
Incremental Lagrangian Relaxation based Discrete
Gate Sizing and Threshold Voltage Assignment

Dimitrios Mangiras and Giorgos Dimitrakopoulos
Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

Abstract—Timing closure remains one of the most critical
challenges of a physical synthesis flow. Even if timing is almost
closed at the end of the flow, last-mile placement and routing
congestion optimizations may introduce new timing violations.
Correcting such violations needs minimally disruptive techniques
such as threshold voltage re-assignment and gate sizing that affect
only marginally the placement and routing of the almost finalized
design. To this end, we transform a powerful Lagrangian-
relaxation-based optimizer, used for global timing optimizations
at the early stages of the design flow, to a practical incremental
timing optimizer that corrects small timing violations with fast
runtime and without increasing the area/power of the design.
By applying the proposed approach to the optimized designs
of the ISPD 2013 gate sizing contest that experience new timing
violations due to local wire rerouting, we improve timing by more
than 36% on average, using 45% less runtime, when compared
to the fully-fledged version of the timing optimizer.

I. INTRODUCTION

Physical synthesis refers to the process of placing and rout-
ing the logic netlist of a design, while concurrently optimizing
for multiple objectives given a set of area, power, timing,
and routability constraints [1]. For achieving those goals
the main physical synthesis steps are supported by several
intermediate optimizations that focus on logic restructuring
(addition, removal or change of logic cells) as well as logic
tuning that involves selecting for each gate an appropriate size
and threshold voltage from a discrete set of library cells.

At the end of the design flow, the design should satisfy all
timing constraints and be free of any design rule violations
such as maximum allowed capacitance and transition time.
Large timing and design rule violations are analyzed and
removed at the first steps of the design flow using efficient
global optimization engines [2]. Still, a small set of remaining
violations always exist close to the end of the flow. Repairing
such violations requires efficient incremental operations that
are non-disruptive and execute as fast as possible. For instance,
after routing, we don’t want cells’ placement to change for
improving timing since this would cause re-routing a large
part of the design thus possibly introducing new violations.

The least disruptive operations for improving design’s char-
acteristics during physical synthesis involve threshold voltage
(VT ) re-assignment and gate sizing [2], [3] assuming that any
new change would not introduce any new design rule viola-
tions. VT re-assignment tradeoffs smaller delay with increased
leakage power and does not perturb routing nor it requires a
new parasitics extraction after the change. Gate resizing, even
if not as simple as VT re-assignment, is still considered a fairly
non-invasive operation. In the worst case, increasing cell’s size
(possibly avoiding exceedingly large changes) may require an
additional local legalization step [4], [5] and local re-routing
of certain nets [6].

Inserting buffers is still an option at this step [7], [8].
However, such addition may ruin local placement and rout-
ing, which may be hard to fix in highly congested designs.
Other highly powerful optimization steps such as useful clock
skewing are also considered hard to apply at the end of the
flow, unless there is no other obvious or practical way to solve
the remaining timing violations [9], [10], [11].

Gate sizing and VT assignment algorithms have a long
history in physical synthesis flows. Among the large set of
available solutions [12], [13], those that rely on Lagrangian
Relaxation (LR) achieve significantly better results [14], [15],
[16]. However, when applied incrementally, i.e., when the LR
algorithm is not allowed to initialize all cells to their minimum
size [17] thus totally disrupting the existing design, they need
many iterations to converge even if the number of timing
violators is small.

In this work, we propose a novel initialization strategy for
LR-based timing/power optimizers that combines two useful
benefits: On one hand we enjoy the optimization efficiency of
an LR-based gate sizer and on the other hand we enjoy fast
runtimes and true incremental operation, i.e., the optimized
design is only marginally different from the original design
but with the timing violations repaired.

The proposed approach has been compared to a fully-
fledged LR-based gate sizer on optimized versions of the
benchmarks of the ISPD2013 contest [18]. The used bench-
marks experience small timing violations due local changes
of their routed wires. In all cases, the proposed initialization
strategy successfully optimizes the timing of each design
offering 36% better timing performance on average with re-
duced leakage power. Besides the improved quality-of-results
the introduced initialization strategy for LR-based optimizers
reduces the runtime by more than 45% on average, since it
simplifies the convergence of the algorithm.

II. BASICS OF LR-BASED GATE SIZING

A timing-driven optimizer tries to minimize the power (or
area) of the design given a set of timing constraints.

minimize
∑
i

leakagei (1)

subject to ai + dij ≤ aj ∀ i → j

ak ≤ rk ∀ endpoints k

For cell i, ai denotes the arrival time at its output, dij is
the delay of the timing arc i → j which is defined from
the output of the gate i to the output of the gate j including
any intermediate wires and rk is the required arrival time at
timing endpoint k [19]. The set of timing endpoints include



the primary output pins of the design as well as the input pins
of all flip-flops.

Associating the constraint for each timing arc with a non-
negative Lagrange multiplier λij , that acts as a penalty factor
when the respective constraint gets violated, and computing
the KKT optimality conditions [15], [20], allows us to simplify
the constrained minimization problem (1) to the equivalent
unconstrained minimization problem (2).

minimize
∑
i

leakagei +
∑
i→j

λijdij (2)

State-of-the-art LR-based optimizers [14], [15], [16] try to
minimize the global cost function (2) using many iterations
of local gate resizing and VT re-assignment steps. Both steps
would be referred as gate sizing for brevity for the rest of the
paper.

Initially, all gates are replaced with their least leakage power
option (lowest size and highest VT ) [17] and all LMs are set to
1. Then, each iteration of LR-based gate sizing evolves in two
phases. In the first phase, for each gate, examined in topologi-
cal order, all possible discrete cell sizes and threshold voltages
are tried, assuming constant LMs. The new version selected for
the resized gate is the one that minimizes the cost function (2)
computed on the local neighborhood of gates around the gate
under examination. In the second phase, the LMs are updated
to reflect the new criticality of the corresponding timing arcs.
LM update may take different forms and can be either additive
(λnew=γ+δλold) or multiplicative (λnew=γλold)[21]. On every
LM update, a full incremental timing update takes place. The
LR gate sizer converges after many iterations to an optimized
solution, where the gate sizes are updated one after the other
until no TNS or no power gains are observed.

The value of each LM reflects the timing criticality of each
timing arc. LMs increase fast for critical timing arcs and
reduce for non-critical timing arcs to favor power reduction.
Implicitly, LMs keep also historic information (for the lifetime
of an optimization run) with respect to the criticality of each
timing arc. If a timing arc remained critical for multiple
iterations it is still assumed critical by keeping a high value
of LM, even if the slack at its output becomes positive in
a certain iteration. In this way, drastic oscillation between
critical and non-critical timing arcs are avoided and the op-
timization evolves smoothly reducing power while satisfying
timing constraints.

III. INCREMENTAL LR-BASED GATE SIZING

The overall effectiveness of an LM-based gate sizer is the
combined result of the initialization of gate sizes, the strength
of the local optimization and the appropriate update of LMs.

Initializing all cells to their minimum size simplifies the
removal of any design rule violations and also allows the fast
optimization of the timing of the design. After initialization,
the total leakage power in cost function (2) assumes its
minimum value. Thus, the sum of λij dij products determine
which cell should be selected for each gate. This conclusion
holds even if leakage and delay participate normalized to the
cost function. Increasing fast the LMs of critical timing arcs
guides the optimization to reduce their corresponding delay
in order to minimize their λij dij product. As long as timing

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
N

S
 (

n
s
)

Iterations

case A

case B

case C

Fig. 1. The evolution of TNS on each iteration of a LR-based gate sizer for
three cases of the same design. In case A the design is not optimized. In cases
B and C it is partially optimized thus exhibiting initially less TNS.

constraints are not satisfied, LMs keep increasing thus leading
to cells with improved delay.

A. What is the problem?
In an incremental optimization scenario, which is the focus

of this work, one piece of the state-of-the-art LR-based gate
sizing cannot be applied. Since the design is almost finalized,
the gate sizer is not allowed to “reset” the state of the design
and initialize every gate to its minimum size. Therefore, since
all gates keep their already decided size the sum of leakage
power in (2) may possibly dominate the cost function. The
LMs that fit to this occasion are unknown and initializing them
to 1 may not be the best choice.

Inevitably, at the first iterations of LR-based gate sizing,
lower power cells would be preferred for each gate since
they would minimize local cost at the expense of timing.
Once timing would starting getting much worse and the
corresponding LMs start to take higher values, only then
the λijdij products would favor the selection of the delay-
optimal cells. Due to improper initialization, state-of-the-art
LR-based gate sizers exhibit a counterproductive behavior. The
less timing critical is the initial state of the design, the more
time an LR-based gate sizer would need to optimize it, when
resetting the state of the design is not allowed.

To highlight this behavior we performed an experiment
using the pci bridge32 fast design of the ISPD13 benchmark
set. Fig. 1 depicts the evolution of the design’s Total Negative
Slack (TNS) during LR-based gate sizing for three different
cases. When the design suffers from many timing violations
(case A), the LR-based gate sizer is able to find fast the way to
improve timing, leading to almost closed timing after the first
six iterations. The rest iterations are used to improve leakage
power without degrading timing in the meantime.

On the other hand, if the design had initially less TNS (case
B), LR-based gate sizer prefers to improve power by degrading
timing in the first six iterations before it starts solving timing
violations and achieving timing closure in iteration eleven.
Similarly, if LR-based gate sizing is applied on an already
optimized design with only few timing violations (case C),
it will first convert many non timing critical paths to critical
before actually reducing TNS to almost zero.

It is clear that regardless of the initial TNS, LR-based
gate sizing is powerful enough to solve all timing violations.
However, due to improper initialization, it fails to do this fast



in cases that it should have. Therefore, for the case of partially
optimized designs with a small set of timing violations, like
case C of Fig. 1, we need to derive an incremental version of
the LR-based gate sizer that would achieve high quality-of-
results and fast convergence.

B. What can we do about it?
To improve the applicability of the LR-based discrete gate

sizer in an incremental optimization context, we propose an
efficient method for initializing the values of the LMs. In
this way, the values of the LMs would reflect the proper
timing criticality of each gate relative to its already selected
size, as seen near the end of the physical synthesis flow. The
proposed approach is non intrusive, since it deals only with the
initialization of the LMs, and can be used with any LR-based
gate sizer [14], [15], [16].

Determining the initial values of the LMs should not be
based solely on the criticality of the corresponding timing arcs.
Assume, for instance, that the design contains a very large
gate that contributes a lot to its leakage power and currently
has zero timing violations. In fact, we may assume that its
output pin has a small positive slack. If we assign to this
gate a small initial LM due to its positive slack, we would
lead the optimizer to downsize it in the first iterations to save
power. This choice may seem reasonable but it fails to answer
one critical question: why this gate has not been downsized
earlier by the multiple optimization steps that preceded? The
most probable answer is that this gate originally belonged to a
set of critical timing paths. Optimizing those paths in the first
steps of the flow, resulted in selecting for this gate a fast (with
small delay) but large cell. Thus, any trial to reduce its size
at the end of the flow would directly translate to new timing
violations.

Based on this intuition, we choose to initialize the LMs
following a balanced approach. We assign increased LMs to
timing arcs that are either critical at the moment or belong
to high-power cells assuming that those cells may have been
timing critical in the past. This approach may lead to a
temporary power overhead to cells that are indeed not critical
but remained large for the wrong reasons (e.g., a previously
applied optimization skipped them to save runtime). However,
the first iterations of LR-based gate sizer would identify this
by gradually reducing their corresponding LMs thus turning
them to good candidates for power reduction.

The initial value for the LM of timing arc i → j is set to:

λij =

(
ai + dij

aj

P (g)

minP (g)

)K

∀ arc i → j of gate g (3)

Gate g refers to the gate where the timing arc i → j belongs.
The starting value for each LM is the product of two ratios.
The first ratio reveals the timing criticality of the arc i → j. If
the corresponding timing arc is responsible for the late arrival
time at the output pin of gate j, the sum of ai and the delay
di,j will be equal to aj thus setting the ratio to 1. In any other
case, aj will be greater than the numerator and thus the ratio
will result to a value less than 1 signifying the non criticality
of the arc. The second ratio describes how much more power
the current version of the cell spends P (g) relative to the
minimum possible leakage power that it can spend using any

compatible library cell for gate g. In overall, when timing
critical arcs are coupled with high power cells will get much
greater LM values. The exponent K helps to increase faster
the assigned LMs values and we empirically set it to K = 2.

Similarly, for the LMs that correspond to the timing arcs
i → k, where k is a timing endpoint:

λik =

(
ak
rk

∑
gates P (g)∑

gates minP (g)

)K

∀ timing endpoint k (4)

If the signal arrives at the timing endpoint k earlier than
its required time rk, i.e., ak < rk, signaling that there is no
timing violation, the first ratio will result in a value less than
one. On the contrary, in cases that late timing is violated,
with ak > rk, the first ratio will be as big as the actual
violation. For the power ratio in the case of timing endpoints,
we suggest that it should consider the design as a whole. For
this reason, the power ratio that is multiplied to the the timing
ratio, divides the current total leakage power of the design
relative to the minimum leakage power that the design can
achieve after replacing each gate with a minimum leakage
power cell. This ratio actually quantifies how far the design is
from its virtually minimum leakage power.

IV. EXPERIMENTAL RESULTS

The proposed method was implemented in C++ inside
the open-source RSyn physical design framework [22]. The
evaluation involves already optimized benchmarks with only
few timing violations. For this purpose, we used the fully
optimized versions of the benchmarks of the ISPD 2013 gate
sizing contest [18]. Those designs exhibit closed timing and
minimized leakage power. To introduce additional timing vio-
lations, we randomly changed the resistance and capacitance of
each net by ±10% thus mimicking local re-routing operation
at the end of the physical synthesis flow.

Initially, we report the quality-of-results achieved for the
proposed method (New) relative a state-of-the-art LR-gate
sizer [14] (called Base) without allowing it to reset the state
of the design. Both cases actually utilize the same LR-based
gate sizer. They only difference is on how the initialize
the value of the LMs. The obtained results are shown in
Table I. Columns Init correspond to the design produced after
randomly perturbing the resistance and capacitance of the
wires. In all cases, the optimization stops if the improvement in
terms of timing and leakage power across two iterations is less
than 1%. Table I reports the late Worst Negative Slack (WNS),
the late TNS and the total leakage power of each design. The
final reported timing results are validated by OpenTimer [23].
Please note that ISPD2013 benchmarks do not exhibit early
timing violations and thus early timing information is omitted.

The first noticeable result is that “New” offers better timing
results than “Base” in the majority of the designs. With the
proposed LM initialization, WNS is further decreased by 24%
on average, while TNS is improved by more 36% on average
compared to the corresponding results of “Base”. “New” also
achieves slightly better leakage power than “Base”. For fair
comparison, we take into account only the leakage power
savings from designs where both the “Base” and the “New”
flow succeeded to resolve all timing violations. In those cases,



TABLE I
THE TIMING AND THE LEAKAGE POWER OF ALL DESIGNS INITIALLY (INIT) AND AT THE END OF INCREMENTAL LR-BASED SIZER WITHOUT (BASE) AND

WITH (NEW) THE PROPOSED LM INITIALIZATION.

Design #Cells Late WNS (ps) Late TNS (ps) Leakage (mW)
Init Base New Init Base New Init Base New

usb phy slow 623 -1.53 0.00 0.00 -1.53 0.00 0.00 1 1 1
usb phy fast -0.61 0.00 0.00 -0.61 0.00 0.00 2 2 2

pci bridge32 slow 30763 -11.21 0.00 0.00 -333.10 0.00 0.00 58 58 58
pci bridge32 fast -16.66 -0.44 0.00 -614.66 -0.96 0.00 98 97 100

fft slow 33792 -16.35 0.00 0.00 -320.92 0.00 0.00 88 88 87
fft fast -18.18 -6.58 -1.88 -234.28 -63.37 -4.25 217 228 228

cordic slow 42937 -13.99 -14.43 -1.24 -801.84 -116.70 -2.11 306 349 309
cordic fast -13.26 -4.26 -6.94 -752.72 -30.00 -31.40 1139 1142 933

des perf slow 113346 -30.40 -1.88 0.00 -11920.00 -5.26 0.00 449 410 420
des perf fast -25.80 -3.51 -4.10 -11412.20 -49.94 -8.69 609 522 556
edit dist slow 129227 -54.44 0.00 0.00 -21881.50 0.00 0.00 452 447 445
edit dist fast -63.59 -3.34 0.00 -36639.50 -15.16 0.00 624 630 610

matrix mult slow 159642 -44.00 0.00 0.00 -3292.93 0.00 0.00 481 487 476
matrix mult fast -33.07 0.00 0.00 -2694.75 0.00 0.00 1056 1230 1020

netcard slow 984094 -30.19 0.00 0.00 -1477.58 0.00 0.00 5160 5101 5102
netcard fast -28.97 0.00 0.00 -6394.27 0.00 0.00 5203 5144 5141

Average -25.14 -2.15 -0.89 -6173.27 -17.59 -2.90 996 996 968

“New” is 2% better on average. The reason is that whenever
there are timing violations, the design’s power is lower than
the power of the design with closed timing.

slow fast

usb_phy

slow fast slow fast slow fast slow fast slow fast slow fast

pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast

Base New

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e

Fig. 2. The runtime of both methods under comparison for all benchmarks
normalized to the runtime of the “Base”. In all cases, “New” allows for faster
convergence saving up to 45% execution time on average.

Fig. 2 compares the two approaches in terms of runtime.
All experiments were performed on the same Linux-based
workstation using a 3.6 GHz Intel Core i7-4790 with four
cores and 32 GB of RAM. “New” is able to save up to 45%
of runtime on average achieving also better quality-of-results.
In terms of absolute runtime, “Base” finishes optimizing all
designs in 9hrs, while the proposed flow needs 5hrs for the
same task. The runtime of both methods for designs usb phy
(slow and fast) is similar due to their small size of the designs.

To observe more clearly how the proposed LM initialization
helps the convergence of an LR-based gate sizer, we monitor
the evolution of TNS across consecutive iterations for two
representative designs. In the case of edit dist fast, shown
in Fig. 3(a), “Base” achieves timing closure in iteration 11,
while “New” converged faster closing timing five iterations
earlier. Similarly, in Fig.3(b) for matrix mult fast, “New” was
able to solve all timing violations in the first 2 iterations,
while “Base” needed 9 more iterations to converge. Similar
results are obtained for all other designs. The proposed LM
initialization successfully “predicts” the value of the LM that
fits better to the status of the design thus avoiding un-necessary

0 1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0
25
50
75

100
125
150
175
200

Base

New

T
N

S
 (

n
s

)

(a): edit dist fast

T
N

S
 (

n
s

)

0 1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0
2
4
6
8

10
12
14
16

Base

New

(b): matrix mult fast

Fig. 3. The progression of late TNS without (Base) and with (New) the pro-
posed LM initialization on designs (a) edit dist fast and (b) matrix mult fast.

power reductions at the first iterations that would hurt timing
initially and delay convergence later on.

To be certain for the quality-of-results of the proposed
approach, we repeated the same experiment for each bench-
mark 100 times. Each time, the methods under comparison
were applied on designs produced after perturbing randomly
the wire parasitics of the already optimized version of each
benchmark. The histogram of TNS for the initial design, and
the ones produced after applying “Base” and “New” methods
are depicted in Fig. 4 for benchmark fft fast, while similar
results are obtained for all other benchmarks.

TNS histograms reveal that both approaches successfully
decreased the original TNS. “Base” decreased the mean of
initial TNS from 225ps to 65ps, while “New” managed to
compress the TNS histogram to the left side of the diagram,
with the majority of samples gathered close to 5 ps.

For completeness, we evaluated both methods under com-
parison in a more restrictive scenario. In this case, gate sizing



5

10

15

20

25

Init Base New

2840 142 21371 106 24835 177

N
u

m
b

e
r 

o
f 

D
e
s

ig
n

s

TNS (ps)

0

Fig. 4. The histogram of late TNS initially (Init) and at the end of LR-based
gate sizing without (Base) and with (New) the proposed LM initialization.
Histograms correspond to 100 versions of fft fast with randomly perturbed
RC characteristics.

TABLE II
THE TIMING AND THE LEAKAGE POWER OF ALL DESIGNS WITH GATE SIZE

SELECTION RESTRICTION WITHOUT (BASE) AND WITH (NEW) THE
PROPOSED LM INITIALIZATION.

Design
Late Leakage

(mW)WNS (ps) TNS (ps)
Base New Base New Base New

usb phy slow 0.0 0.0 0.0 0.0 1 1
usb phy fast 0.0 0.0 0.0 0.0 2 2

pci bridge32 slow 0.0 0.0 0.0 0.0 58 58
pci bridge32 fast -1.7 0.0 -6.1 0.0 98 98

fft slow 0.0 0.0 0.0 0.0 88 87
fft fast -6.9 -1.0 -20.2 -2.2 224 221

cordic slow -8.8 -3.0 -67.2 -3.0 378 310
cordic fast -17.1 -2.7 -133.1 -4.8 1209 942

des perf slow -27.5 -1.4 -67.5 -4.5 480 464
des perf fast -14.4 -7.6 -47.4 -23.3 637 611
edit dist slow 0.0 0.0 0.0 0.0 450 449
edit dist fast -20.8 -2.0 -698.8 -2.2 623 619

matrix mult slow 0.0 0.0 0.0 0.0 478 479
matrix mult fast 0.0 0.0 0.0 0.0 1174 1020

netcard slow 0.0 0.0 0.0 0.0 5152 5153
netcard fast 0.0 0.0 0.0 0.0 5197 5194

Average -6.1 -1.1 -65.0 -2.5 1016 982

is only allowed to resize cells only to their next bigger or
smaller size without limiting VT swapping options, since they
do not alter the physical layout. This restriction makes sense at
the final steps of physical design flow to preserve as much as
possible the already defined detailed wire routes. The obtained
results are depicted in Table II. Besides the restricted availabil-
ity of gate sizes, “New” achieves considerable improvements.
Late WNS is improved by 36% on average while the savings
in TNS reach 39% on average, when compared to the baseline
LR-based gate sizer. In terms of leakage power, the restricted
“New” method achieves less leakage power by 2% on average,
when considering only the designs without negative slack at
both methods under comparison.

V. CONCLUSIONS

The incremental application of LR-based gate sizer at the
end of the physical synthesis flow, where resetting the size
of each gate is not allowed, needs special treatment in order
to achieve good quality-of-results with reasonable runtime. To
this end, the proposed approach offers a viable solution by
initializing appropriately the value of the Lagrange multipliers
after taking into account both their timing criticality as well
as the current size of the gates. In this way, we expedite
successfully the convergence of the LR-based gate sizer,

when applied in an incremental optimization context, without
affecting any part of its internal functions and without reducing
the achieved quality-of-results.

ACKNOWLEDGMENTS

Dimitrios Mangiras is supported by the Onassis Foundation
- Scholarship ID: G ZO 014-1/2018-2019.

REFERENCES

[1] L. Lavagno, G. Martin, I. L. Markov, and L. K. Scheffer, Electronic
Design Automation for IC Implementation, Circuit Design, and Process
Technology. Taylor and Francis group, 2016.

[2] N. D. MacDonald, “Timing closure in deep submicron designs,” in
Design Automation Conference (DAC), 2010.

[3] D. G. Chinnery and K. Keutzer, “Linear programming for sizing, vth and
vdd assignment,” in Proc. of the Intern. Symp. on Low Power Electronics
and Design (ISLPED), 2005, pp. 149–154.

[4] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast
legalization of standard cell circuits with minimal movement,” in Intern.
Symp. on Physical Design (ISPD), 2008, pp. 47–53.

[5] J. C. Puget, G. Flach, R. Reis, and M. Johann, “Jezz: An effective legal-
ization algorithm for minimum displacement,” in Symp. on Integrated
Circuits and Systems Design (SBCCI), Aug 2015, pp. 1–5.

[6] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin,
Y. Parasuram, and B. Halpin, “How accurately can we model timing
in a placement engine?” in ACM/IEEE Design Automation Conference
(DAC), 2005, pp. 801–806.

[7] C. Alpert, C. Chu, G. Gandham, M. Hrkić, J. Hu, C. Kashyap, and
S. Quay, “Simultaneous driver sizing and buffer insertion using a delay
penalty estimation technique,” in Intern. Symp. on Physical Design
(ISPD), 2002, pp. 104 – 109.

[8] A. Stefanidis, D. Mangiras, C. Nicopoulos, D. Chinnery, and G. Dim-
itrakopoulos, “Design Optimization by Fine-Grained Interleaving of
Local Netlist Transformations in Lagrangian Relaxation,” in Intern.
Symp. on Physical Design (ISPD), 2020, pp. 87–94.

[9] J. P. Fishburn, “Clock Skew Optimization,” IEEE Trans. on Computers,
vol. 39, no. 7, pp. 945–951, 1990.

[10] S. Kim, S. Do, and S. Kang, “Fast predictive useful skew methodol-
ogy for timing-driven placement optimization,” in ACM/IEEE Design
Automation Conference (DAC), 2017, pp. 55:1–55:6.

[11] A. Stefanidis, D. Mangiras, C. Nicopoulos, D. Chinnery, and
G. Dimitrakopoulos, “Autonomous application of netlist transformations
inside lagrangian relaxation-based optimization,” in IEEE Trans. on
CAD. [Online]. Available: https://ieeexplore.ieee.org/document/9201479

[12] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area Optimiza-
tion,” IEEE Trans. on VLSI Systems, vol. 5, no. 4, pp. 465–472, 1997.

[13] J. Hu and et al., “Sensitivity-guided metaheuristics for accurate discrete
gate sizing,” in IEEE Intern. Conf. CAD, 2012, p. 233239.

[14] G. Flach and et al., “Effective method for simultaneous gate sizing
and vth assignment using lagrangian relaxation,” IEEE Trans. on CAD,
vol. 33, no. 4, pp. 546–557, April 2014.

[15] M. M. Ozdal, S. Burns, and J. Hu, “Algorithms for gate sizing and
device parameter selection for high-performance designs,” IEEE Trans.
on CAD, vol. 31, no. 10, pp. 1558–1571, October 2012.

[16] A. Sharma, D. Chinnery, S. Bhardwaj, and C. Chu, “Fast lagrangian
relaxation based gate sizing using multi-threading,” in IEEE Inter. Conf.
on Computer-Aided Design, 2015, pp. 426–433.

[17] L. Li, P. Kang, Y. Lu, and H. Zhou, “An efficient algorithm for library-
based cell-type selection in high-performance,” in 2012 IEEE/ACM
Intern. Conf. on Computer-Aided Design (ICCAD), pp. 226–232.

[18] M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke, and C. Zhuo,
“An improved benchmark suite for the ISPD-2013 discrete cell sizing
contest,” in Int. Symp. on Physical Design, 2013, p. 168170.

[19] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach. Springer, 2009.

[20] D. Mangiras, A. Stefanidis, I. Seitanidis, C. Nicopoulos, and G. Dim-
itrakopoulos, “Timing-Driven Placement Optimization Facilitated by
Timing-Compatibility Flip-Flop Clustering,” in IEEE Trans. on CAD,
vol. 39, no. 10, pp. 2835 – 2848, Oct. 2020.

[21] H. Tennakoon and C. Sechen, “Nonconvex gate delay modeling and
delay optimization,” IEEE Trans. on CAD, vol. 27, pp. 1583–1594, 2008.

[22] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, “Rsyn:
An extensible physical synthesis framework,” in Int. Symp. on Physical
Design, 2017, pp. 33–40.

[23] T. W. Huang and M. D. F. Wong, “Opentimer: A high-performance
timing analysis tool,” in Intern. Conf. CAD, 2015, pp. 895–902.


