path with respect to the input capacitances of the gates we get that

f1 (f1 − f2) =
CA

Cin
, f1f2 (f2 − f3) =

CB

Cin
, and f1f2f

2
3 =

CL

Cin
. (14)

Solving exactly the three non-linear equations gives that the minimum delay
equals to (12.45 + 3pinv)τ and the optimal stage efforts f1, f2, and f3 are equal
to 4.63, 2.47, and 0.72, respectively.
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Fig. 6. Steps of the recursive procedure that handles multiple levels of intermediate
interconnect

At first, we make the simplifying assumption that f1 = f2. The assumption
that the gates of the first and the second chain have the same effort can be
satisfied in two ways. The first one is to ignore the first wiring stage, i.e, CA is
zero [10]. As shown in Section 3, this approach clearly underestimates the input
capacitance of the gates closer to the end of the path. In the proposed method
we choose an alternative approach. Adding the two first equations of (14) and
setting stage effort f1 equal to f2 it is derived that f2

1 (f1 − f3) = (CA + CB)/w1

and f2
1 f2

3 = CL/w1. The new equations can be translated to the equivalent
circuit shown in step 2 of Fig. 6, where the effect of the first wire is added to
the next level. The resulting path can be easily sized following the procedure
described in Section 3. Computing the bounds of f1 and f3 it is derived that for
minimum delay the input capacitance of the last stage should be y = 41fF.

Since we have one first approximation of the input capacitance of the last
stage we continue with step 3, where the loading capacitance is replaced by the
combined effect of CB and the value derived in the first step. Substituting the
new parameters to (9)–(11) we get that the input capacitance of the second chain
x should be equal to 57fF and the stage effort of the first chain is f1 = 4.628.

At this point we assume that the stage effort of the first chain has been
correctly approximated. In fact this is true in our example. Although this seems a
rough estimate, it is a valid assumption. According to the form of equations (14)
when increasing the stage effort of a chain closer to the input, the following
chains immediately require a smaller stage effort. In this way, when one chain
gets a near optimal value all the other stage efforts are simultaneously bounded
closer to their minimum values too. Continuing with our example, after fixing
the input capacitance of the second chain to 57fF, the remaining path needs to
be sized (step 4). The resulting stage efforts f2 and f3 are equal to 2.48 and
0.725 while the new input capacitance of the last chain equals y = 41.3fF. Since
the initial approximation of y ∼ 41fF is roughly equal to the final value, the
procedure stops since all stage efforts have converged closely to their minimum
values. It can be verified that the computed stage efforts are almost exact.

We have experimentally verified for 1000 randomly generated paths that only
one iteration suffices to predict the minimum delay of the circuit with no more
than 2% error. If the initial and the final approximation differ significantly one
more backward iteration is required to get the exact value. The new iteration
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should start with step 3, where the output load is increased by the new estimated
capacitance. In cases of more intermediate interconnect levels the recursive pro-
cedure works exactly the same way. In each step all preceding wiring capacitances
are added to the wiring capacitance closer to the output and new estimates are
computed until the stage effort of the first path converges to its optimal value.

6 Conclusions

A simple and accurate method for performing gate sizing with intermediate
fixed wire capacitances has been presented in this paper. Wiring characteristics
are predominant in very-deep submicron technologies, and their effects need to
be analyzed and solved early in the design cycle. Therefore, the designer can
truly benefit by the adoption of the proposed approach. The development of a
practical framework that would treat in a unified manner both wire resistance
and capacitance during gate sizing is a subject of ongoing research.
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