
GRAPH-BASED OPTIMIZATION FOR A CSD-ENHANCED RNS MULTIPLIER

G. Dimitrakopoulos† and V. Paliouras‡

†Computer Engineering and Informatics Dept., University of Patras, 26 500, Patras, Greece
‡Electrical and Computer Engineering Dept., University of Patras, 26 500, Patras, Greece

e-mails: dimitrak@ceid.upatras.gr, paliuras@ee.upatras.gr

ABSTRACT

A novel hardware algorithm, architecture and an optimization
technique for residue multipliers are introduced in this paper.
The proposed architecture exploits certain properties of the bit
products to achieve low-complexity implementation via a set of
introduced theorems that allow the definition of a graph based
design methodology. In addition the proposed multiplier employs
the Canonic Signed Digit (CSD) encoding to minimize the number
of bit products required to be processed. Performance data reveal
that the introduced architecture achieves area×time complexity
reduction of up to 55%, when compared to the most efficient
previously reported design.

1. INTRODUCTION

The Residue Number System (RNS) can efficiently perform
computations in digital signal processing (DSP) applications
such as the computation of the Fast Fourier Transform and
digital filtering [1], since it provides carry-free addition and
multiplication and borrow-free subtraction. Several very large
scale integration (VLSI) architectures have been proposed for
RNS multiplication, implemented, either by memory table lookup
techniques, or combinatorial logic [2]–[7].

In this paper properties of bit products that need to be
processed in a residue multiplier are investigated. The introduction
of a corresponding set of theorems allows the definition of a graph-
based design methodology that permits optimization, which was
previously only partially possible and by means of exhaustive
simulation [7]. The combined effect of an introduced hardware
multiplication algorithm and the proposed methodology leads
to area×time efficient multipliers shown to outperform previous
designs and offer an efficient alternative to binary multiplication
for DSP applications.

2. RNS BASICS AND THE PROPOSED ALGORITHM

In RNS each operand is encoded as a vector of residues
computed with respect to a set of pairwise relatively prime
integers {m1,m2,. . . ,mM}. All integers A,B with 0 ≤ A,B <�M

i=1 mi have a unique RNS representation {A1,A2,. . . ,AM}
and {B1,B2,. . . ,BM} where Ai = 〈A〉mi , Bi = 〈B〉mi for
i = 1,2,. . . ,M and 〈x〉mi denotes the operation x modulo mi.
The operations of residue multiplication, addition, and subtraction
are performed by Ci = 〈Ai ◦Bi〉mi and ◦ denotes any of the
aforementioned operations. RNS is a carry-free number system
in the sense that Ci can be computed with no information from
the residues (Aj,Bj), i �=j, thus enabling parallel operation on the
residues Ai, Bi.

Let A, B, and C be n-bit residues modulo m, with
n = 	log2 m
+1. Since A and B can be written in binary form

as A=
�n−1

i=0 ai2
i, B=

�n−1
j=0 bj2

j with ai, bj ∈ {0, 1}, then the
residue multiplication operation C=〈A×B〉m can be written as

C=
� n−1�

i=0

n−1�
j=0

aibj2
i+j
�

m
=
� n−1�

i=0

n−1�
j=0

aibj〈2i+j〉m
�

m
=〈Y 〉m.

where

Y =

n−1�
i=0

n−1�
j=0

aibj〈2i+j〉m. (1)

Hence, the product C can be derived by mapping Y to its residue
modulo m. The value of Y , as defined in (1), can be expressed in
binary form as Y =

�n′−1
k=0 yk2k, where n′ is the word length of

the maximum value of Y , n′ = 	log2 Ymax
+1, and yk denotes
the kth bit of Y . The bits yk of Y to which the bit product
aibj contributes, according to (1), depend on the encoding scheme
selected for the value 〈2i+j〉m. Particularly, the bit weights
〈2i+j〉m can be encoded as follows

〈2i+j〉m =

nc−1�
k=0

�zk,i,j2
k, (2)

where �zk,i,j ∈ {1̄, 0, 1} and nc denotes the required word length
for the encoding of 〈2i+j〉m, with nc ≥ n. The word length nc

can be greater than n in the case that a signed-digit encoding is
assumed for 〈2i+j〉m. By replacing (2) in (1), it is obtained that

Y =

nc−1�
k=0

n−1�
i=0

n−1�
j=0

aibj �zk,i,j 2k. (3)

Eq. (3) reveals that depending on the value of �zk,i,j being 1̄, 0, or
1, the bit product aibj should be subtracted, ignored, or added to
the kth bit of Y .

Assume that the bit product aibj = 1 and that it should be
subtracted from the kth digital position, i.e., �zk,i,j =1̄. In this case,
the partial result p=aibj �zk,i,j 2k =−2k is a term of the multiple
summations in (3) and it is written in n′-bit two’s complement
format, as follows

p =
n′−1

1 1 . . .
k+1

1
k

1
k−1

0 . . .
0

0 = 2n′ − 2k . (4)
Due to (4), in case that �zk,i,j = 1̄ and aibj = 1, based on
two’s complement arithmetic, the addition of the term p to the
sum (3) is equivalent to the modulo-2n′

addition of the value
2n′ − 2k. Therefore the addition of aibj 1̄ 2k is equivalent to the
two’s complement addition of p′ =2n′−2k+aibj2

k. Thus, in order
to evaluate (3), each term aibj �zk,i,j 2k is encoded according to the
values assumed by �zk,i,j ∈{1̄, 0, 1}, as

aibj �zk,i,j 2k →

���
�	
aibj 2k + qk , if �zk,i,j = 1̄

0 , if �zk,i,j = 0

aibj2
k , if �zk,i,j = 1

, (5)

where qk = 2n′ − 2k. Due to (3) and (5), Y can be computed by

0-7803-7523-8/02/$17.00 ©2002 IEEE
III-648

0-7803-7524-6/02/$17.00 ©2002 IEEE

Y =
�
Y ′ + Q

�
2n′ , where Q is a cumulative additive constant,

computed as Q =
�

k,i,jqk and Y ′ is equal to

Y ′ =

nc−1�
k=0

n−1�
i=0

n−1�
j=0

�
� �

�zk,i,j=1

aibj +
�

�zk,i,j=1̄

aibj

�
� 2k. (6)

Initially Y ′ and Q are decomposed into the n-bit lower parts
Y ′

L and QL, and the (n′ − n)-bit upper parts, Y ′
H and QH ,

respectively, which give

Y =
�
(Y ′

H + QH)2n + Y ′
L + QL

�
2n′ . (7)

It holds that Y ′
L+QL =c 2n+〈Y ′

L+QL〉2n , where c is a 1-bit carry
due to the n-bit addition of Y ′

L and QL. As both Y ′
L and QL are n-

bit quantities, (7) is written as Y = 〈c′ 2n′
+R+〈Y ′

L+QL〉2n〉2n′ ,
where c′ ∈ {0, 1} is the carry bit generated by the (n′−n)-bit
addition of Y ′

H , QH , and c. The term R= 〈(Y ′
H +QH +c)2n〉2n′

can be expressed as R = 〈(c′′2n′−n +R′)2n〉2n′ , where c′′ is a
single-bit carry and R′ is an (n′−n)-bit quantity, R′ =〈Y ′

H+QH+

c〉2n′−n . Equivalently, R = 〈c′ 2n′
+R′ 2n〉2n′ = 〈R′ 2n〉2n′ .

Since R′≤2n′−n−1 then R′ 2n ≤2n′−2n, hence it follows that
R≤2n′−2n. Therefore, since 0≤〈Y ′

L+QL〉2n ≤2n−1, it follows
that R+〈Y ′

L+QL〉2n ≤2n′−1, which implies that

Y =
��

Y ′
H + QH + c

	
2n
�

2n′ +
�
Y ′

L + QL

�
2n

. (8)

Eq. (8) reveals that Y can be evaluated as a simple addition,
without the need for an external modulo operation, as in (7). The
residue product C can be expressed as C = 〈D+Y ′′〉m where

D=
�
〈(Y ′

H+QH+c)2n〉2n′
�

m
and Y ′′=〈Y ′

L+QL〉2n . The value

of D is only dependent on the n′−n most significant bits of Y ′

and the carry bit c, since Q is a constant. A simple combinational
circuit can receive the n′−n most significant bits of Y ′ and the bit
c and compute the n-bit value D. Based on the modulo arithmetic
property 〈m−a〉m = 〈−a〉m, the value of D is selected to be
negative and encoded in (n+ 1)-bit two’s complement format.
Therefore, since −m≤D ≤0 and 0≤Y ′′ ≤2n − 1 it is derived
that −m≤Y ′′+D≤2n−1, which implies that

−m < Y ′′ + D < 2m . (9)
Inequalities (9) dictate that three cases can be distinguished in the
computation of the sought residue product C:

C =

��
�
Y ′′ + D + m , if −m ≤ Y ′′ + D < 0

Y ′′ + D , if 0 ≤ Y ′′ + D < m

Y ′′ + D −m , if m ≤ Y ′′ + D < 2m

. (10)

Therefore the computation of C by (10), requires the computation
of Y ′ using (6), followed by the computation of D and Y ′′. An
implementation of the proposed algorithm is shown in Fig. 1.

3. PROPERTIES OF BIT PRODUCTS

The legitimate values of the input residues A and B are bounded
by the value of the modulo m. Therefore the combinations of
the n-bit input operands that comprise at least one of the values
m,m + 1, . . . , 2n − 1 do not occur. In the following, it is shown
that the bit products aibj or aibj that contribute to bit yk of Y
exhibit specific relationships, which can be exploited to lead to
low-complexity designs. Definition 1 introduces the concept of
compatible bit products and the subsequent theorems reveal the
conditions that should be satisfied in order two bit products to be
compatible without the need of exhaustive simulation as in [7].
Definition 1. The bit products aibj and akbl are called
compatible bit products when aibj +akbl ≤ 1, for all legitimate
input combinations of the residues A and B with 0≤ i,j,k,l≤n−1
and 0≤A,B<m.

Compatible bit products are of practical interest since they can be
added by means of a 2-input OR gate instead of a 1-bit adder, thus
reducing the cost of addition and preventing the generation of a
carry bit that would contribute to the more significant output bits.

Theorem 1. The bit products aibj and akbl are compatible if and
only if 2i + 2k ≥ m

�
2j + 2l ≥ m and i �= k ∨ j �= l.

Proof: Initially assume that aibj and akbl, are compatible, i.e.,
aibj + akbl ≤ 1, for all legitimate values of the input residues A
and B. Therefore there are no combinations of A and B for which
aibj + akbl > 1 ⇔ aibj = 1

�
akbl = 1. It follows that

ai =
�

ak =1⇔A=

n−1�
r=0

ar2
r ≥ai2

i+ak2k =2i+2k (11)

bj =1
�

bl =1⇔B=

n−1�
r=0

br2
r ≥bj2

j +bl2
l =2k +2l. (12)

Eqs. (11) and (12) show that when aibj+akbl≤1 for all legitimate
inputs, there are no combinations of A and B such that

A ≥ 2i + 2k
�

B ≥ 2j + 2l, (13)
for every residue modulo-m value of A and B. Since (13) is false,
it follows that at least one of the conditions in (13) is false, or both.
Hence, 2i+2k ≥m

�
2j+2l≥m, because 0≤A,B<m. Since the

bit products aibj and akbl do not represent the same term, then the
index i cannot be equal to k when j is equal to l and vice versa.
Therefore, it follows that i �=k∨j �= l. Next suppose that

2i + 2k ≥ m
�

2j + 2l ≥ m, (14)
with i �= k ∨ j �= l. Since A,B are residues modulo-m then
A=

�n−1
i=0 ai2

i<m and B=
�n−1

j=0 bj2
j <m. Therefore,

ai2
i + ak2k < m

�
bj2

j + bl2
l < m. (15)

In the case that ai = ak = bj = bl = 1 there is a contradiction
between (14) and (15). So, it obvious that (14) and (15) are both
satisfied when there is at least one of the (ai, ak) and (bi, bk)
respectively, that is zero. In this case, at least one of aibj or akbl

is also equal to zero and thus their sum is aibj +akbl ≤1, since it
is either zero or one. �

Theorem 2. If aibj and akbl are compatible bit products then the
bit products ajbi and albk are also compatible.

Proof: For all legitimate input combinations of input residues A
and B assume that aibj +akbl ≤ 1 ⇔ bjai + blak ≤ 1, due to
the commutativity of the multiplication. Since A and B span the
identical set of legitimate values {0,1,. . .,m−1}, by interchanging
the names of the variables A and B along with the corresponding
bits a and b it follows that ajbi+albk ≤ 1 for all legitimate input
values. Hence, the bit products ajbi and albk are compatible. �

The definition of compatible bit-product pairs can be
generalized to compatible N -tuples of bit products, the sum of
which is always less or equal to one. A compatible N -tuple can
be processed by an N -input OR gate, thus significantly reducing
the cost of N -bit addition and eliminating the generation of the
corresponding carries. In the following, a theorem is introduced
that identifies compatible N -tuples exploiting the existence of
particular compatible bit-product pairs.

Theorem 3. Let x1,x2,. . .,xN , with xi ∈ {0, 1} and 1≤ i ≤N .
Then x1 + x2 + . . .+xN ≤ 1 if and only if for all possible pairs
xi,xj with 1 ≤ i, j≤N and i �=j holds that xi+xj ≤1.

The proposed residue multiplication algorithm requires the
computation of Y ′ using (6), which includes summation of
inverted bit products aibj . Therefore properties of inverted bit
products are investigated, with the objective to minimize the cost

III-649

B

Bit Product Generation

A

Multi-Operand
 Addition

aibj

Combinational
Logic

(n+1)-bit adder

-m +m

(n+1)-bit adder

Y''D
cout

aibj

n-bit adder

QLY'H Y'L
c

cout

C

a bc d e f

g
Proposed
Column

Organization

a

b

c d

e f g

BPCG

Conventional
Organization

a b c

d
e

f
g

Figure 1: The three-stage residue multiplier. The complexity of
the first stage is minimized by the proposed BPCA.

of their addition. Theorem 4 introduces a property of inverted
bit-product N -tuples that their sum assumes a limited set of
values while their identification is transformed to the problem of
identifying a corresponding compatible bit-product N -tuple.

Theorem 4. Let x1,x2,. . .,xN , with xi∈{0, 1} and 1≤ i ≤N . If
x1+ x2+. . .+xN ≤ 1 then N − 1≤ x̄1+x̄2+. . .+x̄N ≤N .

4. ORGANIZATION OF THE PROPOSED MULTIPLIER

The proposed residue multiplier is organized in three stages as
shown in Fig. 1. The first stage computes Y ′ defined by (6),
using cascaded columns of 1-bit adders, organized in a way that
the kth column returns the kth output bit of Y ′. The second
stage processes the bits of Y ′ and the cumulative constant Q
to calculate D and Y ′′, while the third stage performs the final
residue mapping via the conditional correction described by (10).
In particular, to derive the kth bit of Y ′, two sets Sk and Nk are
constructed that consist of the bit products of the form aibj and
aibj respectively, that contribute to the kth bit of Y ′. Formally
stated, Sk = {aibj | �zk,i,j = 1} and Nk = {aibj | �zk,i,j = 1̄},
where i, j ∈ {0, 1, . . . , n − 1}. Exploiting the data-dependent
properties of the bit products of the sets Sk and Nk, as described
in Section 3, allows the use of simple gates to implement the multi-
bit addition on each output column. The discussion is limited to
the carry-save array organization according to which on the kth
column, the bit products of the sets Sk and Nk are added along
with the carries generated from the (k− 1)st column according to
the following design rules:
I.Every N bit products of the form aikbjk identified to be
compatible are added with an N -input OR gate.
II.Every triplet of inverted bit products that their sum assumes the
values two or three, i.e., 2 ≤ ai1bj1 + ai2bj2 + ai3bj3 ≤ 3
are added using a 3-input AND gate. Since the addition of the
bit products ai1bj1 , ai2bj2 , and ai3bj3 on the kth column always
generates a carry bit, the weight 2k+1 is added to the cumulative
constant Q. In case that more than three inverted bit products
are identified using Theorem 4, the proposed architecture uses
the maximal number of 3-input AND gates to add them in order
to limit the corresponding carry propagation to the next more

significant column only.
III.The output of the OR gates and the AND gates along with the
remaining bit products and the carry signals are added using 1-
bit full-adder (FA) and half-adder (HA) cells. The carries of the
(k−1)st column are added as close as possible to the output of the
kth column so that the delay of the carry-save array is minimized.

5. THE PROPOSED OPTIMIZATION METHODOLOGY

This section introduces a novel graph-based optimization
methodology, the application of which reduces the hardware
complexity of the first stage of the proposed architecture. The
proposed optimization methodology is twofold. At first the
weights 〈2i+j〉m are encoded in CSD format in order to minimize
the number of bit products of both forms aibj and aibj , distributed
on the kth column. Subsequently large compatible tuples are
efficiently identified via an introduced graph-theoretic approach,
called Bit Product Compatibility Analysis (BPCA). The CSD
representation of the weights 〈2i+j〉m is of particular interest since
it requires the minimal number of non-zero digits to represent
a value, thus enabling the distribution of the bit products aibj

to the minimal number of output columns. CSD encoding
of a given number is unique and a simple algorithm can be
employed to convert conventional binary representation to CSD
representation [8, p. 507].

The proposed BPCA methodology organizes the bits that
participate on the kth column into N -tuples so that the number
of terms added to produce the kth bit of Y ′ is minimized.
The identification of the maximal N -tuples that exist in each
output column is achieved by a graph theoretic formulation.
Specifically, for each kth column an undirected graph Gk(Vk, Ek)
is constructed, called the Bit-Product Compatibility Graph
(BPCG). The set of bit products of Sk constitute the vertex set
of Gk, while an edge (u, v) belongs in Ek when the bit products
that correspond to the vertices u and v are compatible. After
constructing the BPCG for each output column, the identification
of N -tuples is equivalent to the clique partitioning problem, see
Fig. 1. In particular, a complete subgraph Gs(Vs, Es) with Vs ⊆
Vk and Es⊆Ek, has the property that for each vertex ui∈Vs there
exist edges (ui, uj) connecting ui to the remainder of the vertices
uj ∈Vs, with ui �=uj . Based on the way graph Gk is constructed,
it follows that each bit product represented by the vertex ui∈Vs is
compatible to all the other bit products with equivalent vertices in
Gs. Hence for all possible bit-product pairs (aikbjk , ailbjl) with
1≤k, l ≤|Vs| and k �= l, that have their representative vertices uk

and ul in Gs, it holds that aikbjk+ailbjl ≤1. So, from Theorem 3
it follows that

�|Vs|
r=1 airbjr ≤ 1. Thus the |Vs| bit-product terms

airbjr ∈ Sk, form a compatible |Vs|-tuple. Equivalently, to
identify the N -tuples of inverted bit products airbjr ∈ Nk the
sum of the elements of which assume a limited set of values, the
following procedure is proposed. The BPCG G′

k that corresponds
to the bit products airbjr , airbjr ∈ Nk, is initially constructed.
The solution of clique partitioning on G′

k [9, pp. 64–67], derives
N -tuples such that

�N−1
r=0 airbjr ≤ 1, airbjr ∈ Nk. Therefore,

due to Theorem 4 it follows that N − 1 ≤�N−1
r=0 airbjr ≤ N ;

hence any three bit products of these N -tuples can be processed
by an AND gate.

6. PERFORMANCE EVALUATION

In this section the performance of the proposed residue multiplier
is compared to that of previously reported architectures in terms of
area×time complexity. At first the performance of the proposed

III-650

nbin mi Area Time Area×Time
RNS Binary Savings(%) RNS Binary Savings(%) Savings(%)

10 {11, 12, 13} 474 780 39.23% 31 36 13.88% 47.67%
12 {11, 17, 24} 557 1140 51.14% 36 44 18.18% 60.02%
14 {24, 23, 31} 707 1568 54.91% 38 52 26.92% 67.05%
16 {47, 48, 31} 922 2064 55.32% 45 60 25.00% 66.49%
24 {129, 257, 511} 1979 4728 58.14% 63 92 31.50% 71.33%

Table I: Area, time, and area×time performance of a binary multiplication, compared to proposed residue multiplication.

9 24 39 54 69 84 99 114 129
0

2

4

6

8

10

12

14
x 10

4

A
re

a
×

T
im

e

Moduli

(a)
Proposed
FA−based [5]

9 24 39 54 69 84 99 114 129
0

1

2

3

4

5

6

7

8

9

10
x 10

4

A
re

a
×

T
im

e

Moduli

(b)Proposed
Hiasat [6]
Pseudo−RNS [3]
Elleithy−Bayoumi [4]

20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

7
x 10

4

A
re

a
×

T
im

e

Moduli

(c)
Proposed
Yuan et al.[2]

Figure 2: The area×time performance of the proposed residue multiplier compared to the architectures presented in [2]– [6].

multiplier is compared to that of a FA-based residue multiplier
designed according to the architecture presented in [5]. Fig. 2a
present the area×time performance of the proposed and the FA-
based residue multipliers. In almost all cases the proposed
architecture is more efficient than the FA-based residue multiplier
and the area×time savings achieved span 22% to 85%.

In the following the proposed residue multiplier is compared
to the architectures presented in [3], [4], and [6]. Fig. 2b
reveals that the proposed methodology leads to low-complexity
residue multipliers since both the number of the bit products that
contribute to each output column is minimized due to CSD and
the organization of each output column is simplified by means
of the BPCA approach. The area×time savings achieved when
compared to the most competitive residue multiplier [6] range
from 18% to 55%. The proposed multiplier is finally compared
to the submodular index transform-based multiplier [2] as shown
in Fig. 2c. In all cases, the proposed multiplier is more efficient
in terms of area×time complexity achieving complexity savings
of more than 55%, while its application is not limited to prime
moduli as required by the index-transform multipliers.

The proposed BPCA utilizes introduced bit-product properties
to reduce the complexity of RNS multiplication. BPCA combined
with the proposed hardware algorithm, presented in Section 2,
leads to residue multipliers that can be used as a building
block of multi-modulus RNS multipliers. The derived multi-
modulus multipliers compare favorably to conventional binary
multipliers of equivalent word length and architecture, as shown
in Table I. Table I shows that substantial savings in both area
and time complexity are achieved by exploiting the proposed
residue multipliers and particular choices of moduli. Therefore
the use of RNS and the proposed multiplier, leads to acceleration
of the multiplication, as well as to hardware reduction of up
to 58% for the particular word-lengths nbin. It is stressed that
the above analysis does not include the cost of the conversion
from/to a binary representation. The target application domain,
i.e., DSP algorithms, require one conversion per data sample, and
substantial amount of processing, thus resulting in performance
improvement, which can compensate the conversion overhead.

7. CONCLUSIONS

A novel residue multiplier is proposed in this paper. Initially, a bit-
level algorithm is introduced, which features the design option of
signed-digit encoding of the bit-product weights. The complexity
minimization is achieved by using a proposed optimization
methodology, based on an assortment of introduced theorems,
which allow the exploitation of data-dependent characteristics
of the bit products, in a computationally efficient manner.
Complexity comparisons reveal that the derived residue multiplier
is very efficient in the area×time sense, compared to previously
reported designs.

8. REFERENCES

[1]M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and
F. J. Taylor, Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing. IEEE Press, 1986.

[2]D. Radhakrishnan and Y. Yuan, “Novel approaches to the
design of VLSI RNS multipliers,” IEEE Trans. Circuits Syst.
II, vol. 39, pp. 52–57, Jan. 1992.

[3]E. D. DiClaudio, F. Piazza, and G. Orlandi, “Fast combinatorial
RNS processors for DSP applications,” IEEE Trans. Comp.,
vol. 44, pp. 624–633, May 1995.

[4]K. M. Elleithy and M. A. Bayoumi, “A systolic architecture for
modulo multiplication,” IEEE Trans. Circuits Syst. II, vol. 42,
pp. 725–729, Nov. 1995.

[5]D. J. Soudris, V. Paliouras, T. Stouraitis, and C. E. Goutis,
“A VLSI design methodology for RNS full adder-based inner
product architectures,” IEEE Trans. Circuits Syst. II, vol. 44,
pp. 315–318, Apr. 1997.

[6]A. A. Hiasat, “New efficient structure for modular multiplier
for RNS,” IEEE Trans. Comp., vol. 49, pp. 170–174, Feb. 2000.

[7]V. Paliouras and T. Stouraitis, “Multifunction architectures
for RNS processors,” IEEE Trans. Circuits Syst. II, vol. 46,
pp. 1041–1054, Aug. 1999.

[8]K. Parhi, VLSI Digital Signal Processing Systems. Wiley, 1999.
[9]G. DeMichelli, Synthesis and Optimization of Digital Circuits.

McGraw-Hill, 1994.

III-651

