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ARTICLE INFO ABSTRACT

The RISC-V Instruction Set Architecture (ISA) is becoming an increasingly popular ecosystem for both hardware
and software development. In this article, we investigate one of RISC-V’s most versatile ISA extensions, which
allows for compressed 16-bit instructions to coexist with regular 32-bit instructions. While the use of instruction
compression has been touted as a means to primarily reduce code density, we present another beneficial ex-
ploitation avenue: dual issuing of compressed 16-bit instructions with minimal hardware overhead.
Consequently, the proposed RISC-V processor design can substantially improve instruction throughput and re-
duce execution times. Additionally, the new processor employs selective register renaming to specifically target
the registers used under instruction compression, thereby completely eliminating unnecessary stalls due to name
dependencies. Finally, the new design utilizes a partitioned register file that capitalizes on the skewed use of
registers to improve energy efficiency through clock gating. Extensive hardware analysis and cycle-accurate
simulations using real applications demonstrate the effectiveness of the proposed processor architecture. Dual
issuing of compressed instructions is shown to often approach the performance of a full-width two-way super-
scalar processor, but with much higher area and power efficiency; this is of paramount importance to severely
resource-restricted emerging paradigms, such as wearable devices and Internet-of-Things (IoT) environments.
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1. Introduction

The RISC-V Instruction Set Architecture (ISA) has emerged over the
last few years as a completely free, open-source, widely supported, and
richly documented software/hardware ecosystem [1,2] suitable for
hardware implementation and software development. In addition to
providing a detailed ISA specification, the RISC-V initiative includes a
complete software stack — with compiler tool chains and operating
system ports — that can be used for both general-purpose and embedded
computing. Consequently, RISC-V has enjoyed widespread proliferation
within both academic and industrial circles.

One of the salient attributes of the RISC-V ISA is its inherent ex-
tensibility, which aims to facilitate extensive specialization and custo-
mization. In addition to the base integer ISA, RISC-V supports instruc-
tion-set extensions that can leverage specialized underlying hardware,
such as application-specific accelerators, Digital Signal Processors
(DSP), etc. Several processor cores supporting the RISC-V ISA are al-
ready available. The targeted domains range from embedded ultra-low-
power Internet-of-Things (IoT) [3] to high-performance general-
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purpose superscalar Out-of-Order (0o0O) CPUs [4,5].

As part of its innate support for ISA extensions, RISC-V employs an
encoding scheme that also supports variable-length instructions. Each
instruction may comprise any number of 16-bit instruction quanta, so
called “instruction parcels,” and, consequently, instruction alignment
may occur at 16-bit boundaries. The provided standard compressed ISA
extension — called the “C extension” — provides compressed 16-bit in-
structions, which can markedly improve code density. In fact, the re-
duction in code size is mentioned in the RISC-V instruction set manual
as the prime motivator for using compressed instructions. However, in
this article, we aim to utilize the built-in support for compressed in-
structions in RISC-V for a different purpose: to improve system per-
formance by increasing throughput. In addition to the consequent ad-
vantages of having a smaller code size, we hereby present another way
to reap benefits from the presence of compressed instructions.

Specifically, we present an in-order RISC-V processor architecture
that supports dual issue of compressed 16-bit instructions with minimal
hardware overhead. Without increasing the fetch width of the pro-
cessor, which is 32 bits wide, the proposed design can issue — when
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The key technical attributes of various open-source RISC-V processors that are currently available, and how they compare to the proposed processor design. Entries
suffixed with an asterisk (*) refer to parameters/attributes that are not explicitly reported in the provided documentation of the corresponding processor.

Core/Property: ISA Sets Pipeline Stages Out Of Order Renaming Caches Branch Prediction Issue Width
Rocket [1] RV32/64/MAFD 5 in-order no yes yes 1
ORCA [6] RV32IM 4,5 in-order no no no 1*
PULPino [3] RV32IMCF 4 in-order no no no 1
OPenV/mriscv [7] RV321 3* in-order no no no 1
VexRiscv [8] RV32IM 5 no* no yes no* 1*

Roa Logic RV12 [9] RV32/64IAMCE 4 in-order no* yes yes 1*
SCR1 [10] RV32I/E[MC] 2 upto 4 no* no no* no* 18
BOOM [4,5] RV64MAFD 6 000 yes yes yes 1,2,4
Shakti (Family) [11] RVEIMCSHTN 3 upto 8+ io/000 y/n y/n y/n various
Z-Scale [12] RV32IM 3 in-order no yes no* 1

This Work RV32IMCF 6 in-order selective yes yes 2

possible — two 16-bit compressed instructions per cycle. To the best of
our knowledge, this is the first work that proposes dual-issue func-
tionality specifically for compressed RISC-V instructions. The proposed
design aims to increase performance in a very cost-effective manner,
thereby targeting environments with stringent hardware area/power
budgets that still demand increasingly higher performance.

By detecting the presence of 2 compressed instructions in a single
32-bit instruction chunk, the new design can improve processing
throughput by simultaneously issuing both instructions to execution.
Detailed profiling analysis of several benchmark applications using the
evaluation framework presented in Section 4 indicates that the per-
centage of compressed instructions in the compiled code produced by
the RISC-V compiler is very high, ranging from 37% to 76% (56%, on
average). This observation serves as a primary motivation for the use of
a dual-issue design specifically tailored to compressed instructions.
Since (a) there is an abundance of compressed instructions in the in-
struction stream, and (b) two consecutive compressed instructions have
the same fetch width as a single 32-bit instruction, the augmentation of
dual-issue functionality for compressed instructions could constitute a
very cost-effective way to substantially increase the processor’s
throughput. On the contrary, the alternative approach of employing a
wider, superscalar design incurs significant hardware cost, which leads
to reduced area/power efficiency.

Furthermore, the proposed design capitalizes on another startling
observation The RISC-V ISA specification forces the use of a small group
of specific registers for some classes of compressed instructions.
Consequently, under instruction compression, the vast majority of the
generated instructions use only a small subset of the available integer
registers, namely 8 out of the 32 available architectural registers, which
are available for use by compressed instructions. Specifically, when
instruction compression is enabled, those 8 specific registers account
for 57% to 85% (72%, on average) of all the registers used by the
compiler. In other words, even a large portion of the non-compressed
instructions still use the same 8 registers supported by the compressed
instructions. Obviously, this unbalanced use of the pool of available
registers creates an inordinate amount of unnecessary name de-
pendencies, write-after-write and write-after-read, which hamper per-
formance. To address this issue, the processor design proposed in this
work employs selective register renaming for only those 8 “hot” regis-
ters, the use of which is spread out to a total of 16 registers, i.e., the 8
existing ones plus 8 additional ones.

The highly skewed use of registers when using instruction com-
pression allows for another optimization. The register file can be par-
titioned into two segments: one housing the 8 “hot” registers plus the 8
additional physical registers used for renaming, and the other housing
the remaining 24 architectural registers. In this way, the latter register
partition - that is not used so frequently under instruction compression
- may be appropriately clock-gated for improved energy efficiency.

The new in-order, dual-issue microprocessor supporting the RISC-V
ISA was fully implemented in System Verilog, and verified using

Universal Verification Methodology (UVM) test-benches. To facilitate
detailed hardware evaluation, the fully functional processor was syn-
thesized with a commercial 45nm standard-cell library using the
Cadence digital implementation flow. The hardware analysis is com-
plemented with cycle-accurate simulations at the RTL level of several
benchmark applications, which validate the efficiency of the new me-
chanisms. The evaluation includes comparisons to existing in-order [1]
and out-of-order [4,5] state-of-the-art RISC-V-based designs. It is de-
monstrated that the proposed architecture can regularly approach the
performance of a full-width two-way superscalar processor, albeit with
much higher area/power efficiency, which is instrumental in rapidly
emerging resource-constrained domains, such as wearable devices and
IoT.

The rest of the paper is organized as follows: Section 2 presents
related work in the domain of microprocessors supporting the RISC-V
ISA. Section 3 introduces the proposed processor core and all the me-
chanisms that use the RISC-V compressed ISA extension to improve
performance and energy efficiency. Section 4 describes the employed
evaluation framework, and, subsequently, presents the evaluation re-
sults and accompanying analysis pertaining to both the performance
and the hardware cost of the new processor core. Finally, concluding
remarks are made in Section 5.

2. Related work

There is a rich body of literature revolving around the RISC-V
ecosystem, with papers proposing different variants of processor cores,
and/or architectural platforms integrating RISC-V cores with applica-
tion-specific accelerators. Table 1 summarizes key technical attributes
of various RISC-V processors that are currently available. Note that this
is by no means an exhaustive list, but it provides an indication of the
prevailing tendencies in the RISC-V domain.

The Berkeley Rocket chip SoC generator [1,13] can generate dif-
ferent instantiations of the Rocket RISC-V processor core. The Rocket
processor has already been used within the Celebrity SoC [14], which is
a parallel accelerator fabric for embedded applications that includes a
neural network accelerator implemented as a Rocket custom co-pro-
cessor. Similarly, VELOUR is a very-low voltage and resilient hetero-
geneous RISC-V-based system [15] that uses a Rocket processing core
with a tightly-coupled deep neural network accelerator and another
coprocessor/accelerator. The Rocket processor has also been re-
constructed as a so called Labeled von Neumann Architecture [16],
which is a new software-defined computer architecture concept. This
Labeled-RISC-V architecture uses a labeling mechanism and program-
mable label-based policies to yield hardware with software-defined
functionality [16].

The PULP platform [17] is a many-core accelerator aimed at ultra-
low power processing applications, such as those encountered in IoT
environments. The PULP platform has been used to generate processing
cores implementing the RISC-V ISA [3,18,19]. Additionally, PULP is the
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Fig. 1. A high-level overview of the proposed processor’s micro-architecture. The processor is implemented in a 6-stage pipelined organization.

underlying platform used in HERO, an FPGA-based platform comprising
clusters of RISC-V soft cores [20].

GRVI is a simple RISC-V scalar core that forms the key ingredient in
the GRVI Phalanx [21] FPGA-based massively parallel accelerator fra-
mework. Groups of GRVI cores and specialized accelerator cores form
shared-memory compute clusters. Similarly, Taiga is a RISC-V 32-bit
soft processor that can be used in configurable FPGA-based multicore
frameworks used for heterogeneous computing [22].

Orca is another simple RISC-V scalar core [6], intended to target
FPGAs. It was built to host the Vectorblox’s Proprietary Matrix pro-
cessor, MXP [23], although it can also work as a standalone core. The
mriscv design is a complete microcontroller featuring a RISC-V core [7].
It offers ADCs, DACs, GPIO, and SPI interfaces. The VexRiscv is a RISC-
V core [8] that offers support for interactive debug and extensive sta-
tistics of performance/area/frequency obtained from synthesis for
various FPGAs. The Roa Logic RV12 core [9] is a highly-configurable
core, featuring a Harvard architecture for simultaneous instruction and
data memory accessing. It also features an optimized folded 4-stage
pipeline, for improved efficiency. The Syntacore Scrl [10] is a core
written in SystemVerilog, optimized for area and power. It also includes
an integrated IRQ controller and support for advanced debugging. The
Z-Scale is a tiny 32-bit RISC-V core [12] from Berkeley, suited for mi-
crocontroller and embedded systems, comprised of only 3 pipeline
stages. Currently, the core is deprecated and does not support the latest
ISA specifications. Yarvi [24] and LowRisc [25] are two other open-
source RISC-V cores, but no public information is available besides their
source code. The Riscy repository [26] provides a collection of open-
sourced RISC-V processors that can be used in different simulation
frameworks, or in FPGAs.

Various extensions to the RISC-V ISA have also been proposed. For
example, the processor presented in [18] introduces SIMD/DSP in-
struction extensions to increase the processor’s energy efficiency and
make it suitable for near-threshold operation. The RISC-V instruction
set extension described in [27] adds support for the custom program-
ming model of MIT’s Fresh Breeze system architecture.

The Simty processor [28] is a more specialized RISC-V architecture
that supports the Single Instruction Multiple Threads (SIMT) execution
model. Simty is a massively multi-threaded RISC-V processor core im-
plementing the SIMT execution model purely at the microarchitecture
level.

In addition to RISC-V processors targeting embedded applications,
researchers have also targeted the high-performance general-purpose
computing domain, building superscalar, out-of-order RISC-V pro-
cessors. The two versions of the BOOM processor exemplify these ef-
forts [4,5].

Despite the plethora of research efforts in the RISC-V domain, there
is no work — to the best of our knowledge - to have examined the po-
tential of the standard compressed ISA extension to RISC-V. In this

paper, we perform an in-depth exploration of the capabilities of the
RISC-V compressed ISA extension and propose very lightweight micro-
architectural modifications to exploit the full-potential of compressed
instructions.

The concept introduced in this work of simultaneously executing
two compressed RISC-V instructions within the microprocessor’s data-
path is similar in vein to the VLIW mode of the non-RISC-V processor
presented in [29]. The 32-bit VLIW RISC core proposed in said paper
has a double datapath that can execute a pair of 16-bit instructions
fetched concurrently as a 32-bit VLIW word. However, being a VLIW
design, the processor in [29] relies entirely on the compiler to resolve
dependencies, while the pair of 16-bit instructions can never be sepa-
rated during the execution flow, which means that any stall affects both
instructions at the same time. On the contrary, our approach performs
scheduling of compressed instructions dynamically in hardware, and
the two instructions are fully decoupled during execution and are even
allowed to complete execution out-of-order.

3. The processor micro-architecture

The processor is implemented in a 6-stage pipelined organization
that includes the following stages: (a) Instruction Fetch (IF), (b)
Instruction Decode (ID), (c) Register Renaming (RR), (d) Instruction
Issue (IS), (e) Execution (EX), and (f) Write-Back (WB). A high-level
overview of the proposed processor’s micro-architecture is depicted in
Fig. 1. Instructions are fetched and issued for execution in program
order. The write-back/retirement stage is also in-order. However, the
execution can be completed out-of-order.

The duration in cycles of the EX stage is variable and it depends on
the operation being executed. Table 2 summarizes the EX latencies of
the various instruction types. For some instructions, the EX stage either
requires several cycles to complete, or it is further pipelined in several
sub-stages. Consequently, the overall pipeline depth is not 6 stages for
all instructions; some instructions will experience a longer pipeline
depth, due to a higher latency in their EX stage. Simple instructions,
such as branches, logical operations, and additions/subtractions, take
only a single cycle to complete their EX stage, i.e., they experience the
nominal 6-stage pipeline. Division needs 16 cycles to complete its EX

Table 2
The execution (EX) latencies of the different instruction types.

Instruction type Latency (cycles)

Simple arithmetic (add/sub) 1
Multiplication (pipelined) 4
Division (non-pipelined) 16
Branches 1
Load/Store Variable
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stage, during which the pipeline is busy, while multiplication is fully
pipelined, with an EX latency of 4 cycles. Finally, the execution latency
of memory operations is not constant, because it depends on the state of
the data cache. The EX latency of memory operations can vary from a
single cycle, up to several cycles, if a data cache miss occurs.

3.1. Front-end

The frond-end of the microprocessor is responsible for the fetching
and decoding of the instructions. The instructions are subsequently fed
to the back-end of the processor core for execution and retirement. The
instruction-fetch sub-system of the front-end comprises the instruction
cache and a dynamic predictor module. For optimal performance, the
fetch stage should - ideally — provide a continuous stream of useful
instructions, i.e., instructions on the correct execution path. To enable
such seamless and continuous flow of instructions, the predictor module
predicts the path that each branch will take, while the instruction cache
reduces the penalty of the memory accesses. The synergistic symbiosis
of these two elemental sub-systems is critical in achieving high per-
formance. In each clock cycle, the Program Counter (PC) address is
supplied in parallel to both the instruction cache and the dynamic
predictor, from which the fetched instruction and the next PC address
are procured, respectively.

The dynamic predictor itself utilizes three sub-modules, as illu-
strated in Fig. 1. The Branch Target Buffer (BTB) records the target PC
address of each branch instruction, in order to expedite the determi-
nation of branch-taken addresses. Each of the BTB’s entries holds a tag
and a full 32-bit target address. Its indexing is performed by supplying
the current PC address. If a tag match is identified, the predicted target
address is the one stored in the matched entry.

The correlated branch-direction predictor maintains a history of the
outcomes of previous occurrences of each branch. Based on this history,
the predictor can guess the direction, i.e., taken/non-taken, of the
current branch. The predictor is indexed using the current PC address.
Each entry contains several potentially saturated counters. One of these
counters is picked using the global branch history — recorded in a se-
parate register — XORed with some bits of the PC address, thereby
adopting a Gshare indexing scheme. The state of this counter will pro-
vide the final prediction. Recall that only a taken/non-taken prediction
is generated by this sub-module. The actual target address of the branch
is retrieved from the aforementioned BTB sub-module.

Finally, the Return Address Stack (RAS) stores the return addresses
of the decoded function calls. When the function’s return instruction is
encountered, the entry popped from the RAS is used as the next PC
address. The RAS is a complementary structure to the other two sub-
modules of the predictor, and its aim is to improve the predictor’s ac-
curacy when dealing with branch instructions used for function calls/
returns.

The instruction cache is a typical blocking cache structure. In the
case of a hit, the access is completed within the same cycle. However, if
a miss occurs, the cache “blocks” until the requested data is provided by
the lower level of the memory hierarchy. The replacement policy uses a
pseudo-LRU scheme to choose which block will be evicted.

The fetch width is constant at 32 bits per cycle. Fetches at the edge
of cache blocks are converted into two-cycle operations, in which the
data is retrieved in packets and then re-assembled. The instruction
alignment is done at 16-bit boundaries. This implies that, within the 32
fetched bits, one may find one full 32-bit instruction, or two compressed
16-bit instructions, or even invalid parts of instructions, if misalignment
occurs. Any misalignment is detected and signalled by the decoder, so
that the fetch sub-system can redirect and re-align to the correct ad-
dress. Redirection also occurs if a branch resolution indicates a mis-
prediction.

The Instruction Decode (ID) stage is responsible for decoding the
fetched 32-bit instruction chunk. It contains one decoder for full-length
32-bit instructions, and two decoders for compressed 16-bit
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instructions. In RISC-V ISA the fields are always encoded in the same
place inside the instruction body, which makes the decoding fairly
straight-forward. As previously mentioned, the ID stage is also re-
sponsible for detecting misalignment and invalid instructions, which
generate appropriate signalling for the IF stage to realign and resume.

It should be noted that adding support for compressed instructions
is not a straight-forward task, as also described in [30]. Not all 16-bit
instructions map fully to the corresponding 32-bit ones. This means that
the pipeline must be aware of the nature of the instructions, i.e.,
whether they were originally compressed. The same applies to the
program flow controllers and predictors, which should also track
whether any given instruction was originally compressed or not. We
tackle this problem by efficiently allocating internal micro-op codes to
the instructions, and by tracking the program flow in the ID stage,
where all necessary information is readily available. This removes the
need for any extra book-keeping in the pipeline.

3.2. Register Renaming and dispatch to execution

Upon completion of the ID stage, the decoded instructions are fed
into the Register Renaming (RR) stage. The inclusion of such a sub-
system was deemed necessary after detailed profiling analysis of several
benchmark applications, which revealed a key attribute pertaining to
how the available registers are utilized by the RISC-V compiler. The
details of our evaluation framework and the profiling analysis of the
benchmarks are presented in Section 4. It turns out that, when using
instruction compression, the RISC-V ISA specification dictates the use of
predominantly 8 specific registers for some classes of compressed in-
structions, namely registers x8-x15. These 8 registers are used, on
average, 72% of the time across all examined benchmarks, and, natu-
rally, they give rise to a huge amount of name hazards/dependencies,
write-after-write and write-after-read.

To mitigate this artificial bottleneck and reap all the potential
benefits of using compressed instructions, the proposed processor de-
sign employs selective register renaming targeting only registers
x8-x15. Through register renaming, the 8 heavily used architectural
registers are spread out to 16 physical registers. An overview of the
proposed selective register renaming scheme is shown in Fig. 2. Selec-
tive — rather than full — renaming allows for significant area savings,

Instr#2
{Src1, Src2, Dest}

Instr#1
{Src1, Src2, Dest}

Selective Renaming
8+8 Registers

Fig. 2. The proposed selective register renaming scheme. The 8 heavily used
architectural registers (x8—x15 in the ISA) are spread out to 16 physical regis-
ters through renaming (‘R’ paths). The other architectural registers are not re-
named (‘U’ paths, i.e., un-renamed). Note that up to two instructions can be
renamed per cycle.
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since only 40 physical registers are needed in total, 32 existing + 8 extra
for renaming, instead of the 64 that would be required if all 32 archi-
tectural registers were to be renamed. Furthermore, due to the limited
scope of the renaming, all the structures required for renaming are
significantly smaller.

Up to two instructions can be renamed per cycle, to enable dual-
issue functionality later on, as shown in Fig. 2. The renaming system
utilizes a Register Alias Table (RAT) that keeps track of the mapping of
the 8 “hot” architectural registers to the 16 physical ones. Since the
RAT is corrupted on mis-predicted branches, the RAT uses a check-
point-based repair mechanism. Each new renamed branch triggers a
new checkpoint capture. If the branch ends up being mis-predicted, the
RAT can be repaired within a single cycle, by restoring the corre-
sponding checkpoint. Up to four checkpoints are supported, and,
therefore, up to four branches can be in-flight simultaneously. A free-
list structure is also used, which is a simple queue holding the identi-
fiers of the free physical registers that can be allocated to the incoming
instructions.

The renamed instructions then pass through the Issue Stage (IS),
before being dispatched for execution. The IS stage is built around a
simple score-boarding mechanism, which keeps track of the status of
each physical register. The score-board has a total of 40 entries, one for
each physical register. It keeps track of each register’s usage, as well as
the location of the latest data. If some pertinent conditions are satisfied,
up to two instructions may be dispatched in-order for execution. The
conditions that must be met before dispatching are: (a) the source data
must be available, (b) the functional units must be ready to accom-
modate new instructions, and (c) no conflicts — dependent data, or use
of the same functional unit — must exist between the instructions. The
supported dual-issue functionality allows for the simultaneous issuing
of two compressed 16-bit instructions without the need to double the
fetch width. Thus, in addition to exploiting compressed instructions to
reduce the code size, the proposed processor design also reaps perfor-
mance - throughput — benefits through the dual issuing of two con-
secutive compressed instructions to execution.

Instructions that are dispatched to execution obtain their source
operands from the Register File, as indicated in Fig. 1. In the proposed
implementation, the register file design capitalizes on the skewed use of
the registers when instruction compression is employed. Recall that the
registers used most of the time are 16 specific registers, i.e., registers
x8-x15 and the 8 physical registers used in the selective register re-
naming scheme. The remaining 24 architectural registers are used
markedly less often. This operational characteristic has motivated us to
design a partitioned register file, which is split in two segments: one
housing the 16 frequently used registers, i.e., the selectively renamed
registers, and the other housing the 24 registers that are not accessed so
frequently, i.e., not renamed. The architecture of the employed parti-
tioned register file is abstractly illustrated in Fig. 3. Essentially, the
register file is partitioned into a “hot” segment that is primarily used
during execution, and a “cold” segment that is used more sporadically.

3.3. Back-end

The back-end of the processor core consists of the Execution (EX)
and the Write-Back (WB) stages. There are four functional units in the
EX stage, each tasked with different operations. The first unit is the
integer ALU. All its operations are pipelined and, therefore, it can ac-
cept a new instruction every cycle. The only operation that will cause
the unit to block is division, which is not pipelined. The second unit is
the branch-resolve unit, responsible for the resolution of all branch
instructions. The execution of this particular unit always finishes within
one cycle. The third unit is the load/store unit that has a direct con-
nection to the data cache. Since RISC-V is a load-store ISA, the data
cache can also provide lock-free operation. This means that upon
misses, it can continue to serve new instructions while waiting for the
data to arrive from the next level of the memory hierarchy. This was a
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Fig. 3. The proposed partitioned register file comprising a “hot” segment — top
partition — that is primarily used during execution for the selectively renamed
registers, and a “cold” segment — bottom partition — that is used more spor-
adically for the registers that are not renamed.

deliberate design choice, so that the performance of the processor could
be somewhat decoupled from the performance of the memory system.
To achieve non-blocking operation, we employ buffers (load/store/
wait) that store relevant information of the instructions that missed,
until they can be served. The fourth functional unit is the floating-point
ALU, which, in the current implementation, is missing. The whole pi-
peline organization is fully ready to support floating-point instructions;
the only remaining module to be implemented in the next incarnation
of the processor is the floating-point unit.

The WB stage is facilitated through the use of a Re-Order Buffer
(ROB). This pipeline stage uses the well-established “data-in-ROB”
scheme, whereby all execution results are temporarily stored within the
ROB, until the instructions can commit/retire. The ROB maintains the
correct program order during the retirement of the instructions, and
allows for speculative execution beyond branches. In each clock cycle,
only the oldest — in terms of program order - instruction can commit
and modify the architectural state of the processor. Retirement includes
writing the results to the physical register file, or saving the data in the
data cache, in the case of store instructions. Because the retirement rate
is limited to one instruction per cycle in the current implementation,
the effective maximum throughput of the pipeline is also set to one
instruction per cycle.

4. Evaluation results
4.1. Evaluation framework

In this section, we perform a detailed evaluation of the proposed
RISC-V microprocessor core, and we compare it — in terms of perfor-
mance and hardware cost — with two existing, state-of-the-art RISC-V-
based cores: (a) the Rocket core [1], which is a single-issue, in-order
processor with no compressed instructions, no register renaming, and
no register-file partitioning; and (b) the BOOM core [4,5], which is a
two-way superscalar processor with out-of-order execution and register
renaming, but no support for compressed instructions. In all compar-
isons, the Rocket core [1] serves as the baseline low-cost processor,
while — at the other end of the spectrum — the BOOM core [4,5] serves
as a reference high-performance processor with high hardware cost.

The proposed core design was described in SystemVerilog. It was
debugged via extensive RTL simulation and with the use of UVM test-
benches, both at the sub-module level and at the system level. In the
initial phase of validation, random instruction sequences were em-
ployed to stress each component and identify obscure corner-case bugs.
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Subsequently, several real benchmark applications were compiled and
executed to completion at the RTL level to prove the core’s correct
execution flow. The RTL simulation results were compared with the
high-level RISC-V functional simulator Spike for correctness.

The performance of the new processor was evaluated using a suite of
11 benchmark applications, as follows: 2D-median filter, FIR filter, bub-
blesort, insertion sort, binary search, autocorrelation, vector-vector addition,
software multiplication, dot product, factorial, and XOR cipher. The se-
lected benchmarks include a representative mix of algorithm types
encountered in both the embedded and general-purpose computing
domains. Three are for signal processing/filtering, four are for mathe-
matical computations, three for data processing (search/sort), and one
for data encryption.

All benchmarks were cycle-accurately executed from start to finish
at the RTL level, and various salient statistics were retrieved from
performance counters present in the processor. These include the
standard instruction/cycle/timing counters, and more specialized
trackers for hazards and stalls in the various pipeline stages, which
were added to aid our detailed performance profiling analysis. All
statistics were gathered after the complete execution of each bench-
mark. Furthermore, the computational output of each benchmark was
compared between all investigated processor implementations to en-
sure the same execution flow. The validation comparison included the
final contents of the register file and memory, and the total numbers of
executed and committed instructions.

In addition to being evaluated in terms of performance, the pro-
posed processor was also assessed in terms of its hardware cost, in order
to quantify the area/power/timing overhead of the employed techni-
ques. The hardware cost evaluation was conducted after synthesizing
the RTL implementation of the core using a commercial 45nm stan-
dard-cell library under worst-case conditions (0.8 V, 125°C), using the
Cadence digital implementation flow.

4.2. Performance evaluation

As part of the performance evaluation of the proposed RISC-V
processor core, the 11 previously described benchmark applications
were executed to completion and various statistics were collected. Four
different processor designs were evaluated: (1) the Rocket core [1] as a
baseline single-issue, in-order setup, (2) a version with compressed
instruction support and dual-issue functionality (called “dual”) to in-
crease the throughput in the presence of 16-bit compressed instructions,
(3) a version of the core with compressed instruction support, dual-
issue functionality and selective register renaming (called “dual+RR”),
as described in Section 3, and (4) the full two-way superscalar out-of-
order BOOM core [4,5]. The processor parameters used in our simula-
tions are summarized in Table 3. Note that we evaluate two different
cache/memory setups: (a) a memory hierarchy with only a Level-1 (L1)
cache, and (b) a memory hierarchy with two levels of cache, L1 and L2.
The former setup is intended to represent a low-cost lightweight system,
while the latter setup represents a higher-performance system.

The obtained results are reported in Table 4. The first notable ob-
servation in Table 4 is the very high percentage of compressed in-
structions found in all benchmarks. When the compiler utilizes the
standard compressed RISC-V ISA extension, the amount of generated
compressed instructions in the resulting binary ranges from 37% to
76%, without any user intervention. It is precisely this extensive use of
instruction compression that motivated the proposed dual-issue func-
tionality: since pairs of 16-bit instructions are very often encountered in
the 32-bit instruction-fetch chunks, it would be both cost-effective and
advantageous to employ dual-issue functionality to increase
throughput.

Indeed, the dual-issue functionality is extensively utilized in the vast
majority of the applications, as indicated by the results in the fourth
column of Table 4. On average, 28% and 27% of all issue operations are
dual in the processors supporting dual-issue and dual-issue+renaming,
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Table 3
The simulated processor/system parameters.

Parameter Value

General parameters
Instruction-Q Size
ROB Size

Max Branches in-flight
Memory parameters

4 entries
8 entries
4 (applicable only with RR)

IC Lines 256
IC Line Size 256
IC Associativity 2-way
DC Lines 256
DC Line Size 256
DC Associativity 4-way
L2 Lines 2048
L2 Line Size 512
L2 Latency 10 cycles
L2 Associativity 1-way
Main Memory Lines 2048
Main Memory Line Size 512

Main Memory Latency
Predictor parameters

50 cycles

BTB Size 128 entries

Gshare Size 128 entries

Branch Global History 2 bits
respectively.

A most surprising observation, however, is made when looking at
the usage of the eight architectural registers x8-x15, as a percentage of
all register usage by the compiler (third column in Table 4). These 8
registers are available for use by compressed instructions. In general,
under instruction compression, the RISC-V ISA specification imposes
the use of primarily those 8 registers for some classes of compressed
instructions. In fact, the usage of said registers ranges from 57% to 85%
across the 11 examined benchmarks. We surmise that the reason for this
highly skewed use is the fact that those registers are preferred even by
the non-compressed instructions, to perhaps minimize data movement
between compressed and uncompressed instructions.

As a direct consequence of this heavily unbalanced use of the reg-
ister resources, an exceedingly high number of name hazards — write-
after-write and write-after-read — are observed during execution. On
average, applications are stalled 17% of the time due to name hazards
as reported in the column ‘% Stalls due to Hazards’ of Table 4. It is
interesting to note that the percentage of stalls due to hazards increases
slightly under dual-issue functionality, as compared to the baseline
single-issue case. This is because the increased throughput provided by
dual-issuing further accentuates the bottleneck created by the name
hazards. To tackle this bottleneck, we employ selective register re-
naming targeting specifically the 8 “hot” registers x8-15. By spreading
out the usage of those 8 architectural registers to a total of 16 physical
registers, we completely eliminate the stalls due to hazards, as shown in
Table 4 for the processor supporting dual-issuing and register renaming.

We also quantified the percentage of time the core is stalled due to
an empty instruction queue. The latter becomes empty when the in-
struction fetching mechanism cannot keep up with the back-end of the
CPU. The two right-most columns of Table 4 report this percentage for
both the L1-only system, and the system with L1 and L2 caches. In the
second case, the L2 cache is assumed to have a 10-cycle access latency.

As expected, the addition of dual-issuing and register renaming to
the system with only one level of cache leads to an increase in the stalls
due to an empty instruction queue, since the back-end is now much
more effective in consuming, i.e., executing incoming instructions.
Consequently, the front-end — instruction fetching — now impedes the
execution flow. In the case of the processor with dual-issuing and reg-
ister renaming, the average percentage of stalls is 32%. This particular
analysis pinpoints the fetch bandwidth as an excellent target in the
pursuit of further performance improvements. One way to mitigate the
limitation of the narrow fetch bandwidth without increasing the fetch
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Table 4
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The performance results for all benchmark applications when executed on the four different investigated processor configurations. All results are derived from a

system with only one level of cache, except those in the right-most column.

Benchmark & Processor Config. % Instruction Compr. % Dual-Issue Utilization

% Stalls due to Hazards % Stalls due to Empty-Q % Stalls Empty-Q With L2 Cache

2D median -Rocket [1] 0% 0%
2D median -dual 47% 20%
2D median -dual +RR 47% 14%
2D median -Boom [4,5] 0% 14%
multiply -Rocket [1] 0% 0%
multiply -dual 48% 40%
multiply -dual + RR 48% 40%
multiply -Boom [4,5] 0% 46%
bubblesort -Rocket [1] 0% 0%
bubblesort -dual 76% 46%
bubblesort -dual + RR 76% 47%
bubblesort -Boom [4,5] 0% 52%
binary search -Rocket [1] 0% 0%
binary search -dual 37% 10%
binary search -dual + RR 37% 8%
binary search -Boom [4,5] 0% 13%
insertion sort -Rocket [1] 0% 0%
insertion sort -dual 54% 20%
insertion sort -dual + RR 54% 20%
insertion sort -Boom [4,5] 0% 20%
autocorrelation -Rocket [1] 0% 0%
autocorrelation -dual 51% 55%
autocorrelation -dual +RR 51% 55%
autocorrelation -Boom [4,5] 0% 46%
vvadd -Rocket [1] 0% 0%
vvadd -dual 65% 33%
vvadd -dual +RR 65% 33%
vvadd -Boom [4,5] 0% 33%
dot_product -Rocket [1] 0% 0%
dot_product -dual 60% 39%
dot_product -dual + RR 60% 39%
dot_product -Boom [4,5] 0% 40%
factorial(!100) -Rocket [1] 0% 0%
factorial(!100) -dual 57% 1%
factorial(!100) -dual + RR 57% 1%
factorial(!100) -Boom [4,5] 0% 1%
xor_cipher -Rocket [1] 0% 0%
xor_cipher -dual 62% 23%
xor_cipher -dual + RR 62% 19%
xor_cipher -Boom [4,5] 0% 47%
fir[100samples/5taps] -Rocket [1] 0% 0%
fir[100samples/5taps] -dual 59% 18%
fir[100samples/5taps] -dual + RR 59% 6%
fir[100samples/5taps] -Boom [4,5] 0% 33%

Overall Average -Rocket [1] 0% 0%

Overall Average -dual 56% 28%
Overall Average -dual + RR 56% 27%
Overall Average -Boom [4,5] 0% 32%

54% 0% 0%
61% 0% 0%
0% 41% 16%
0% 6% 2%
4% 12% 12%
2% 43% 44%
0% 51% 51%
0% 22% 20%
1% 29% 20%
1% 33% 27%
0% 36% 31%
0% 37% 27%
15% 29% 21%
17% 36% 22%
0% 46% 38%
0% 41% 38%
9% 6% 6%
5% 18% 17%
0% 8% 8%
0% 7% 9%
20% 6% 2%
30% 6% 3%
0% 8% 5%
0% 13% 5%
8% 3% 2%
13% 3% 2%
0% 8% 12%
0% 4% 3%
12% 6% 3%
18% 6% 3%
0% 6% 4%
0% 2% 2%
43% 13% 5%
47% 16% 7%
0% 43% 31%
0% 43% 19%
6% 83% 51%
6% 80% 50%
0% 86% 61%
0% 90% 70%
21% 14% 6%
25% 13% 8%
0% 17% 13%
0% 21% 10%
17% 18% 12%
20% 23% 17%
0% 32% 25%
0% 26% 19%

width is the inclusion of a second level of cache (L2) in the memory
hierarchy. As indicated in the right-most column of Table 4, the per-
centage of time the core is stalled due to an empty instruction queue
when using a system with both L1 and L2 caches drops significantly in
most benchmark applications. Specifically, the average percentage of
stalls drops to around 25%. The decrease in stalls corroborates the
improvement in the fetching efficiency of the front-end of the processor,
due to the presence of the L2 cache. This enhancement translates into
corresponding Instructions Per Cycle (IPC) gains, as will be demon-
strated next.

Fig. 4 reports the IPC gains achieved by the proposed processor
designs using the compressed instruction set (both the version with only
dual-issuing, and the one with both dual-issuing and selective register
renaming), and the Rocket [1] and BOOM [4,5] cores. Fig. 4(a) refers to
the system with only one level of cache, while Fig. 4(b) refers to the
system with L1 and L2 caches. In both cases, the IPC gains are nor-
malized to the baseline processor, i.e., the Rocket core [1] with no
compressed instructions and no register renaming, as indicated by the
black horizontal line at the Normalized IPC value of 1. As suggested by

the previously described abundance of stalls due to name hazards (see
Table 4), the addition of compressed instruction support and dual-issue
functionality yields moderate IPC improvements in most applications,
since performance is dictated and limited by the hazard stalls. Indeed,
as illustrated in both Figs. 4(a) and (b), the processor with only dual-
issuing capability exhibits moderate IPC gains of 7%. However, in the
case of the multiply benchmark, the overall performance is degraded
by the presence of compressed instructions. Consequently, the achieved
performance - for said benchmark - is slightly worse than under the
baseline Rocket processor [1]. This behavior is attributed to excessive
fetch redirections triggered by misaligned fetches of compressed in-
structions. Such degeneracy results in a smaller instruction-fetch rate
when executing this benchmark, and, therefore, worse front-end per-
formance.

However, when dual-issuing is accompanied by selective register
renaming, IPC improves substantially. Specifically, in the case of the L1-
only system (Fig. 4(a)), the IPC increases by as much as 92%, with the
average gain being 30% across all 11 benchmarks. The only benchmark
application that exhibits a degradation in performance — of around 47%
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Fig. 4. The IPC gains achieved by the investigated processor designs in (a) a system with only one level of cache, and (b) a system with L1 and L2 caches. The results
are normalized to the baseline single-issue Rocket [1] processor, as indicated by the black horizontal line at the Normalized IPC value of 1.

— under dual-issuing and selective register renaming is multiply. This
anomaly is attributed to the combination of high fetch redirections, i.e.,
many branches and function calls, and a low number of renaming ha-
zards. Since no hazards existed in the first place, the addition of se-
lective register renaming cannot offer any improvement. Yet, renaming
inserts an extra cycle of latency in the pipeline. This extra latency,
combined with the increased fetch redirections of the program, results
in a further performance degradation.

As expected, after adding a second-level cache to the system, the
obtained IPC gains are even higher, as depicted in Fig. 4(b). The IPC
increases by as much as 130%, with the average gain being 39% across
all benchmarks.

As anticipated, the two-way superscalar BOOM architecture [4,5]
provides a clear lead in performance, as compared to the other designs
under investigation. Specifically, the BOOM processor can improve the
IPC by as much as 129%, as compared to the baseline, while the
average IPC increase across all benchmarks is 51%, when paired with
an L2 memory. The very high reaped gains in some benchmark appli-
cations are the result of the clear dependency of the overall CPU per-
formance to the performance of the front end, which tends to be the
pipeline’s bottleneck.

Nevertheless, the performance of the proposed design with dual
issuing and selective register renaming is quite similar to BOOM’s
performance under most benchmarks. This is because the presence of

compressed instructions increases the effective instruction fetch rate;
since compressed instructions are simultaneously fetched in pairs, the
front end is markedly sped up. In the presence of compressed instruc-
tions, the effective fetch rate of the proposed design is essentially the
same as that in a two-way superscalar, but with half the fetch width.
It should be noted that a somewhat counter-intuitive behavior is
observed under the binary search and xor cipher benchmarks. In
these two cases, the proposed architecture actually manages to slightly
outperform the BOOM superscalar core in some configurations. The
reason is that the superscalar’s fetch rate can occasionally be severely
limited — even close to one 32-bit instruction per cycle - in the presence
of some branch sequences that trigger multiple fetch redirections. On
the other hand, the presence of compressed instructions in the proposed
design implies that a 32-bit fetch often includes two instructions,
thereby yielding a slightly higher overall instruction fetch rate.

4.3. Hardware cost analysis

Our goal is to evaluate the hardware complexity of a dual-issue
RISC-V core with selective register renaming and a partitioned register
file, versus the complexity of a single-issue baseline RISC-V processor
(Rocket [1]), and that of a two-way superscalar RISC-V processor
(BOOM [4,5]). Note that, natively, BOOM [4,5] is a 64-bit RISC-V
processor. However, for fair comparison, in this work we investigate a
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Table 5
Hardware implementation results of the four investigated processor cores (ex-
cluding their caches) at 45nm / 0.8 V.

Design 900MHz Area (mm2) Avg. Power (mW)
Rocket [1] 0.16 7.7

Dual 0.17 8.7

Dual + RR 0.18 10.7

Boom [4,5] (32-bit) 0.24 14.7

32-bit variant of the BOOM [4,5] core. The implementation results were
obtained for all designs, after constraining the logic-synthesis process
using the same parameters for all designs. During synthesis, we fol-
lowed a mixed-Vt approach, where a mix of regular Vt, Low-Vt, and
High-Vt cells were used for the various implementations. Low-Vt cells
are used on the critical paths, while the rest cells were employed on the
non-critical paths to reduce leakage power [31]. Power was measured
after performing timing-accurate simulations of the gate-level netlists of
the processors executing the benchmarks in order to prepare the
switching activity information.

The maximum speed that could be obtained by the dual-issue core
with selective register renaming is 900 MHz. The single-issue core can
be slightly faster due to relaxed critical paths. However, to have a fair
comparison, the baseline core was also optimised for the same speed. It
should be noted that the delay numbers reported here correspond to a
low voltage of 0.8V, which significantly increases the delay of the
circuits. Other published results for RISC-V processor cores of similar
complexity [32] reveal that their frequency is also below 1 GHz when
operating at 0.8 V.

The derived area/power results are summarized in Table 5. Support
for instruction compression and dual-issue functionality add 6% of
additional area, due to (a) the extra decoders and decoding logic
needed for the compressed instructions, (b) the extra read ports needed
in the register file, the scoreboard, and the instruction queue, (c) the
more complex issue logic to facilitate the dual-issue functionality, and
(d) the additional pipeline registers needed between the IS and EX
stages. Dual-issue functionality also increases the average power con-
sumption by 13% relative to a single-issue core.

Dual-issue functionality cannot show its full promise without the
introduced selective register renaming scheme. After the addition of the
selective register renaming pipeline stage, the overall area increases by
13%, as compared to the baseline processor architecture. This is due to
the extra renaming structures used in the RR stage, i.e., the renaming
table and free list, the extra 8 physical registers in the register file, and
the new pipeline register. However, the performance gains by renaming
these 8 architectural registers are quite significant. Without the use of
an L2 Cache, the average IPC is increased by as much as 30%, whereas,
when including an L2 cache, the average IPC increases by 39%. The
additional hardware structures needed by selective register renaming
scheme increase the average power consumption of the core. This in-
crease is justified by the performance gains earned. However, the total
overhead of the selective register renaming scheme is just marginal in
the end, if the power contribution of the caches is taken into account.
The clock-gating structure employed in the partitioned register file of-
fers a 4% power benefit relative to a uniformly clock-gated register file.
Additional benefits — in terms of leakage power — would have been
observed if we could have power-gated separately the two register-file
partitions (a feature not supported by our standard-cell library).

More importantly, the proposed architecture with dual issuing of
compressed instructions and selective register renaming consumes less
area and power than the BOOM [4,5] two-way superscalar processor.
As shown in Table 5, BOOM [4,5] consumes 33% more area and 37%
more power than the proposed design.

Resource-constrained compute environments demand increasingly
higher performance, but in a very cost-effective manner. This is
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Fig. 5. The area and power efficiencies achieved by the investigated designs in
systems with one and two levels of caches. The results are normalized to the
single-issue in-order Rocket core [1], as indicated by the black horizontal line at
the Normalized Area/Power Efficiency value of 1.

precisely the ultimate aim of the proposed design: reap as much per-
formance as possible, with as little hardware overhead as possible.
Hence, the most appropriate figures of merit in these circumstances are
the area and power efficiencies, i.e., the IPC/mm? and IPC/Watt metrics,
as illustrated in Fig. 5. The results are normalized to the single-issue in-
order Rocket core [1], as indicated by the black horizontal line at the
Normalized Area/Power Efficiency value of 1. Clearly, the proposed
architecture supporting dual issuing of compressed instructions and
selective register renaming (‘Dual Issue + RR’) achieves the highest
area and power efficiencies. While the superscalar BOOM core [4,5]
achieves the best overall raw performance (see Section 4.2), its sub-
stantial hardware overhead results in lower area/power efficiency. On
the contrary, the proposed approach closely approaches the super-
scalar’s performance at a significantly lower hardware cost.

5. Conclusion

The compressed instruction set extension of the RISC-V ISA is highly
versatile. In addition to the obvious benefit of code density reduction,
instruction compression can also be exploited to improve throughput/
performance with low hardware cost. The processor architecture in-
troduced in this article relies on a triptych of synergistic techniques that
exploit instruction compression to markedly improve system perfor-
mance. The dual issuing of compressed 16-bit instructions was shown to
be very cost-effective, mainly due to the fact that the fetch width re-
mains constant. Complementing the dual-issue functionality, selective
register renaming has a highly targeted and limited scope, which also
results in minimal hardware overhead. Finally, the use of compressed
instructions was shown to create a very skewed use of the register pool.
Leveraging this attribute, the new processor design employs a
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partitioned register file, which increases energy efficiency through
clock gating. Together, the three aforementioned techniques yield sig-
nificant improvements in performance with minimal hardware cost, as
demonstrated by our extensive evaluation. Comparisons against ex-
isting state-of-the-art RISC-V designs indicate that the proposed archi-
tecture can approach the performance gains of a two-way superscalar
processor at a much lower hardware cost. Consequently, the new design
achieves higher area/power efficiency, which is critical in environ-
ments with scarce resources, such as those involving wearable and IoT
devices.
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