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Abstract. Parallel-prefix adders offer a highly-efficient solution to the
binary addition problem. Several parallel-prefix adder topologies have
been presented that exhibit various area and delay characteristics. How-
ever, no methodology has been reported so far that directly aims to the
reduction of switching activity of the carry-computation unit. In this
paper by reformulating the carry equations, we introduce a novel bit-
level algorithm that allows the design of power-efficient parallel-prefix
adders. Experimental results, based on static-CMOS implementations,
reveal that the proposed adders achieve significant power reductions
when compared to traditional parallel-prefix adders, while maintaining
equal operation speed.

1 Introduction

Binary addition is one of the primitive operations in computer arithmetic. VLSI
integer adders are critical elements in general-purpose and DSP processors since
they are employed in the design of arithmetic-logic units, in floating-point arith-
metic datapaths, and in address generation units. When high operation speed
is required, tree-like structures such as parallel-prefix adders are used. Parallel-
prefix adders are suitable for VLSI implementation since they rely on the use of
simple cells and maintain regular connections between them. The prefix struc-
tures allow several tradeoffs among the number of cells used, the number of
required logic levels and the cells’ fanout [1].

The high-operation speed and the excessive activity of the adder circuits
in modern microprocessors, not only lead to high power consumption, but also
create thermal hotspots that can severely affect circuit reliability and increase
cooling costs. The presence of multiple execution engines in current processors
further aggravates the problem [2]. Therefore, there is a strong need for designing
power-efficient adders that would also satisfy the tight constraints of high-speed
and single-cycle operation.

Although adder design is a well-researched area, only a few research ef-
forts have been presented concerning adders’ performance in the energy-delay
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space [3]–[5]. On the other hand, several optimization approaches have been pro-
posed that try to reduce the power consumption of the circuit, either by trading
gate sizing with an increase in the maximum delay of the circuit [6], or by using
lower supply voltages in non-critical paths [7]. The novelty of the proposed ap-
proach is that it directly reduces the switching activity of the carry-computation
unit via a mathematical reformulation of the problem. Therefore its applica-
tion is orthogonal to all other power-optimization methodologies. The proposed
parallel-prefix adders are compared to the fastest prefix structures proposed for
the traditional definition of carry equations using static CMOS implementations.
In all cases the proposed adders are equally fast and can achieve power reduc-
tions of up to 11%, although they require around 2.5% larger implementation
area. Additionally, for an 1.5% increase in the maximum delay of the circuit,
power reductions of up to 17% are reported.

The remainder of the paper is organized as follows. Section 2 describes the in-
tuition behind the proposed approach. In Section 3 some background information
on parallel-prefix addition are given, while Section 4 introduces the low-power
adder architecture. Experimental results are presented in Section 5 and finally
conclusions are drawn in Section 6.

2 Main Idea

Assume that A = an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0 represent the two
numbers to be added, and S = sn−1sn−2 . . . s0 denotes their sum. An adder can
be considered as a three-stage circuit. The preprocessing stage computes the
carry-generate bits gi, the carry-propagate bits pi, and the half-sum bits hi, for
every i, 0 ≤ i ≤ n − 1, according to:

gi = ai · bi pi = ai + bi hi = ai ⊕ bi, (1)

where ·, +, and ⊕ denote the logical AND, OR and exclusive-OR operations re-
spectively. The second stage of the adder, hereafter called the carry-computation
unit, computes the carry signals ci, using the carry generate and propagate bits
gi and pi, whereas the last stage computes the sum bits according to:

si = hi ⊕ ci−1. (2)

The computation of the carries ci can be performed in parallel for each bit
position 0 ≤ i ≤ n − 1 using the formula

ci = gi +
i−1∑

j=−1




i∏

k=j+1

pk



 gj , (3)

where the bit g−1 represents the carry-in signal cin. Based on (3), each carry ci

can be written as
ci = gi + Ki, (4)
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where Ki =
∑i−1

j=−1

(∏i
k=j+1 pk

)
gj . It can be easily observed from (4) that the

switching activity of the bits ci equally depends on the values assumed by the
carry-generate bits gi and the term Ki.

In order to quantify the difference between the switching activity of the bits
Ki and the carries ci, an experiment was performed. In particular, a set of 5000
random vectors were generated using Matlab and the switching activity of the
bits ci and Ki was measured for the case of an 8-bit adder. Figure 1 shows the
measured switching activity for each bit position. It is evident that the bits Ki

have reduced switching activity that range from 5% to 7.5%.
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Fig. 1. Switching activity of the bits Ki and the traditional carries ci.

The direct computation of the bits Ki using existing parallel-prefix methods
is possible. However, it imposes the insertion of at least one extra logic level
that would increase the delay of the circuit. Therefore our objective is to design
a carry-computation unit that will compute the bits Ki instead of the bits ci,
without any delay penalty, and will benefit from the inherent reduced switching
activity of the bits Ki.

3 Background on Parallel-Prefix Addition

Several solutions have been presented for the carry-computation problem. Carry
computation is transformed to a prefix problem by using the associative operator
◦, which associates pairs of generate and propagate bits and is defined, according
to [8], as follows,

(g, p) ◦ (g′, p′) = (g + p · g′, p · p′). (5)

Using consecutive associations of the generate and propagate pairs (g, p), each
carry is computed according to

ci = (gi, pi) ◦ (gi−1, pi−1) ◦ . . . ◦ (g1, p1) ◦ (g0, p0). (6)
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Fig. 2. The Kogge-Stone and Han-Carlson parallel-prefix structures.

Representing the operator ◦ as a node • and the signal pairs (g, p) as the
edges of a graph, parallel-prefix carry-computation units can be represented
as directed acyclic graphs. Figure 2 presents the 16-bit parallel-prefix adders,
proposed by Kogge-Stone [9] and Han-Carlson [10], where white nodes ◦ are
buffering nodes. A complete discussion on parallel-prefix adders can be found
in [1] and [11].

4 The Proposed Design Methodology

In the following we will present via an example the parallel-prefix formulation
of the computation of the bits Ki. Assume for example the case of K5. Then
according to (4) it holds that

K5 = p5 · g4 + p5 · p4 · g3 + p5 · p4 · p3 · g2 + p5 · p4 · p3 · p2 · g1

+ p5 · p4 · p3 · p2 · p1 · g0

+ p5 · p4 · p3 · p2 · p1 · p0 · cin. (7)

Based on the definition (1) it holds that pi · gi = gi. Then equation (7) can be
written as

K5 = p5 · p4 · (g4 + g3) + p5 · p4 · p3 · p2 · (g2 + g1)
+ p5 · p4 · p3 · p2 · p1 · p0 · (g0 + cin). (8)

Assuming that
Gi = gi + gi−1 (9)

and
Pi = pi · pi−1, (10)
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with G0 = g0 + cin and P0 = p0, then equation (8) is equivalent to

K5 = P5 · G4 + P5 · P3 · G2 + P5 · P3 · P1 · G0. (11)

The computation of K5 can be transformed to a parallel-prefix problem by in-
troducing the variable G∗

i , which is defined as follows:

G∗
i = Pi · Gi−1 (12)

and G∗
0 = p0 · cin. Substituting (12) to (11) we get

K5 = G∗
5 + P5 · G∗

3 + P5 · P3 · G∗
1, (13)

which can be equivalently expressed, using the ◦ operator as

K5 = (G∗
5, P5) ◦ (G∗

3, P3) ◦ (G∗
1, P1). (14)

In case of an 8-bit adder the bits Ki can be computed by means of the prefix
operator ◦ according to the following equations:

K7 = (G∗
7, P7) ◦ (G∗

5, P5) ◦ (G∗
3, P3) ◦ (G∗

1, P1)
K6 = (G∗

6, P6) ◦ (G∗
4, P4) ◦ (G∗

2, P2) ◦ (G∗
0, P0)

K5 = (G∗
5, P5) ◦ (G∗

3, P3) ◦ (G∗
1, P1)

K4 = (G∗
4, P4) ◦ (G∗

2, P2) ◦ (G∗
0, P0)

K3 = (G∗
3, P3) ◦ (G∗

1, P1)
K2 = (G∗

2, P2) ◦ (G∗
0, P0)

K1 = (G∗
1, P1)

K0 = (G∗
0, P0)

It can be easily derived by induction that the bits Ki of the odd and the
even-indexed bit positions can be expressed as

K2k = (G∗
2k, P2k) ◦ (G∗

2k−2, P2k−2) ◦ . . . ◦ (G∗
0, P0) (15)

K2k+1 = (G∗
2k+1, P2k+1) ◦ (G∗

2k−1, P2k−1) ◦ . . . ◦ (G∗
1, P1) (16)

Based on the form of the equations that compute the terms Ki, in case of
the 8-bit adder, the following observations can be made. At first the number of
terms (G∗

i , Pi) that need to be associated is reduced to half compared to the
traditional approach, where the pairs (g, p) are used (Eq. (6)). In this way one
less prefix level is required for the computation of the bits Ki, which directly leads
to a reduction of 2 logic levels in the final implementation. Taking into account
that the new preprocessing stage that computes the pairs (G∗

i , Pi) requires two
additional logic levels compared to the logic-levels needed to derive the bits
(g, p) in the traditional case, we conclude that no extra delay is imposed by the
proposed adders. Additionally, the terms Ki of the odd and the even-indexed
bit positions can be computed independently, thus directly reducing the fanout
requirements of the parallel-prefix structures.
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Fig. 3. The architecture of the proposed parallel-prefix adders.

The computation of the bits Ki, instead of the normal carries ci, complicates
the derivation of the final sum bits si since in this case

si = hi ⊕ ci−1 = hi ⊕ (gi−1 + Ki−1) . (17)

However, using the Shannon expansion theorem on Ki−1, the computation of
the bits si can be transformed as follows

si = Ki−1 · (hi ⊕ gi−1) + Ki−1 · hi . (18)

Equation (18) can be implemented using a multiplexer that selects either hi or
(gi−1 ⊕ hi) according to the value of Ki−1. The notation x denotes the com-
plement of bit x. Taking into account that in general a XOR gate is of almost
equal delay to a multiplexer, and that both hi and (gi−1 ⊕ hi) are computed in
less logic levels than Ki−1, then no extra delay is imposed by the use of the bits
Ki for the computation of the sum bits si. The carry-out bit cn−1 is produced
almost simultaneously with the sum bits using the relation cn−1 = gn−1 +Kn−1.

The architecture of the proposed adders is shown in Figure 3, and their design
is summarized in the following steps.

– Calculate the carry generate/propagate pairs (gi, pi) according to (1).
– Combine the bits gi, pi, gi−1, and pi−1 in order to produce the intermediate

pairs (G∗
i , Pi), based on the definitions (9), (10), and (12).

– Produce two separate prefix-trees, one for the even and one for the odd-
indexed bit positions that compute the terms K2k and K2k+1 of equa-
tions (15) and (16), using the pairs (G∗

i , Pi). Any of the already known
parallel-prefix structures can be employed for the generation of the bits Ki,
in log2 n − 1 prefix levels.

In Figure 4 several architectures for the case of a 16-bit adder are presented,
each one having different area, delay and fanout requirements. It can be easily



254 G. Dimitrakopoulos et al.

(G15, P15) K15

K14
K13
K12
K11
K10

K9
K8
K7
K6
K5
K4
K3

K2
K1
K0

(G14, P14)

*

*

(G13, P13)
*

(G12, P12)
*

(G11, P11)
*

(G10, P10)
*

(G9, P9)
*

(G8, P8)
*

(G7, P7)
*

(G6, P6)
*

(G5, P5)
*

(G4, P4)
*

(G3, P3)
*

(G2, P2)
*

(G1, P1)
*

(G0, P0)
*

(G15, P15) K15

K14
K13
K12
K11
K10

K9
K8
K7
K6
K5
K4
K3

K2
K1
K0

(G14, P14)

*

*

(G13, P13)
*

(G12, P12)
*

(G11, P11)
*

(G10, P10)
*

(G9, P9)
*

(G8, P8)
*

(G7, P7)
*

(G6, P6)
*

(G5, P5)
*

(G4, P4)
*

(G3, P3)
*

(G2, P2)
*

(G1, P1)
*

(G0, P0)
*

(a) (b)

(G15, P15) K15

K14
K13
K12
K11
K10

K9
K8
K7
K6
K5
K4
K3

K2
K1
K0

(G14, P14)

*

*

(G13, P13)
*

(G12, P12)
*

(G11, P11)
*

(G10, P10)
*

(G9, P9)
*

(G8, P8)
*

(G7, P7)
*

(G6, P6)
*

(G5, P5)
*

(G4, P4)
*

(G3, P3)
*

(G2, P2)
*

(G1, P1)
*

(G0, P0)
*

(G15, P15) K15

K14
K13
K12
K11
K10

K9
K8
K7
K6
K5
K4
K3

K2
K1
K0

(G14, P14)

*

*

(G13, P13)
*

(G12, P12)
*

(G11, P11)
*

(G10, P10)
*

(G9, P9)
*

(G8, P8)
*

(G7, P7)
*

(G6, P6)
*

(G5, P5)
*

(G4, P4)
*

(G3, P3)
*

(G2, P2)
*

(G1, P1)
*

(G0, P0)
*

(c) (d)

Fig. 4. Novel 16-bit parallel-prefix carry computation units.

verified that the proposed adders maintain all the benefits of the parallel-prefix
structures, while at the same time offer reduced fanout requirements. Figure 4(a)
presents a Kogge-Stone-like parallel-prefix structure, while in Figure 4(c) a Han-
Carlson-like scheme is shown. It should be noted that in case of the proposed
Han-Carlson-like prefix tree only the terms Ki of the odd-indexed bit positions
are computed. The remaining terms of the even-indexed bit positions are com-
puted using the bits Ki according to

Ki+1 = pi+1 · (gi + Ki), (19)

which are implemented by the grey cells of the last prefix level.
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Fig. 5. The area and delay estimates for the traditional and the proposed 64-bit adders
using a Kogge-Stone [9] and Han-Carlson [10] parallel-prefix structures.

5 Experimental Results

The proposed adders are compared against the parallel-prefix structures pro-
posed by Kogge-Stone [9] and Han-Carlson [10] for the traditional definition of
carry equations (Eq. (6)). Each 64-bit adder was at first described and simulated
in Verilog HDL. In the following, all adders were mapped on the 0.25µm VST-25
technology library under typical conditions (2.5V, 25oC), using the Synopsys�

Design Compiler. Each design was recursively optimized for speed targeting the
minimum possible delay. Also, several other designs were obtained targeting less
strict delay constraints.

Figure 5 presents the area and delay estimates of the proposed and the tra-
ditional parallel-prefix adder architectures. It is noted that the proposed adders
in all cases achieve equal delay compared to the already known structures with
only a 2.5% in average increase in the implementation area. Based on the data
provided by our technology library, it is derived that the delay of 1 fanout-4
(FO4) inverter equals to 120 − 130ps, under typical conditions. Thus the ob-
tained results fully agree with the results given in [12] and [5], where the delay
of different adder topologies is calculated using the method of Logical Effort.

In Figure 6 the power consumption of the proposed and the traditional
Kogge-Stone 64-bit adders are presented versus the different delays of the cir-
cuit. It can be easily observed that the proposed architecture achieves power
reductions that range between 9% and 11%. All measurements were taken using
PrimePower of Synopsys toolset after the application of 5000 random vectors.
It should be noted that although the proposed adders require slightly larger
implementation area, due to the addition of the extra multiplexers in the sum
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Fig. 6. Power and delay estimates for the traditional and the proposed 64-bit adders
using a Kogge-Stone [9] parallel-prefix structure.
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Fig. 7. Power and delay estimates for the traditional and the proposed 64-bit adders
using a Han-Carlson [10] parallel-prefix structure.

generation unit, they still offer power efficient designs as a result of the reduced
switching activity of the the novel carry-computation units. Similar results are
obtained for the case of the 64-bit Han-Carlson adders, as shown in Figure 7.

Finally, since the application of the proposed technique is orthogonal to all
other power optimization methods, such as gate sizing and the use of multiple
supply voltages, their combined use can lead to further reduction in power dissi-
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pation. Specifically, the adoption of the proposed technique offers on average an
extra 10% gain over the reductions obtained by the use of any other circuit-level
optimization.

6 Conclusions

A systematic methodology for the design of power-efficient parallel-prefix adders
has been introduced in this paper. The proposed adders preserve all the bene-
fits of the traditional parallel-prefix carry-computation units, while at the same
time offer reduced switching activity and fanout requirements. Hence, high-speed
datapaths of modern microprocessors can truly benefit from the adoption of the
proposed adder architecture.
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