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Abstract—Early estimation of the peak power consumption of
a system under development is crucial in assessing the design’s
reliability and thermal profile, and for benchmarking various
architectural options and chip-level power management features.
In this paper, we present a versatile power-virus generation
technique for Networks-on-Chip (NoC), which allows the designer
to quantify the realistically attainable peak power consumption,
in order to efficiently guide the design process. The proposed
PowerMax methodology generates appropriate network traffic
patterns that cause peak power consumption within the NoC.
More importantly, PowerMax is a fully automated high-level
methodology that can be applied to any network topology
and any routing algorithm. The proposed technique maximizes
both the network utilization and the data switching activity,
thereby causing, on average, 5.5× higher power consumption
than synthetic traffic patterns with random behavior. PowerMax
can be used as a stand-alone tool to test the power characteristics
of the NoC, or it can be embedded in other system-level power-
virus applications.

I. INTRODUCTION

Technology scaling has enabled digital system designs with
billions of transistors integrated on a single chip. Besides the
abundance of resources, which has been the driving force
behind the multicore archetype, key (micro-)architectural deci-
sions are dictated by power constraints. Excessive power dis-
sipation increases packaging/cooling costs, reduces battery life
in mobile devices, and adversely affects hardware reliability,
primarily due to elevated temperatures [1]. The increasingly
stringent requirement to adhere to a given power budget has
rendered power consumption a first-class design constraint [2].
Hence, it is imperative for system architects to understand and
accurately quantify their design’s power usage from the early
stages of the design process [3].

One particular salient attribute is of paramount importance:
the peak (i.e., worst-case) power consumption [4], [5]. Assum-
ing a fake scenario whereby all circuit nodes switch simultane-
ously will inevitably result in an overly pessimistic estimate.
Instead, it is crucial to accurately quantify the realistically
attainable peak power consumption, in order to efficiently
guide the design process. Note that both the system’s max-
imum performance and implementation costs (power delivery,
packaging, and cooling) are directly impacted by this worst-
case power consumption. A pessimistic peak power estimate
will unnecessarily curtail performance, while an optimistic
estimate could potentially lead to reliability problems.

The accurate identification of worst-case power consump-
tion is extremely challenging, especially as chips become
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more complex. To further compound the problem, the worst-
case power usage of a system is not simply the sum of the
maximum power of each component, due to under-utilization
and contention for shared resources. Hence, the peak power
consumption must be estimated using a stimulus that is re-
alistic and resides within the functionally feasible workload
space of the system under evaluation. Typically, designers rely
on hand-crafted, custom-made power viruses (also referred to
as “stressmarks,” or “powermarks”) to estimate a system’s
peak power consumption [6], [7], [8]. However, the task of
manually constructing a program for a specific architecture
is very cumbersome and error-prone. Most importantly, the
generated virus is not guaranteed to yield the maximum
possible power usage. Thus, automatic approaches to the
generation of effective power viruses are highly desirable.

Power viruses have been explored within the realm of CPUs,
main memory, and off-chip I/O. One notable absentee is the
on-chip network; there is currently no methodology to identify
the peak power consumption in the system’s Network-on-Chip
(NoC) backbone. The NoC has become the de facto communi-
cation medium in multi-core setups, due to its modularity and
scalability traits. Being an integral part of the system, the NoC
provides connectivity across the chip, and it synergistically
contributes to overall system performance [9]. Given the
NoC’s functional/performance criticality, it is obvious that
peak-power analysis cannot ignore such an elemental actor.

This paper presents, for the first time (to the best of our
knowledge), a fully automated high-level methodology to
generate appropriate traffic patterns that cause peak power
consumption within the NoC, by leveraging the intertwined
and complementary roles of high network utilization and
data switching activity. The proposed framework, aptly called
PowerMax, can generate a peak-power “traffic virus” for any
network topology and any routing algorithm. The generated
traffic patterns are realistic – i.e., feasible for the particular
topology and routing algorithm – and ensure that the resulting
peak power consumption accurately reflects the potential of
the underlying NoC configuration.

The proposed methodology is two-pronged; it combines
the contributions of high network utilization – through the
generation of appropriate traffic patterns – and data switching
activity, in a user-controllable manner. The interaction of these
two facets is non-trivial, and it is a key feature of the problem
formulation. For example, very high network utilization alone
is not enough to generate peak power, because, if the data
payloads happen to be “favorable” (i.e., yielding low switching
activity), the NoC power consumption may be quite low.
Moreover, high network utilization is often confused with low978-1-5090-0172-9/15/$31.00 c⃝2015 IEEE



saturation throughput, i.e., highly congested networks. How-
ever, high congestion may severely affect certain NoC regions,
but may leave other regions under-utilized. Hence, formulating
the generic problem of peak power consumption within the
NoC involves the intricate interaction of all aforementioned
nuances, which is one of the key contributions of PowerMax.

PowerMax can be used within multiple contexts: (1) as a
stand-alone tool to test the peak power characteristics of a
NoC under development; (2) as a benchmark to assess low-
power NoC architectures [10]; and (3) in conjunction with
other power viruses that stress other components of the system,
when evaluating system-level peak power consumption.

Extensive and detailed experimental evaluations using vari-
ous NoC topologies and routing algorithms validate the effec-
tiveness of the proposed methodology. PowerMax is demon-
strated to cause an average of 5.5× higher power consumption
than randomly selected traffic patterns, or patterns that result
in high saturation throughput.

II. PROBLEM FORMULATION

The dynamic power consumption of a NoC that operates
at a pre-determined clock frequency and voltage is directly
proportional to (a) the capacitance of every gate-level node of
the circuit, and (b) the switching activity of these nodes [11].
NoC components also consume static/leakage power, but this
becomes relevant only in idle components. The goal of any
power virus is to cause full utilization of all components,
thereby rendering static/leakage power irrelevant, since no
components are left idle to consume static/leakage power. Con-
sequently, leakage power is ignored when trying to discover a
realistic peak-power consumption scenario.

A. The interplay of contention and data switching activity
The peak power consumption of a NoC jointly depends on

(1) the network component utilization, and (2) the data switch-
ing activity caused by the traffic flowing inside the NoC every
cycle. A network component – e.g., the links, the buffers, the
crossbar, etc. – is considered utilized, as long as it performs a
useful operation in each cycle. The amount of power consumed
is directly proportional to the switching activity caused by the
bits of the traversing flits. For example, let us assume a NoC
link that transfers useful flits in every clock cycle, but those
flits happen to have almost the same bit-level profile. In such a
case, even though the experienced utilization is maximized, the
actual power consumption remains very low, due to minimal
switching activity. The same holds for most NoC components
like the router’s buffers and the multiplexers of the crossbar.

The power consumption of every NoC component – consid-
ering both utilization and data switching activity – is directly
related to the effect of contention and multiplexing. Whenever
at least two flows compete for the same resource, e.g., a NoC
link through a router’s output port, they will possibly gain
access to the shared resource in a time-multiplexed manner,
depending on the employed arbitration policy. In this case,
there is no way to predict the data switching profile seen at
the output of the shared resource, since the output data stream
is the result of multiplexing-in-time of two (or more) flows
that are unrelated in terms of their data properties.

An example of the unpredictability of the output data
stream is shown in Fig. 1, assuming two 4-bit-wide data flows

Fig. 1. The process of multiplexing different data flows “corrupts” the data
switching profile of each individual incoming data stream, and can possibly
lead to very low dynamic power consumption.

traveling through a multiplexer. Although the two incoming
streams exhibit considerable switching activity when viewed
independently of each other, the arbitrated traffic that passes to
the output of the multiplexer exhibits very few bits switching
in every clock cycle.

Additionally, in NoCs that consist of routers with equal
numbers of input and output ports (i.e., the most common
case in the majority of designs), contention for the same output
port inevitably leaves at least another output port unutilized.
This implies that at least one NoC output link, together with
the input buffers at the end of said link (in the downstream
router), are not used for a certain number of cycles, which
directly translates to zero dynamic power.

Therefore, in order to guarantee that (a) all NoC components
will be fully utilized in each cycle, and (b) the data switching
activity caused within each component is directly controllable
by the sources of the NoC (not affected by intermediate
contention/multiplexing points), we need to derive contention-
free traffic patterns, which utilize all network links. Full-link
utilization effectively causes full buffer and crossbar utilization
in each NoC router, thus approaching, as much as possible,
the realistically attainable peak power of the NoC (when
driven by appropriate data). The desired traffic patterns would
allow the network endpoints (sources/destinations) to transmit
and receive a new flit every cycle (100% throughput), while
controlling the data switching profile of the injected traffic
and avoiding the unpredictability caused by multiplexing of
unrelated data streams.

B. Permutation traffic, contention, and network utilization

To identify contention-free traffic patterns, we start by
removing contention at the endpoints of the network, i.e.,
the traffic injected by each source is directed to a different
destination. Therefore, out of all possible traffic patterns, we
need to identify those permutation traffic patterns where (a)
traffic is exchanged between unique source-destination pairs,
(b) no flow contention is caused inside the network, and (c)
all NoC links are simultaneously fully utilized.

An example of such a permutation traffic pattern is shown
in Fig. 2(a) for a 3×3 2D mesh NoC, where the paths
of the injected flows are determined by the XY routing
algorithm. The terminal nodes are depicted as circles in the
figure. The numbers beneath each terminal node indicate
the source/destination pair of the flow originating from that
terminal node, e.g., the “1→8” designation below node 1
indicates that the traffic generated at this node goes to node
8. Each source/destination pair is unique. The selected traffic
pattern allows for full NoC component utilization (injection
and ejection throughput can be 100%), while, at the same
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Fig. 2. Three different permutation traffic patterns in a 3× 3 2D mesh: (a) A pattern that causes maximum NoC component utilization, which yields peak
power consumption (i.e., the desired pattern); (b) A pattern that leaves certain links idle, even though it achieves full injection/ejection throughput and avoids
contention; (c) A pattern that merely congests certain network channels, while leaving parts of the NoC unutilized.

time, the sources can control, from outside the network, the
data switching activity inside the NoC.

On the contrary, the permutation traffic shown in Fig. 2(b)
leaves 4 links idle (links 6→3, 3→6, 5→8, and 8→5), even
though it achieves full injection/ejection throughput, without
contention, on the remaining links.

Peak power consumption should not be confused with net-
work congestion and worst-case throughput. The permutation
traffic pattern shown in Fig. 2(c) triggers the worst-case
throughput in this NoC. The traffic that is produced using
the method in [12], maximizes the load on certain channels,
in order to stress the network and highlight its worst-case
throughput. However, even though the NoC is congested, many
portions of it remain under-/un-utilized, and exhibit lower
power consumption. For example, the 1→0 and 4→5 links
are not used at all. Moreover, some of the utilized links
are not fully utilized, i.e., they do not receive a flit every
cycle. For instance, the 0→1 link is only used with 50%
throughput, because the red flow going from node 0 to node
8 encounters contention in the downstream node 1, and is
forced to share the 1→2 link with the dark green flow going
from node 1 to node 5. Since the red flow only uses 50% of
the bandwidth of the 1→2 link, the throughput of the 0→1
link also falls to 50%, i.e., it remains idle for 50% of the
time. Hence, the approach of simply triggering worst-case
NoC throughput results in both idle links, and links that are
not fully utilized, due to downstream contention. Once a link
is un-/under-utilized, the router components connected to the
link’s endpoints (multiplexers, pipeline registers, flow control
logic, and input buffers) also remain idle, or under-utilized.

By computing the average link utilization in the network,
one can get a feeling of how much the corresponding traffic
patterns stress the network, and how close they can drive it to
its peak power consumption. For example, the traffic patterns
in Figs. 2(b) and (c) produce an average link utilization of
83% and 68%, respectively, counting also the utilization of
the links connecting the terminal nodes with the network.

C. Number of appropriate permutation traffic patterns
The permutation traffic patterns that yield extremely high

link utilization constitutes an extremely small subset of the
entire set of possible traffic patterns. To gain insight as to
how small this subset is, we performed two experiments.

In the first case, we produced all ≈ 135× 103 permutation
traffic patterns for a 9-node 3×3 2D mesh (self traffic is
not allowed), we computed the utilization of each link (or,

equivalently, the channel load [12]), and then the average link
utilization in the network, when traffic is routed under XY
routing. The distribution of all permutation traffic patterns, in
terms of achieved average network link utilization, is depicted
in Fig. 3(a). For the 3×3 2D mesh, only 648 permutation traffic
patterns (0.5% of the total) can achieve full link utilization.

Fig. 3. The distribution of permutation traffic patterns, in terms of achieved
average network link utilization. (a) All permutations for a 3×3 2D mesh,
and (b) 108 randomly generated permutation traffic patterns for an 8×8 2D
mesh network. In both cases, XY routing is assumed.

In the second case, we assumed a larger 64-node network,
organized as an 8×8 2D mesh. In this case, we produced 10
million randomly-generated traffic patterns out of ≈ 1.98 ×
1087 possible ones. As shown in Fig. 3(b), the majority of the
permutation traffic patterns cause an average link utilization
of about 50%, while the number of traffic patterns that yield
link utilizations above 80% (desired when trying to cause
peak power consumption) is quite low (only 147 out of 10
million were found). Obviously, the random generation of
traffic patterns is neither efficient, nor effective; out of the
10 million randomly generated traffic patterns, not a single
one was found to yield 100% (or even 90%) link utilization.

III. THE POWERMAX METHODOLOGY

PowerMax identifies permutation traffic patterns that route
packets from any source to a different destination. The paths
selected by PowerMax are legal with respect to the employed
routing algorithm, and they utilize all network links of the
network. At the same time, the injected packet flows are
always conflict-free, i.e., they never compete with each other
for any network resource.

A. Enhanced channel dependency graph
The proposed algorithm is applied to the network’s Channel

Dependency Graph (CDG). Every vertex of the CDG corre-
sponds to a link in the network, and every edge of the CDG



corresponds to an allowed network turn (moving from one
link to another through a NoC router). Cycles in the CDG
are a sign for routing deadlocks, where in-flight packets are
holding onto a set of network resources in a cyclic manner,
thereby inhibiting routing progress indefinitely [13]. A routing
algorithm is responsible to break cyclic dependencies, while
still preserving the connectivity among all network nodes. To
achieve this dual objective, the routing algorithm restricts the
turns that a packet can make in the network (edge removals
from the CDG) which in effect transforms the CDG to a cycle-
free graph [14], [15].

Fig. 4. (a) The channel dependency graph (CDG) of a 3×3 2D mesh,
with certain turns across network links removed, following the XY routing
algorithm. (b) An abstract form of the enhanced CDG, which includes
additional pseudo-edges across sink and source nodes, and self-loop edges
connecting the source and the sink node of the same terminal.

An example CDG for a 3×3 2D mesh, derived after
applying the turn restrictions of the XY routing algorithm, is
shown in Fig. 4(a). The CDG in said figure includes a vertex
for each link in the network (black vertices), including the
links that connect network routers to the injection and ejection
ports of the terminal nodes (white vertices). Another routing
algorithm would have used a different set of edges in the CDG,
depending on the algorithm’s properties [16].

In PowerMax, the cycle-free CDG is enhanced with ad-
ditional “pseudo-edges,” which connect all the sink nodes
to all the source nodes of the network. Self-loop edges are
also added (local 180o turns), which connect the source and
the sink node of the same terminal. An abstract enhanced
CDG that includes pseudo-edges and self-loops is depicted in
Fig. 4(b). The enhanced CDG is no longer cycle free, and any
possible cycle should pass – by construction – through the
added pseudo-edges. Our goal is to discover a Hamiltonian
path in the enhanced CDG, which begins from any source
node and visits each and every vertex of the enhanced CDG
exactly once, before arriving at any sink node.

B. Discovering a Hamiltonian path in the enhanced CDG

A Hamiltonian path in the enhanced CDG starts from a
source vertex, moves through an arbitrary number of vertices
of the “core CDG” (see Fig. 4(b)), and at some point it reaches
a sink node. A path cannot evolve indefinitely in the core CDG
without visiting a sink node, since the core CDG is cycle-free
by construction (the turn restrictions of the routing algorithm
impose this feature). Once at a sink node, the Hamiltonian
path inevitably moves back into the core CDG via a source
node, after using one of the available pseudo-edges (which
connect all sink nodes to all source nodes).

By splitting the Hamiltonian path every time a pseudo-
edge is encountered, PowerMax derives multiple sub-paths
that connect distinct source and destination pairs. Due to the
properties of a Hamiltonian path, each vertex of the CDG
appears in only one of those sub-paths. Equivalently, each link
of the network will be used to transfer the flits of only a single
flow across the network, thereby allowing for conflict-free data
transfer across a source and a sink node. Furthermore, since
the Hamiltonian path covers all vertices of the CDG, it is
guaranteed that all links of the network will receive actual
traffic, thus yielding full utilization of the NoC components.

The discovery of a Hamiltonian path is an NP-complete
problem, solved via path enumeration and backtracking [17].
At each recursive step, the algorithm examines all outgoing
edges of an already-visited vertex. When an edge does not
lead to a Hamiltonian path, the algorithm backtracks and tries
another outgoing edge. In order to avoid redundant backtracks
(arising from examining outgoing edges in a random order),
we select to follow the implicit order imposed by the routing
algorithm. The connection between link ordering and routing
algorithms is described in detail in [13], [18]. For example, in a
2D mesh with XY routing, X+ turns are visited first, followed
by X-, Y+, and Y- turns. In other topologies, a different order
fits best. For example, in a tree or a random topology that
follows up/down routing, up edges are examined before down
edges. In this way, the recursive algorithm starts augmenting
the Hamiltonian paths by including vertices that “match” the
path selection process of the routing algorithm.

Fig. 5. The Hamiltonian path for a 5-ary 1-mesh, as derived by PowerMax via
pseudo-edges and self-loops. The path is then transformed into non-conflicting
flows, through the removal of self-loops and pseudo-edges.

When the vertices of the core CDG are already included in
a large path, only some of the source and sink nodes remain
unconnected. Due to the proposed addition of pseudo-edges
and self-loop edges to the CDG, the algorithm augments the
path by using said edges, instead of back-tracking. As a result,
the algorithm swiftly includes the remaining unconnected
source and sink nodes, thereby significantly reducing the
complexity of forming a Hamiltonian path.

Once a Hamiltonian path is formed, it connects network
links (the visited vertices of the CDG) and source and sink
nodes. Of course, the connections across the vertices of the



TABLE I
POWERMAX RUN-TIMES: TIME NEEDED TO DERIVE PEAK-POWER

PERMUTATION TRAFFIC PATTERNS.

CDG include pseudo-edges and, possibly, self-loops. To illus-
trate this scenario, let us assume a simple 5-node line network
(5-ary 1-mesh), as illustrated in Fig. 5(a). The Hamiltonian
path discovered by PowerMax in the network’s enhanced CDG
is shown in Fig. 5(b). A Hamiltonian path that uses the local
self-loop connections can be transformed to a self-loop-free
Hamiltonian path by using a simple post-processing step,
which is depicted in Fig. 5(c). The self-loop is removed, and
then one edge of the CDG is selected and “broken” into two
segments. The incoming segment is connected to the local
sink node, while the outgoing segment is connected to the
local source. The Hamiltonian path remains connected via the
pseudo-edges. This simple post-processing step merely implies
that the Hamiltonian path has included the source and sink
nodes in a different order. Once the pseudo-edges are removed,
the source-to-sink flows are correctly identified (Fig. 5(c)).

The proposed algorithm can solve the Hamiltonian path
problem for well-known NoC topologies of hundreds of nodes
in just a few minutes. The reason for this efficiency is two-
fold: (1) The use of self-loops across the source/sink nodes of
the same terminal node enables PowerMax to avoid repeated
backtracking when encountering already-visited CDG vertices.
(2) The visiting order of the edges that resembles the implicit
ordering of channels imposed by the routing algorithm. With-
out these two properties, solving the problem for medium-
scale topologies would require days, thus rendering the tool
impractical for modern systems. The run-times required to
derive peak-power permutation traffic patterns for various
topologies and various network sizes are shown in Table I,
using a Linux computer with a 2.3 GHz Intel Core i7-4712HQ
Processor and 16 GBs of RAM.

C. Applying PowerMax to various NoC topologies

Fig. 6(a) depicts the resulting sub-paths identified by Power-
Max, when applied to the CDG of the 3×3 2D mesh network
of Fig. 4(a), and after removing the pseudo-edges of the
identified Hamiltonian path. The generated sub-paths include
every vertex of the original CDG and only a subset of the
edges of the CDG. In this way, it is ensured that all network
links are utilized, by using nine distinct and non-conflicting
traffic flows, as depicted for clarity in Fig. 6(b).

PowerMax can be applied to any topology and any rout-
ing algorithm. Fig. 7(a) depicts the PowerMax-derived non-
conflicting permutation traffic that causes 100% link utilization
in an asymmetric 2D mesh network (the asymmetry is the re-
sult of faulty router 3, which is decommissioned). In this case,
the turning restrictions of the routing algorithm [19] (depicted
as small arrows at certain turn-points within the network)
guarantee connectivity and deadlock freedom. Equivalently,
the peak power traffic for a tree that applies the up/down
routing algorithm is highlighted in Fig. 7(b).

Fig. 6. (a) The sub-paths that lead to unique source/sink pairs, as identified
by PowerMax for the CDG of Fig. 4(a). (b) The corresponding flows depicted
on the 3×3 2D mesh.

Fig. 7. (a) PowerMax applied to irregular networks, such as an asymmetric
2D mesh. (b) Mapped flows (as generated by PowerMax) on a tree topology.

Ring and tori topologies employ Virtual Channels (VCs) to
ensure freedom from possible routing deadlocks. The CDG of
VC-based networks is more complex: each vertex (i.e., link)
appears multiple times within the CDG; as many times as the
number of supported VCs per network link. In these cases,
cycles within the CDG are prohibited at the VC level by appro-
priate turn restrictions (edge removals on the CDG) [20], [21].
Consequently, the resulting routing algorithm is deadlock-free,
through the appropriate use of VCs.

PowerMax requires only one additional feature to handle
the case of VC-enhanced CDGs. The equivalent vertices that
correspond to the VCs of the same physical link are treated
as a hyper-vertex, which is used only once in the Hamiltonian
path. In other words, only one VC is used per physical channel
of the network to carry the generated peak-power traffic. The
derived traffic flows are allowed to change VC in-flight, as
long as this is dictated by the routing algorithm; in any other
case, each traffic flow remains within the same VC. In this
way, the algorithm exercises all possible turns at the VC
level, but, ultimately, it selects only one VC-to-VC connection.
PowerMax does not impose any specific rule for acquiring a
VC, other than the ones imposed by the routing algorithm.

Figure 8 illustrates a peak-power traffic scenario for a
hierarchical ring. It should be noted that the example of Fig. 8,
and the run-times of Table I for the ring, hierarchical ring, and
2D torus, correspond to the application of PowerMax on the
enhanced CDG with VCs.

IV. MAXIMIZING THE DATA SWITCHING ACTIVITY

The data patterns that cause the exact maximum power
consumption can only be derived using specific gate-level
techniques [22], [23], which can be applied only in certain



Fig. 8. Peak-power traffic patterns derived by PowerMax for a hierarchical
ring, which employs virtual channels for deadlock freedom.

sub-modules of the NoC and cannot be extended to the entire-
network level. Therefore, to tackle the problem of identifying
the worst-case data patterns, we need to rely on the most
common micro-architectural features of the majority of NoC
designs. Subsequently, and in conjunction with the guaranteed
full-network utilization achieved by the non-conflicting permu-
tation traffic patterns, we can approach (as much as possible)
the peak power consumption of the NoC as a whole.

For the links, a repetitive data pattern that switches between
0101 . . . 01 → 1010 . . . 10 is enough to trigger worst-case
power consumption. Each bit experiences a change in every
cycle, either 0→1 or 1→0, which switches the corresponding
capacitance of the wire to ground. Further, this data pattern
ensures that neighboring wires always switch in the opposite
direction, thereby causing the worst-case power consumption,
due to the link’s coupling capacitance.

However, for the VC buffers and the internal logic of the
router, we cannot be sure of the exact switching activity caused
by this 2-data vector pattern. Assume, for example, the case
of VC buffers that are built using register-based (i.e., flip-
flop-based) FIFO queues, or using SRAM blocks. In either
case, power is consumed every time a new flit is written to,
or read from, the VC buffers. PowerMax satisfies the goal of
always keeping the VC buffers active (reading/writing), since
it allows all NoC links to be fully utilized every cycle. Link
utilization translates to a new flit being read (dequeued) from
a VC buffer, and moving to an output link that is connected to
another VC buffer (in the downstream router), which accepts
(enqueues) the new flit.

On each write, a new flit is written to only one VC. Inside
the queue of each VC, the flit is written into the register that
corresponds to the address pointed to by the tail pointer of
the enabled VC queue. Therefore, on each write, only the bits
of one register can change value. The rest are not enabled,
or remain clock-gated, to save power in the clock pins of the
flip-flops. Therefore, to maximize power, we need to guarantee
that (a) the new value written to the register is different from
the one already stored, and (b) the two values (the old and
the new one) differ by as many bits as possible. This can only
occur if we know beforehand the specific slot of the VC queue
into which the incoming flit will be stored.

When a repetitive data pattern of K words is placed – one
word after the other – in a buffer with B slots, then we can
guarantee that any incoming word will be written (stored) into
a register that already stores a different value, as long as the
greatest common divisor of K and B is equal to one. When

B is odd, the 2-vector data pattern that also maximizes the
power on the links is the proper choice. When B is even, we
can select a repetitive data pattern of B+1 words. The B+1
words can safely include B/2 repetitions of the 2-vector data
pattern 0101 . . . 01 → 1010 . . . 10 → 0101 . . . 01 → . . . →
1010 . . . 10, plus an all-zero vector. Depending on the NoC
configuration, the repetitive set of K data patterns can also
extend across different packets, as long as the flits of the
packets flow consecutively in the NoC.

For PowerMax, using such data patterns guarantees max-
imum switching activity, since the traffic is non-conflicting
and each VC buffer accepts a new flit every cycle. This
also holds for the wires of the links, the input pins of each
register of the input buffers, the internal crossbar wires, the
crossbar’s multiplexers, and the output pipeline registers. Even
if those data patterns have the potential of also maximizing the
coupling capacitances of the internal logic of the routers, this
cannot be ascertained, since the amount of coupling across two
circuit nodes depends on the exact layout and placement of the
internal wires, which may change across different designs.

In terms of power, the traffic injected can stay within the
same VC from source to destination, as long as one flit
is written and read per cycle, and the data values written
and read have the maximum bit-wise difference. Distributing
traffic across VCs for each non-conflicting flow produced
by PowerMax is possible, but it needlessly complicates the
derivation of the appropriate data switching patterns that cause
the maximum switching activity, without any true impact of
the triggered power consumption.

Even though the non-conflicting nature of the traffic patterns
generated by PowerMax can maximize the switching activity
in the datapath of the NoC (links, buffers, crossbar), the
arbitration part is kept working on the same requests and grants
in each cycle. This causes minimum switching activity in this
portion of the NoC. However, this is not a problem in NoCs
with wide datapaths of 128 bits or more, where the power of
the arbitration logic is low relative to the datapath portion.
This argument is also verified by the experimental results
that use random traffic; the latter maximizes the switching
activity in the arbitration part, due to the random nature of the
input requests. Even when compared with this traffic scenario,
PowerMax achieves significantly higher power consumption
by only appropriately targeting the data switching activity.

V. EXPERIMENTAL EVALUATION

The goal of PowerMax is to trigger the peak-power con-
sumption of a NoC by injecting appropriately selected traffic
patterns that maximize network component utilization and data
switching activity. Therefore, the measured power is realistic,
in the sense that it can be caused by a real traffic scenario,
even if it is rare under normal system operation.

PowerMax is evaluated on 64-node NoCs following 2D
mesh and hierarchical ring topologies. Other tested topologies
show similar trends. In order to contain the number of pos-
sible configurations, we assume a tile-based chip floor-plan
similar to the Scorpio chip [24]. Scorpio was built at 45 nm
technology (which matches the technology library we used in
our implementations), using a tile size of approximately 2×2
mm. Based on the chosen NoC topology, the NoC routers can



have a variable number of input and output ports. For every
configuration, we assume that the NoC supports 4 VCs per
input port, with 5 buffers/VC, and the NoC routers employ
the 3-stage pipelined organization of Scorpio routers [24]. The
inter-router NoC links carry 64 bits of data, plus some extra
flow control information. The header flit, which also includes
network-addressing information, carries fewer actual data bits.

All NoC components used in the evaluation were imple-
mented in SystemVerilog, mapped to a commercial low-power
45 nm 0.8 V standard-cell library, and placed-and-routed using
the Cadence EDI flow. Depending on the NoC topology, a
different placement-and-routing round was conducted. Power
was measured after performing timing-accurate simulations,
when operating the NoC at 1 GHz and including all back-
annotated layout parasitics.

Fig. 9. A 10K-cycle snapshot of the instantaneous power consumption of
a 64-node 2D mesh (top) and a hierarchical ring (bottom), after the network
reaches steady-state operation, using uniform-random traffic and data.

In the first set of experiments, PowerMax is evaluated
against random synthetic traffic patterns, under various data
switching and network-injection scenarios. The instantaneous
power consumed by a NoC when the incoming traffic causes
contention across flows with unrelated data (this occurs in
almost all cases under normal operation) can vary significantly
over time, depending on the switching activity in various parts
of the network in each cycle. This behaviour is highlighted
in Fig. 9, for an 8×8 2D mesh and a 64-node two-level
hierarchical ring that consists of 8-node local rings connected
via an 8-node global ring.

Both networks receive uniform-random traffic at a different
rate (close to their saturation throughput), as reported in
Fig. 9. The two NoCs have equal link width, i.e., 64 bits plus
flow-control bits, and both operate at 1 GHz. Therefore, the
bisection bandwidth of the 2D mesh is larger than the bisection
bandwidth of the hierarchical ring. The injected packets are 5-
flit long and carry random data in their payload portion. In this
experiment, the bit of each flit when entering the network has
equal probability of being 0 or 1, independent of the rest of
the bits of the same flit, or the previous flits.

The peak power consumption achieved by random traffic
is merely the peak instantaneous power observed during
the simulation’s time frame. There is no guarantee that a
large power value can be triggered during simulation, due
to the unpredictability in switching activity, and the lower
NoC utilization caused by contention among different flows.
Additionally, the observed peak power consumption simply
represents an instantaneous peak. This cannot be sustained

Fig. 10. A 10K-cycle snapshot of the instantaneous power consumption
of a 64-node 2D mesh and a hierarchical ring (under steady-state network
operation), using PowerMax-derived traffic/data with full injection throughput.

over a longer period of time, which would be required to
observe possible temperature increases and identify thermal
hot-spots in the system.

On the contrary, PowerMax does not have such limitations.
In Fig. 10, we report the instantaneous power consumed by
PowerMax under 100% injection load for each case (2D mesh
and hierarchical ring). The results are measured by injecting
5-flit packets in the NoC, following the PowerMax-derived
permutation traffic patterns and carrying data payloads with
the 2-vector data patterns described in Section IV. PowerMax
keeps power consumption constantly and consistently very
high. The minimal variance in the power consumption is due
to the switching profile of the header and flow-control bits,
which are not controlled by PowerMax.

Fig. 11. Peak power consumption vs. injection load. The power consumption
triggered by PowerMax-derived traffic compared against the power consumed
when using uniform-random and bit-complement traffic patterns.

Next, we compare the peak power consumption of Pow-
erMax and random traffic scenarios (uniform-random and
bit-complement traffic), under the same injection load. For
each injection load, the maximum instantaneous power con-
sumption value observed (over 500,000 cycles of simulation)
was recorded. The results are depicted in Fig. 11, for the
same 2D mesh and hierarchical ring topologies. The peak
power consumption of random traffic (blue curves) follows the
throughput behavior of the network itself, and, after saturation
(when the utilization of NoC components reaches its limit), the
peak power consumption observed is rather constant. On the
contrary, PowerMax can increase the power consumption to
its true maximum value, due to its non-conflicting traffic. The
data switching activity is directly controllable by the input
sources, and it covers all the intermediate router ports and



network links that are utilized by the injected flow. When
compared against uniform-random traffic (Figs. 11(a) and (c)),
PowerMax triggers maximum power consumption, which can
be more than 6× higher than the one achieved under uniform-
random traffic with random data (i.e., blue curves).

This is also true when the NoC is driven by uniform-random
traffic that allows contention in the network, but the injected
data patterns are the same as the ones used with PowerMax
(by following the guidelines described in Section IV). This
scenario is also depicted in Figs. 11(a) and (c) with the red
curves. PowerMax still consumes significantly more power
(4× higher), since it simultaneously takes into account both
the network utilization and the data switching activity.

Similar conclusions are derived when the power con-
sumption of the NoC is triggered using other permutation
traffic patterns, such as bit-complement traffic. In this case
(Figs. 11(b) and (d)), the peak power consumption of Power-
Max is 4× larger than the largest power observed under the
bit-complement traffic patterns (red curves).

TABLE II
PEAK POWER OF POWERMAX VS. THE POWER OF A FAKE SCENARIO,

WHICH ASSUMES THAT EVERY CIRCUIT NODE SWITCHES IN EVERY CYCLE.

Finally, we compare the power triggered by PowerMax,
versus the peak-power consumption that corresponds to the
fake scenario of every circuit node switching in every cycle.
In both cases depicted in Table II, the peak power triggered
by PowerMax (measured at 100% injection rate) is lower than
the one derived using the fake (un-realistic) approach. The
difference between these two maximum power values depends
on topology characteristics, and the power expended on the
links vs. the power expended within the routers. In any case,
the significant conclusion out of this comparison is that fake
peak-power scenarios overestimate the true maximum power
profile of the NoC and unnecessarily increase the overall
system power budget. With PowerMax, worst-case power
analysis is brought closer to what is realistically attainable.

VI. CONCLUSIONS & FUTURE WORK

As chips become increasingly more dense and complex,
power consumption becomes a primary design constraint. It
is imperative for designers to realistically estimate a design’s
peak power consumption, which directly impacts other salient
system attributes, such as performance, implementation costs,
battery life, and reliability. This paper introduces PowerMax,
the first fully-automated high-level methodology to generate
appropriate traffic and data patterns that cause peak power
consumption within the NoC. The peak power consumption
triggered by PowerMax is, on average, 5.5× higher (up to 8×
higher) than what is observed after simulating random traffic
and data patterns.

PowerMax guarantees full utilization of every NoC com-
ponent. Therefore, even if some NoC components are not
identical – in terms of their (micro-)architecture – they are
still fully utilized, irrespective of their differentiated design
parameters. For example, PowerMax imposes full (100%)
utilization on every link of the network, irrespective of the

link’s length. Both short and long wires are equally utilized;
this attribute translates into longer wires consuming more
power than shorter wires. Differentiated design parameters –
e.g., the link length, the presence (or not) of pipelined links,
the number of VCs per input port, and the number of buffer
slots per VC – can all be handled by PowerMax, since every
component (irrespective of its size) is utilized in every cycle.

However, in the case of completely heterogeneous NoCs,
where the inter-router link bandwidths can vary (i.e., there is
a combined effect of link width and clock frequency), marginal
extensions to the problem formulation and the corresponding
proposed algorithm are required. Our future work will focus
on extending PowerMax to cover such NoC architectures,
including those that distribute the NoC components across
multiple voltage/frequency domains.
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