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Abstract—Latency-insensitive data flow is a design paradigm
that tolerates the latency variability of computations and com-
munications and allows for correct-by-construction module inte-
gration. In this paper, we aim to reduce the dynamic power con-
sumption of synchronous latency-insensitive systems by reducing
the power of their clock network. In order to save on clocking
power, we employ a Dual-Edge-Triggered (DET) clocking strategy
and flow-control rules, whereby the clock operates at half the
clock frequency, and data flow occurs on both rising and
falling clock transitions. To support this operation, new low-cost
DET elastic buffers are proposed that allow for full-throughput
operation using only two latches per buffer, and without incurring
any additional overhead relative to their baseline single-edge-
triggered counterparts. Hence, the two design elements (flow
control and elastic buffers) work synergistically to yield a highly
efficient fundamental primitive building block that can seamlessly
facilitate DET clocking in latency-insensitive systems.

I. INTRODUCTION

Latency-insensitive (aka elastic) operation relaxes the strict
global event scheduling requirements of conventional syn-
chronous designs and enables the dynamic scheduling of oper-
ations based on the availability of the corresponding data [1],
[2]. The latency-insensitive design paradigm preserves the
functional correctness of the computations, or across-module
communication, with respect to the trace of valid data ob-
served at the inputs and outputs of the computation units and
communication channels, even if the latency of the operations
may vary dynamically at runtime. This is achieved through a
distributed flow-control mechanism that governs the flow of
valid data across the system [3], [4].

The flexibility offered by latency-insensitive system oper-
ation is exploited in System-on-Chip (SoC) IP integration
using latency-insensitive wrappers, while its control handshake
semantics are widely used in on-chip communication protocols
such as the AMBA AXI and their Network-on-Chip (NoC)
implementation [5], [6], [7]. Latency-insensitive operation is
also preferred in certain forms of high-level synthesis, where
hardware units are synthesized from high-level descriptions,
or from dataflow programming models [8], [9], [10].

Over the last several years, low-power operation has become
a key design criterion in digital systems. The effort to achieve
low-power operation starts at the architectural level and contin-
ues through implementation and physical design. Clock power
optimization is one of the most important objectives, as clock
power can contribute a significant amount of the dynamic
power consumption of a synchronous digital design [11]. The
dynamic power consumption of the clock with frequency f is
mostly due to the switching of capacitances and it is equal to
1
2 a f C V 2

DD, for a capacitance C (dis)charging between 0 V
and supply voltage VDD and switching frequency a.

Clock gating reduces the switching frequency, while Dual-
Edge-Triggered (DET) synchronous operation enables the re-
duction of the clock frequency to half without changing the
system throughput by sampling data on both the rising and the
falling edges of the clock [12], [13]. DET clocking halves the
power dissipation of the clock network, leading to significant
overall system power savings.

This work applies – for the first time, to the best of our
knowledge – DET clocking to latency insensitive designs.
Combining DET operation and latency-insensitive data flow
requires modifications in both the protocol- and the circuit-
level implementations of the dataflow blocks. We first in-
troduce the semantics of the new flow control protocol that
enables operation on both edges of the clock. Subsequently,
we present novel and very low-cost DET elastic buffers
comprising only two latches. These buffers can sample, store,
and propagate their input on both clock edges, while they can
be stopped by upstream elastic buffers on either clock edge.

Overall, this work achieves a double-faceted goal: to in-
crease the applicability of the DET clocking approach, and
to reduce the clock-tree power of latency-insensitive systems.
The DET clocking strategy alleviates frequency scaling prob-
lems by retaining the data throughput of SET clocking at
half the clock frequency. At the same time, latency-insensitive
operation offers a practical solution to variable interconnect
latencies (due to short and longer wires), and simplifies physi-
cal design and integration even at high clock frequencies. The
seamless integration of DET clocking in latency-insensitive
systems – as proposed in this work – significantly increases
the versatility and scalability of the latency-insensitive concept
in the nanometer regime.

II. SET FLOW CONTROL AND ELASTIC BUFFERS

The implementation of elastic flow control requires special
clock-edge-triggered registers, called Elastic Buffers (EB).
Besides their data inputs and outputs, EBs also provide two
additional control signals, valid and stop, which enable the
generation of local forward and back pressure, i.e., elasticity
in the data’s flow. The valid signal indicates when an upstream
transmitter is attempting to send valid data. The stop signal is
used to signal the downstream receiver’s inability to capture
data sent in the current clock cycle. In this case, the transmitter
should hold the data on the link until the receiver resumes
from the stall. On the contrary, when valid=1 and stop=0, a
successful data transfer occurs [8].

In the Single-Edge-Triggered (SET) implementation of this
protocol, the assertion and the de-assertion of the valid and
stop bits are aligned to one edge of the SET clock, as shown
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Fig. 1. (a) An example of the operation of a flow-controlled (elastic) channel,
where a SET or DET design uses the SET/DET clk accordingly, and (b) the
latch-based implementation of a SET EB.

in Fig. 1(a). Thus, any data transfer between the downstream
and upstream modules occurs once per cycle.

The most efficient SET EBs are built using a master and a
slave latch connected in series – similar to a positive (negative)
edge-triggered flip-flop – that are controlled by a simple SET
FSM, as shown in Fig. 1(b)1. By connecting two latches in
series, driven by opposite levels of the clock (i.e., one latch
will be in the opaque state, while the other in the transparent
state), there is no direct path that connects the input of the EB
to its output, since the output terminal is always connected
to a latch that is opaque. This feature isolates timing paths
across any two connected EBs [2], [3]. Thus, when the output
of an EB chain stalls, the stall can only propagate back one
stage per cycle, leaving any upstream EB blind to the state of
the downstream EB for one clock cycle.To handle this, all EBs
hold two words, one for the stalled output, and one “captured”
when necessary from the previous stage. Effectively, each EB
acts as a 2-slot FIFO informing the upstream EB to stop, only
when it is full.

III. DUAL-EDGE-TRIGGERED FLOW CONTROL AND
ELASTIC BUFFERS

The extension of the valid/stop handshake protocol to the
DET clocking scheme maintains the same fundamental flow
control rules of the SET approach, but includes one funda-
mental differentiation: the valid and stop bits can change on
both edges of the clock.

A data transfer occurs between the transmitter and the
receiver when valid=1 and stop=0, irrespective of which clock
edge (rising/falling) this condition is satisfied. Therefore, data
can effectively be transferred on both clock edges, yielding the
same data transfer throughput as the SET flow-control rules
at one half the clock frequency. This property is shown in
Fig. 1(a), where the functionality remains unchanged, even
though the DET clock is used as reference. Data produced by
the transmitter on various clock edges are consumed on the

1Besides latch-based implementations, various flip-flop-based implementa-
tions of EBs are also possible [14], [15].

following (and opposite) clock edge, if the receiver is ready
to accept it.

Either side can assert or de-assert their corresponding flow-
control signals on both clock edges. For example, the receiver
that was ready (stop=0) can become unavailable (stop=1) on
the following clock edge, and vice versa. Once the receiver is
not ready, the transmitter is obligated to hold its valid data for
all the following clock edges, until the receiver becomes ready,
irrespective the clock edge that the valid data first appeared.
In Fig. 1(a) such case is present, where valid data C appears
at the output of the transmitter positive at clock edge #6(of
the DET clock). This data word is consumed by the receiver
on negative clock edge #9, when the receiver is actually ready
to accept it (the stop signal is de-asserted on positive clock
edge #8).

A. Transforming a DET flip-flop into a DET elastic buffer

A DET flip-flop typically utilizes two latches in paral-
lel [16], [17], [18], as illustrated in Fig. 2(a). Scan DET
FFs needed for testing the circuit after fabrication follow also
the same structure [19]. On every clock transition, one latch
samples upstream data, i.e., the transparent one, while the
other is opaque and selected by the multiplexer to drive the
output. It is imperative that the output is driven only by an
opaque latch to isolate (by construction) any input-output paths
and avoid any data races [17].
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(b): DET flow-controlled (elastic) pipeline with progressive
valid/stop signal propagation.

Fig. 2. The operation of (a) simple, and (b) flow-controlled (i.e., elastic)
pipelines comprising DET flip-flops and DET EBs, respectively.

When transforming a DET pipeline to a latency-insensitive
one, we assume that (a) each flip-flop is replaced by an EB,
and (b) the valid and stop signals propagate one stage per
half-cycle for maximum timing flexibility [12]. Thus, similar
to SET latency-insensitive pipelines, to handle progressive stall
propagation, each EB needs to store two data items. In this
paper, we will show how to use the existing latches of a DET
flip-flop and “transform” them into 2-slot buffers during stalls.
The other latency-insensitive pipeline primitives, such as forks,
joins, branches, and selects [3], [14] remain the same as in the
case of SET latency-insensitive pipelines.

Unlike a simple DET flip-flop, a DET EB facilitates elastic-
ity in the data flow, i.e., it must be flow-controlled. The desired
behavior is as follows: when there is no stall in the data flow,
the EB should keep one latch transparent and the other opaque,
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Fig. 3. The DET FSM that controls the operation of the DET EB.

while the output multiplexer should always point to the output
of the opaque latch. On a stall, the multiplexer of the DET EB
freezes to preserve the correct order of data arrival.

To transform a simple DET flip-flop into a DET EB,
the latches and the output multiplexer must be controlled
independently using a control FSM, as illustrated in Fig. 2(b).
Each DET EB consists of an upper and a lower latch (just
like the simple DET flip-flops of Fig. 2(a)), and the control
DET FSM orchestrates the data flow through the EB, based
on handshaking (valid/stop) signals.

The fact that the transitions happen on every clock edge
imposes the need for a DET FSM that is able to react on
every clock edge. A DET FSM is built as a traditional SET
FSM, with the only difference being that the state flip-flops
are implemented using DET flip-flops, thereby causing state
transitions and output logic changes on both clock edges.

B. The DET FSM Controller: States and Transitions
The DET FSM that controls the operation of the DET EB is

shown in Fig. 3. It consists of six states that are described by a
two-letter symbol. The first letter indicates the number of data
items that are stored in the DET EB, i.e., ‘E’ (Empty=0 items),
‘H’ (Half-full=1 item), or ‘F’ (Full=2 items). The second
letter, ‘U’ (Upper), or ‘L’ (Lower), denotes the latch of the
DET EB from which we can safely read data through the
output multiplexer. For example, in the state H U, the DET
EB holds one data item that will be read out through the upper
latch. In this case, the upper latch is necessarily in the opaque
state. On the contrary, F L indicates a full DET EB where both
latches being opaque.The older data item lies in the lower latch
(L symbol) implying the data order.

Initially, in an empty state, the buffer waits for valid
upstream data. On such an event, the buffer writes the data in
its currently transparent latch and transitions into a half-full
state. In that half-full state, the multiplexer points to this newly
captured data item providing it to the downstream channel.
This scenario is highlighted by the transitions E L→H U and
E U→H L. In the E L state, invalid data are read out from
the opaque lower latch while the upper latch is transparent and
ready to capture valid data. If valid data are actually written,
it should be read on the next clock edge from the upper latch,
as depicted by the transition to H U and not to H L.

In a half-full state (H U or H L), without any downstream
stall, the FSM will transition either between the H U and H L
states, emulating the baseline DET pipelined operation shown
in Fig. 2(a), or the FSM will move to an empty state.

The first step towards latency-insensitive operation is to
implement a mechanism that can handle a stall (stop) signal

coming from the downstream receiver. A stall in an empty
state is actually ignored, since there are no valid data to be
sent downstream and the buffer has space to store any possibly
new incoming data.

In a half-full state, the DET EB the stored data item cannot
be read out, since the downstream channel is stalled. The stall
is assumed to propagate progressively in the previous DET
EBs. Therefore, the upstream channel is not aware yet of the
blocking, and may still have in-flight data. If this is the case,
the DET FSM transitions from a half-full state to a full state,
where both latches become opaque.

To preserve the correct data order (a strict requirement in
latency-incensitive systems), the word that first encountered
the stall must be served first, once the stall is removed. This is
depicted by the transitions H U→F U and H L→F L. Even
if a new data item has been written, the read direction has not
changed, i.e., the second letter of the start and ending states
of the FSM are the same in either case. On the contrary, if no
valid incoming data are present, we need to stay in the same
state to avoid storing a bubble in the DET EB that would
appear as a valid data item.

In a full state, a stall retains the state irrespective of the
other signals, due to lack of free space. When the stall de-
asserts, the FSM switches to a half-full state, since the older
data has been read out, and the respective latch is freed (i.e., it
becomes transparent) to accept new incoming data. In parallel,
the multiplexer inverts its selection and points to the newer
data. This toggle of the multiplexer’s selection is highlighted
by the transitions F U→H L and F L→H U.

C. The DET FSM Controller: Output Logic
The DET FSM is responsible to drive the enable signals

of the upper and lower latches (denoted, respectively, as
‘ULatchEn’ and ‘LLatchEn’), the selection signal of the output
multiplexer, and the two output handshake signals: (a) the
signal valid out of the downstream channel and (b) the signal
stop out of the upstream channel.

The values of all those signals are determined by the
corresponding states of the DET FSM, as depicted in Fig. 3.
For example, the output is valid, i.e., valid out=1, when the
DET EB is not empty. Similarly, the DET EB asserts the
stop out signal when its FSM is in a full state.

The upper latch is enabled (i.e., becomes transparent) when
the DET EB is either half-full, or empty, and the output
multiplexer is currently reading from the lower latch. The
opposite condition is needed for the lower latch to be enabled.
Similarly, the output multiplexer selects the upper latch in all
‘U’ states and the lower latch in all ‘L’ states.

A complete logic-level diagram of the proposed DET EB,
including the datapath latches and the DET FSM, is shown
in Fig. 4. The 6-state FSM is mapped to three DET state
flip-flops, and the associated logic follows a delay-optimized
organization: the stop out and valid out interface signals are
driven directly from output registers, and the corresponding
stop in and valid in signals are consumed as late as possible
in the DET FSM. A similar optimization exists for the internal
datapath select signals ULatchEn, LLatchEn, and Mux sel.

IV. CASE STUDY: A DET NETWORK-ON-CHIP

The proposed simple DET flow-control rules and low-cost
DET EBs that utilize merely two latches per buffer can be used
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in the place of a SET EBs, which also need two data latches
per buffer, to reduce the clock-tree power of the system. The
amount of reaped savings solely depends on the percentage
of registers used in the design, and the complexity of the
resulting clock tree. In any case, operating the clock tree at
half the clock frequency of the original clock under the same
throughput is always advantageous, irrespective of the specific
design scenario.

To test our approach, we implemented a wormhole
Network-on-chip (NoC), where the input and output buffers
of the routers of the NoC were replaced by the proposed DET
EBs [5], [15]. Due to the simplicity of the flow-control rules,
the proposed DET EBs can be placed in the physical layout
either close to the router’s switching logic, or they can be
distributed across the NoC links to facilitate timing closure.

To enable DET clocking in all router components, all the
remaining registers of the design – either in the control logic,
or in the arbitration logic of the routers – were transformed
into DET registers. Unfortunately, our implementation was
impeded by a deficiency that afflicts the vast majority (to
the best of our knowledge) of commercial standard-cell li-
braries: they do not contain any dual-edge-triggered flip-flops.
Consequently, we were forced to emulate the DET flip-flop
functionality by using one positive- and one negative-edge
triggered flip-flop for each SET flip-flop of the original design.
This transformation created an unnecessary overhead, since
the DET routers introduced a larger clock-pin capacitance
and led to more complex clock trees. Additionally, the output
multiplexers of the emulated DET flip-flops led to an increase
in the router’s critical path. However, it should be stressed that
these complications are artifacts of the emulation of DET flip-
flops using SET ones, which was inevitable due to the lack of
DET flip-flops in most standard-cell libraries.

Nevertheless, despite the above-mentioned limitations in
the implementation flow [13], which limited our ability to
perform a true “apples-to-apples” comparison, we were still
able to observe clock-tree power savings that reached 30%,
after testing different scenarios with respect to data width
and the number of router input/output ports. In all examined
cases, the SET routers were assumed to operate at 1 GHz,
although they were able to reach a higher clock frequency at
45 nm/0.8 V. The DET NoC operated at 500 MHz to also cover
any pessimism due to the additional clock jitter that needs
to be taken into account under dual-edge clocking. Most im-

portantly, both NoC implementations (SET and DET) exhibit
equivalent cycle-by-cycle behavior during logic simulations.

V. CONCLUSIONS

Latency-insensitive design combines the modularity of
asynchronous design with the efficiency of synchronous imple-
mentations, offering a correct-by-construction paradigm that
can be applied at the early or the latest stages of the design,
without any impact on the functionality of the system. On
the other hand, DET clocking provides a concrete solution
to the issues of frequency scaling and timing closure, by
retaining the data throughput of SET clocking at half the clock
frequency. In this work, we efficiently merge – for the first time
– the benefits of both design principles, by proposing DET
flow-control rules and low-cost DET EBs that yield scalable
latency-sensitive systems with markedly reduced clock-tree
power. The proposed DET EB design constitutes a promising
new primitive building block that can facilitate DET clocking
in latency-insensitive setups.
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