

IDLD: Instantaneous Detection of Leakage and Duplication
of Identifiers used for Register Renaming

Yiannakis Sazeides1, Alex Gerber2, Ron Gabor3, Arkady Bramnik4, George Papadimitriou5,

Dimitris Gizopoulos5, Chrysostomos Nicopoulos1, Giorgos Dimitrakopoulos6 and Karyofyllis Patsidis6
1University of Cyprus, 2Google, 3NVIDIA, 4Intel, 5University of Athens, 6Democritus University of Thrace

Abstract—In this paper, we propose a cost-effective

microarchitectural technique capable of Instantaneously
Detecting the Leakage and Duplication (IDLD) of the physical
register identifiers used for register renaming in modern out-of-
order processor cores. Leakage occurs when a physical register
identifier disappears, whereas duplication occurs when the
physical register identifier appears twice throughout the
renaming logic. IDLD checks each cycle that a code calculated
by xoring the physical register identifiers read from and written
to arrays, used for managing physical registers allocation,
renaming and reclamation, is zero. This invariance is intrinsic
to the register renaming subsystem functionality and allows
detecting an identifier leakage and duplication instantaneously.
Detection of bugs in the complex register renaming subsystem is
challenging, since: (a) its operation is not directly observable in
program or architectural visible locations, (b) it lies in time-
critical paths in the heart of every modern out-of-order core,
and (c) it is often the target for optimizations in new core
designs, and thus, more susceptible to bugs than legacy
subsystems. We demonstrate that bugs in the renaming logic can
be very difficult to root cause because, for numerous cases, it
takes excessive time, e.g., millions of cycles, for a duplication or
leakage to become an architecturally observable error. Even
worse, activations of such bugs, depending on
microarchitectural state, are often masked by subsequent
hardware operations. Hence, an activation of a rarely occurring
leakage or duplication bug during post-silicon validation can go
undetected and escape in the field. The difficulty of root-causing
register identifier duplication and leakage without IDLD is
demonstrated using detailed bug modeling at the
microarchitecture level, whereas the low overhead of IDLD is
confirmed using RTL design analysis.

Keywords—Post-silicon validation, register renaming, merged
register file, microarchitecture, pipeline, design bugs

I. INTRODUCTION
As chip designs become more complicated, the gap

between design and verification grows, and bugs in modern
high-end processors are unavoidable, even with rigorous
design processes and practices. In such a landscape, design
correctness validation is a major challenge for the
semiconductor industry [1] [2] that pushes manufacturers to
spend extra effort, time, budget and chip area to ensure that
the delivered products are operating correctly.

Design bugs are often detected during pre-silicon
verification using simulation-time assertions that are useful
for the detection of functional bugs before the design is
synthesized. If such simulation time assertions are

synthesized [3] they can extend the pre-silicon bug detection
capability by taking into consideration also non-functional
parameters, such as technology and electrical issues, during
the simulation of synthesized designs. Unfortunately, such an
approach faces several challenges [4] as functional checks are
not straightforward or cost-efficient to synthesize.
Additionally, they require extra design and validation effort
and when synthesized they prolong the simulation time. Even
if only subset of the assertions is synthesized, it is non-trivial
how to determine which assertions hold the largest potential
to detect bugs. What is more, design bugs can escape into
silicon due to the limited coverage of pre-silicon methods
(which are simulation-based and thus have a limited
throughput) or inaccurate models of silicon behavior [1].
Several publicly available official erratum reports, from
major processor vendors, present hundreds of bugs escaping
to the market that affect both the performance and the
functionality of the processor [5]-[11]. To this end, effective
post-silicon validation methods become indispensable to
detect design flaws and manufacturing defects in prototype
chips.

Post-silicon validation allows detection of rare functional
errors, but also electrical bugs that manifest themselves only
under certain conditions, such as signal integrity, thermal
effects, or process variations [12] [13]. Current industry
(traditional) post-silicon validation methods mainly rely
either on comparing the results of a program’s execution to
simulation-based reference/golden models, or on using multi-
pass consistency end-of-test results [14]-[17]. However, both
methods share a common drawback: they are incapable of
detecting a bug activation that does not affect the correct
functionality of the validation program. This occurs because
the checking phase compares only the silicon’s outcome with
a pre-generated reference model. As a result, when a bug,
which is activated during the execution of a validation
program, is getting masked by other valid processor
operations, or that bug only affects the performance of the
validation test, the final output of the prototype chip will
completely match the reference (bug-free) model. This kind
of bugs that remain undetected during post-silicon validation,
eventually slip in the market and, unfortunately, get activated
in a user visible manner be degraded performance or incorrect
output. It is crucial to stress that, while not detecting soft
errors that are masked is desirable [18], not detecting during
post-silicon a rarely activated bug because is masked,

depending on program and microarchitectural conditions, is
not. Post-silicon validation phase is the last chance of
verification teams to detect rare bugs and fixed them before
the chip reaches the market, where a not-masked activation
of the escaped bug will be user visible. To this end, such bugs
are typically referred to as difficult-to-detect bugs.

Another challenging requirement of post-silicon
validation is that after a bug is detected, it needs to be
localized to identify what is its root-cause and eventually fix
it. Bug localization during post-silicon validation can be quite
expensive, as it may require several weeks and even months
to complete, delaying the market entry of a product and
resulting in grave economic consequences [19]. Unlike pre-
silicon verification, post-silicon validation lacks
observability and ease of control in the microarchitectural
structures of the silicon prototype [20]. What makes bug
localization so challenging is the potentially large time
window between the bug activation cycle and its
manifestation to an observable error (i.e., long bug detection
latency). Such a large time-window needs to be analyzed with
low-throughput simulators to root-cause the bug.
Additionally, the fast detection of such bugs is of paramount
importance since such bugs can be extremely difficult to be
reproduced (i.e., the root-cause analysis can fail). For
instance, a bug can be the result of a combination, at the same
time, of a voltage droop and writing data over a critical
control signal speed-path, which causes the data not to be
written in an array. This combination of events is non-trivial
to reproduce, especially, long after they occurred.

Bug localization and root-cause analysis can be
accelerated by employing in silicon assertions/checkers [21]
[22]. Anecdotal sources suggest that typically, simple
checkers can detect only simple bugs, and thus, they usually
offer limited coverage for difficult-to-detect bugs. On the
other hand, expensive checkers can provide more
comprehensive coverage but are costly, primarily in terms of
area overhead [23]-[25] (we discuss these and other previous
art in Section VII). Therefore, it is instrumental to design
simple yet effective checkers that can quickly localize rarely
occurring and difficult-to-detect bugs in complex and time-
critical processor structures.

Recently, Intel reported in publicly available errata,
escaped bugs related to register renaming logic (focus of our
paper), which persist across multiple CPU generations. For
example, due to an escaped bug in the 6th generation Intel
CPUs (SKZ6 erratum [26]), short loops using registers
AH/BH/CH/DH may cause unpredictable system behavior.
Also, as a workaround to the ICL065 erratum [27], which
states “under complex microarchitectural conditions, when
move elimination is performed, unpredictable system
behavior may occur”, move elimination for general-purpose
registers is disabled with a recent microcode patch on Ice
Lake and Tiger Lake Intel processors [28]. Another very
recent bug (February 2022), due to which the processor may

incorrectly recover from a mispredicted branch due to a
possible race condition in register checkpoint mechanism,
has been also patched through a microcode update [29].
These recent examples clearly demonstrate that currently
used post-silicon validation methods fail to detect severe
bugs related to the register renaming logic of modern out-of-
order processors.

To this end, we focus on the quick and effective post-
silicon validation of a critical microarchitectural structure:
the register renaming subsystem (RRS) [30] found in modern
out-of-order (OoO) processor cores. RRS is in the heart of
every modern OoO core, contains many complex hardware
flows that implement various functions and optimizations,
and is often the target of new core design improvements [31]
[32], as well as of increases in the number of physical
registers (Pdsts) that RRS contains and in the number of
registers it renames per cycle. This interplay of existing RRS
flows with new ones, along with increasing size and tight
critical paths makes the RRS severely prone to design,
timing, or electrical bugs [1] [2]. Moreover, post-silicon
validation of the RRS is exceptionally challenging because
RRS lies in time-sensitive paths [33] and any auxiliary
hardware-based validation technique for detecting bugs
should be simple with minimal (ideally zero) impact on cycle
time, providing at the same time comprehensive bug
detection. For all these reasons, post-silicon validation of the
RRS requires a special treatment as compared to other
structures (or even the core as a whole).

In this paper, we propose a simple yet quick and effective
hardware technique, named Instantaneous Detection of
Leakage and Duplication (IDLD). IDLD is a hardware bug
detection approach that checks that a code produced by
xoring each cycle the physical register identifiers read from
and written to arrays, used for managing physical registers
allocation, renaming and reclamation, is zero. This basic
invariance is derived from the register renaming subsystem
functionality and allows detecting an identifier leakage and
duplication instantaneously. IDLD focuses on rare bugs and
manufacturing defects in the RRS control logic. As we
demonstrate, such bugs primarily result in a physical register
identifier (PdstID) being duplicated (i.e., a PdstID appears
twice) or leaked (i.e., a PdstID disappears). For example, a
PdstID is leaked when it is read from one RRS array but is
not written in another, whereas a PdstID is duplicated when
it is written in one RRS array without being released from
another. Particularly, this work:
• Shows that PdstID leakage and duplication are

manifestations of bugs in the control logic that manages
the RRS physical register identifiers. PdstID leakage
and duplication are new RRS bug models defined for
the first time.

• Proposes IDLD: a novel RRS microarchitectural
scheme, used during the post-silicon validation phase,
which leverages fundamental RRS and design

properties to enable instantaneously the cost-effective
detection of PdstID duplication and leakage.

• Justifies the significance of IDLD using a
comprehensive microarchitecture-level bug modeling
that reveals manifestation latency to an observable error
often occurs millions of cycles after the bug activation
and in more than a few cases the bug remains
unnoticed.

• Designs a baseline RRS at the RTL level and enhance
it with IDLD. Synthesis of the RTL designs reveals the
minimal area overheads of IDLD.

• Presents another IDLD use case for the Store-Sets
memory dependence predictor [34] and discusses
IDLD’s broader applicability.

II. BACKGROUND & MOTIVATION
Register renaming is a technique that enables OoO

execution by eliminating false register dependences between
instructions. Several implementations of register renaming
have been proposed over the years [35] [36], however, in this
work we focus on the register renaming with a merged
register file, which is the typical implementation in most
modern CPUs [37]-[43]. In such implementation, the results
of operations are stored in a single physical register file that
combines the architectural and speculative state. Register
renaming with a merged register file uses a large pool of
physical registers and translates a logical destination register
(i.e., architectural register), of each data producing
instruction, to a physical register. Figure 1 shows the RRS
considered in this work, which consists of the following
hardware arrays:

Free List (FL): FL is a first-in-first-out (FIFO) hardware
structure, where PdstIDs are initialized each time the
processor core is powered on, with each PdstID pointing to a
different entry in the physical register file. A free Pdst is
allocated to rename the logical destination register (Ldst) of
an instruction. Its PdstID is sent to the reservation station
(RS) where the renamed instruction waits to execute. When
the instruction executes, it updates the physical register
pointed by its PdstID.

Register Alias Table (RAT): RAT is a hardware array
that keeps the most recent mapping of each logical register
identifier to a PdstID. It is used to rename the input logical
registers of an instruction. The renamed PdstIDs are
forwarded to the RS of the instruction to determine when the
instruction can be executed.

Reorder Buffer (ROB): ROB is a FIFO hardware
structure with an entry allocated per instruction. Each ROB
entry has a field to hold the PdstID that is evicted from the
RAT by the instruction (if the instruction writes to a register).
The Pdst is reclaimed (i.e., its PdstID returned in the FL)
when the instruction retires.

Checkpoint Table (CKPT): CKPT is used to take
regularly snapshots of the RAT.

Register History Table (RHT): RHT is a FIFO
hardware structure used to log the RAT changes per
instruction, i.e., the logical destination register (if any) for an
instruction and its allocated PdstID.

The CKPT and RHT are useful for expediting recovery of
the RRS following pipeline flushes (e.g., due to a mispredict).
When an instruction causes a pipeline flush, the RRS state is
restored using the CKPT and RHT. First, the RAT is
recovered from the closest previous checkpoint to the
offending instruction. Then the RHT is used to perform a
(positive) walk to update the RAT with information logged
between the RHT entry associated with the restored
checkpoint and the RHT entry of the offending instruction.
The recovery process performs another (negative) walk of the
RHT to return to the FL all the identifiers of the Pdsts
allocated after the offending instruction. In addition to
recovering the arrays state, the tail pointers of the RHT and
ROB are restored to the position corresponding to the flush
causing instruction. The FL head pointer is not restored since
the wrong path Pdsts are returned in the FL during the
negative walk using the FL tail.

RRS speed paths are very tight because in a superscalar
OoO core it is required in a single cycle to rename multiple
instructions together, so that in the next cycle another group
of instructions can be renamed. As part of the renaming
process, we determine which instructions can update the RAT
with their allocated PdstID. This is non-trivial, as there may
be more than one instruction that writes to the same logical
register (Ldst), and this requires a multiplexing circuitry with
numerous paths. The number of paths increase the wider a
core gets. Additionally, register renaming related
optimizations, such as move and idiom elimination [31],
increase the possibilities for which PdstID is written in the
RAT and increases the renaming logic complexity.

Figure 1. Register renaming with merged register file.

FL RAT

ROB

RHT

RS PdstID RS Psrc(s)

PdstID
Initialization

Array

Bus

Control Logic

CKPT

Moreover, adding a new RRS optimization to a future OoO
core, such as register-equality [44] and memory-renaming
[45], will require validation not only of the specific
optimization but also its interplay with other existing flows
and logic.

Consequently, RRS is non-trivial to validate. Moreover,
adding extra circuitry to facilitate its validation should be
done carefully to avoid increasing the RRS design
complexity or increase the delay of its critical path with
possible negative effects on cycle time or performance.

III. BUGS & BUG MODELS FOR RRS
This section discusses and justifies the types of bugs and

bug models considered in this work for capturing the buggy
behavior in the RRS control logic. The control logic is
represented by the clouds in Figure 1 and is the one
responsible for the allocation and reclamation of the Pdsts
and the transfer of their PdstIDs between the various RRS
arrays. We show that bugs within the RRS control logic can
lead to serious malfunctions that compromise the entire
processor core’s functionality.

A. RRS Control Logic, Bugs and Bug Models
The control logic in the RRS, depending on the state of

the core, generates several signals such as those shown Table
I, (i) to control the updates of the RRS arrays, (ii) to control
the updates of the read/write pointers for the RRS arrays that
are maintained as FIFOs, and (iii) to determine the RRS
arrays accessed locations. The Checkpoint signal is generated
at regular intervals; in our design at every fixed number of
ROB entry allocations, to checkpoint the RAT. The Recovery
signal is generated after a squash/flush to recover the RAT
from a checkpoint. The selected checkpoint is a fixed
function of the ROB position that causes the squash/flush.
Additionally, the RRS contains logic that determines which
of the allocated Pdst identifiers in a clock cycle are used to
update the RAT. This is needed because some of the
instructions may update the same logical register.

For the other RRS arrays the selection (if any) of the
PdstIDs that are used to update them is straightforward and
we do not describe them further. Our discussion does not
cover the complete set of signals in the RRS, but it reveals
the numerous cases that may go wrong during register
renaming in a processor core. A control logic bug can cause

control signals not to be asserted or may cause a PdstID
corruption. Such bugs can be the result of a design bug or
timing error due to a weak electrical signal [1]. For instance,
a weak signal can prevent a control signal to be asserted or it
may corrupt a PdstID value to be written. Therefore, we use
two bug models, which can describe the difficult-to-detect
bug scenarios in the RRS: (i) Control Signal Corruption, a
momentary control signal de-assertion when the signal
should normally have been asserted (i.e., depending on the
operation, this bug model can result in duplication or leakage
or both) and (ii) PdstID Corruption, in which the PdstID gets
corrupted when it is written in the RAT.

B. Criticality of RRS Control Logic
The severity of faults occurring within the RRS’s control

logic is demonstrated with a simple walkthrough example in
Figure 2. Assume for example that a new instruction must be
renamed and, due to a bug, the write-enable control signal of
the RAT is momentarily stuck at the logical value low. This
implies that the entry pointed by the instruction’s Ldst in the
RAT is not updated with the new PdstID (i.e., a leakage
happens), since the write-enable signal is unasserted. Figure
2(a) shows the state of the RRS prior to the arrival of a new
instruction. As soon as the new instruction arrives, the
physical register R3 is allocated, causing the PdstID of R3 to
be popped from the FL, as shown in Figure 2(b). At the same
time, the current mapping of the new instruction’s Ldst – that
happens to be R1 in this example – must be copied from the
RAT into the ROB, as also illustrated in Figure 2(b). Under
normal circumstances, the renaming operation would then
finish by overwriting the R1 identifier in the RAT with the
R3 identifier that has been popped from the FL. However,
since the RAT’s write-enable signal is stuck at low because
of the bug, the R3 PdstID is never written into the RAT, and
the R1 PdstID still resides in the RAT, since it was not
overwritten by R3. This is a leakage scenario in RAT.
However, note that the R3 PdstID is (correctly) written in
RHT (as shown in Figure 2(c)), because the bug does not
affect the correct operation of RHT. Therefore, since the bug
prevents the R3 PdstID to be written in the RAT, the newly
renamed instruction will write its result into register R3 (as
shown in Figure 2(b); the correct R3 PdstID is used by the
current instruction), but any subsequent consumers will read
data from register R1 (since, due to the bug, this is the current

TABLE I. REGISTER RENAMING SUBSYSTEM (RRS) CONTROL SIGNALS.

 Read Enable Write Enable Recovery Checkpoint
FL Advance read pointer Update array Update write pointer – –

ROB Advance read pointer Update array Update write pointer Move write pointer to offending entry+1 –
RHT Advance read pointer * Update array Update write pointer Move write pointer to offending entry+1 –
RAT – Update array – Checkpoint to RAT –

CKPT – – – – RAT to Checkpoint
 * RHT uses two read pointers to perform a positive and negative walk during recovery

mapping in RAT). This scenario violates the correct dataflow
and will likely lead to incorrect program execution. Further,
as shown in Figure 2(c), the Pdst identifier of register R3 has
now been dropped (i.e., it has leaked and cannot be found in
the FL, RAT, or ROB), while forcing the R1 PdstID to be
duplicated within the RRS (R1 PdstID now residing in both
ROB and RAT). Note that all these problems would remain
undetected by schemes that can only detect corruption in a
PdstID, since no Pdst corruption has occurred [46] [47].

Even though this example focuses on a particular control
signal of the RAT, equally severe issues may also arise due
to bugs in other RRS control signals. For example, bugs
affecting the read/write signals of the FL, ROB, and RHT
could lead to similar behavior as that exhibited in the example
above, which would adversely affect the functional
correctness of the entire core.

It is important to note, that the bug activation, discussed
in Figure 2, can have different effects depending on the
microarchitectural state. Specifically, if the bug activation
occurs in the correct path, as explained above, it is likely to
become user visible (e.g., lead to a wrong output). On the
other hand, if the bug activation occurs in the wrong path, it
is possible to recover the corrupted PdstID from RHT after
the pipeline flush (mispredict recovery) without any user
visible effect. This underlines the criticality of detecting such
bugs irrespective if their activation during testing happened
to be masked since during field operation, under different
microarchitectural conditions, the bug can remain unmasked
and lead to a wrong output.

C. Pdst Leakage and Duplication Bug Models
In the previous subsection, we discussed the example

shown in Figure 2, in which the primary effect of an RRS
control logic bug is a leaked PdstID, and a secondary effect
is a PdstID duplication. The examination of the bug
manifestations for the various RRS control signals in Table I
reveals that all bug manifestations in RRS logic can result in
either or both a duplication and a leakage of Pdst identifiers.

Assume for example all the cases in which an array’s
write-enable signal incorrectly remains unasserted. This bug
scenario will result in a PdstID leakage since the input PdstID
is not written in the array. On the other hand, considering the
case in which the read pointer of a FIFO hardware structure
is erroneously not advanced (due to a bug in the RRS logic).
This will result in a duplication the next time the array is read,
since it will return the same PdstID. Now consider the case in
which a wrong PdstID will be written in a RAT entry. This
can correspond to the case where the FL has allocated one
PdstID but, due to a bug, a different PdstID value is written
in the RAT. This corresponds to a leakage, because the
allocated register disappears, but also to a duplication since
the wrong PdstID is getting written in the RAT while existing
elsewhere in RRS. Another scenario could be that the RAT
needs to be recovered due to a misprediction that leads to a
pipeline flush, but, due to a bug, it is not recovered. This
happens because the recovery signal remained unasserted, or
it is recovered from a wrong checkpoint since the correct
checkpoint was not taken (checkpoint signal remained
unasserted due to a bug). This is similar to a PdstID
corruption but instead of a single corruption, there can be
multiple and, therefore, multiple PdstIDs are leaked and
duplicated. To the best of our knowledge, there is no previous
work which defines and presents in such a detail the bug
models and their behavior, when they are activated in the
control logic of the RRS. A bug model is an approximate
behavior that abstracts the details of the actual physical
causes of a bug and facilitates the development of methods to
detect any physical bug that has the same behavior as defined
by the bug model [48].

IV. BUG MODELING ANALYSIS
A. Microarchitecture Level Bug Modeling

Before presenting our approach for the instantaneous
detection of leakage and duplication of Pdst identifiers, we
experimentally explore the behavior of the processor’s

RAT

ROB

RHT

CKPT

input logical
destination (Ldst)

PdstID
Initialization

FL

input logical
sources (Lsrc)

output physical
destination (PdstID)

output physical
sources (Psrc)

input interface

output interface

R4
R3

R2
R1

R2
R1

RAT

ROB

RHT

CKPT

input logical
destination (Ldst)

PdstID
Initialization

FL

input logical
sources (Lsrc)

output physical
destination (PdstID)

output physical
sources (Psrc)

input interface

output interface

R4
R3

R2
R1

R2
R1

R1

R3

R3

RAT

ROB

RHT

CKPT

input logical
destination (Ldst)

PdstID
Initialization

FL

input logical
sources (Lsrc)

output physical
destination (PdstID)

output physical
sources (Psrc)

input interface

output interface

R4 R2
R1

R2
R1

R1

R3

(
a)

(
b)

(
c) Figure 2. Walkthrough example demonstrating how a bug in write-enable signal of the RAT leads to leakage and duplication.

operation in a full-system setup for numerous activations of
the three bug models in the RRS logic during the execution
of actual workloads. In such a way, we gain a deeper
understanding of the effects that escaped design bugs from
pre-silicon verification, electrical bugs or manufacturing
defects can produce during silicon execution, as well as the
conditions that prevent these bugs from being detected during
the post-silicon validation as it is currently employed in
industry (see discussion in Section I). For this experimental
analysis, we employed ten benchmarks (end-to-end
execution for each benchmark) from the MiBench suite [49]
with diverse behavior and the widely used gem5 simulator
[50] based on the x86-64 ISA, which is a state-of-the-art
cycle-accurate microarchitectural simulator.

The gem5 simulator is configured to model an OoO
superscalar core using the renaming configuration presented
in Section VI.A. Our experiments are based on bugs, which
are activated in random clock cycles in the RRS gem5
implementation. We run 3,000 distinct simulations for each
of the ten benchmarks (i.e., 30,000 bug occurrences in total),
2,000 for Read-enable and Write-enable Control Signal
corruptions (broken into 1,000 runs for duplication bugs and
1,000 runs for leakage) and 1,000 runs for PdstID corruption.
During each run, we consider one single bug activation in the
RRS logic (i.e., 30,000 bug activations in total) and we record
in detail all the output files, logs, and statistics that
correspond to each execution. Through this experimental
analysis, we can classify the effects of each of the three bug
models into fine-grained bug effect classes.

For each run, we also keep track of the commit trace of
the simulator. Therefore, we can monitor the bug activation
cycle (i.e., in which cycle the bug is activated) and the bug
manifestation cycle (i.e., at which time the bug affects the
committed instructions; the commit trace becomes different
from the bug-free commit trace). The results of this detailed
analysis, help demonstrate the severity of the bug models and
the reasons why the bugs defined in Section III are difficult
to detect, and when they are detected, it is difficult to root-
cause them due to their excessively long manifestation times.

As explained in Section I, bug activations that do not
affect the functionality of the program are extremely difficult
to detect during post-silicon validation. These are classified
into three classes depending on their effect on execution:

Benign: When the execution terminates with no
deviations from the bug-free execution and the output file is
identical to the bug-free reference output.

Performance: This effect is functionally the same with
Benign, but the difference is that there is a deviation in the
cycles of the committed instructions. The program’s output
is correct, the instructions are committed correctly, but some
instructions are not committed in the correct cycle (compared
to the bug-free committed instructions).

Control Flow Deviation: This effect is again
functionally the same with Benign, but the difference is that
there is a deviation in the committed instructions (i.e., a
deviation in the control flow). This means that in a correct
clock cycle, a different instruction of the program is
committed as compared to the bug-free committed
instruction, but the output is identical to the bug-free
reference output. This occurs when control flow diverges
from program order and shortly re-converges back without an
effect to the program output (e.g., this can happen for a
conditional branch that irrespective of its direction, the
control flow after the branch’s execution re-converges at a
control independent point in the program control flow).

B. Masking Effect and Bug Persistence
All the above classes of bug activation effects (Benign,

Performance, Control Flow Deviation) do not affect the
functionality of the program, and we collectively referred to
all as a unified Masked class. Figure 3 shows the fraction of
activations for each bug model in our experimentation that do
not affect the program output. As we can see in Figure 3, there
is a high probability for duplication and leakage bug models
to get masked (i.e., the bug is classified to any of the three
major classes: Benign, Performance, Control Flow
Deviation) while using actual benchmarks, which of course
stress and thoroughly exercise the RRS logic. More
specifically, Figure 3 clearly shows how severe is the
masking effect of the ten different programs. The leakage bug
model has the highest masking probability (up to 71%). The
duplication bug model has a lower, but undoubtedly,
significant masking probability (up to 22%), while the PdstID
corruption has the lowest masking probability (up to 3%). At
the rightmost bars, we can see the average values for any bug
model. Therefore, it is clearly shown that a high number of
undetected bugs can occur due to the high probability of
masking effects in the RRS, although the bug is activated.

3% 3% 3% 3% 0% 2% 0% 3% 3% 3% 2%

17
%

12
% 18

%

5% 1%

11
%

0%

22
%

8% 10
%

10%

47
% 55

%

39
%

38
%

3%

61%

1%

71%

47
%

50
%

41%

0%
10%
20%
30%
40%
50%
60%
70%
80%

dijkstra fft gsm smooth qsort rijndael sha adpcm basicmath cjpeg Average

Pdst Corruption
Duplication
Leakage

Figure 3. Masked bugs across all benchmarks and bug models used in this study (PdstID Corruption, Duplication, and Leakage).

Another take-away from Figure 3, is that different
activation instances of the same bug model can either be
masked or not masked, this suggests a dependence on
microarchitectural conditions (e.g., whether a bug activation
happens in the wrong path; see Section III.B). It is, therefore,
desirable to develop a checker that is fast – detects bug as
soon as it occurs – to avoid sensitivity to microarchitectural
conditions.

It is important to note that the effects of masked faults
(i.e., a PdstID disappears or is duplicated in the RRS) may
persist after the end of the program’s execution. For example,
assume a Leakage scenario in which a PdstID is freed from
the ROB and should return to the FL, but this PdstID is not
written in the FL due to a bug (i.e., the FL write signal is
unasserted), and thus, this PdstID will never be allocated
again. In this scenario, the effect of the masked bug (i.e., the
leaked PdstID) persists until the processor resets. However,
there are cases in which the leaked PdstID can be recovered.
For example, this happens when a leaked PdstID from the FL
exists in the RHT, and after a squash, this PdstID is recovered
and eventually returned to the FL. Figure 4 shows the
percentage of masked bugs that their effect persists in the
processor, even if the program finishes its execution. The
results clearly demonstrate that even if the bug is activated
without providing any indication of its occurrence (i.e., it gets
masked), there is a probability (up to 81%) that the bug effect
persists until the processor resets. When this occurs, it is very
likely for this bug to affect another program’s execution.
Note that sha and qsort are not shown in Figure 4, since they
both have zero probability of persisting bug effects. Overall,
the analysis reveals that usually the largest fraction of masked
bugs does not persist and will remain undetected by
traditional post-silicon validation methods.

C. Bug Manifestation Times
In this section, we analyze the other tedious issue of post-

silicon validation flow: bug localization and root-cause
identification. If the time window between the bug activation

and the bug manifestation (i.e., when the bug shows some
evidence of its existence) is excessively long, it is extremely
difficult for debug engineers to root cause the bug and thus
fix it. Figure 5 shows the manifestation times in the x-axis.
For a clear demonstration of our findings, we group the
manifestation times in eight buckets on a logarithmic scale,
as shown in the x-axis. The y-axis shows the number of bugs
that belong to each bucket of the x-axis.

The results are shown for both non-masked bugs with the
green-line, and masked bugs with some side effect
(“Performance” or “Control Flow Deviation”) with the red-
line. The masked bugs can be detected if processors add a
tracing mechanism that monitors for deviations from a
reference trace in the program order or timing (a feature that
is not available today). As shown in Figure 5, the 77% of the
bugs which belong to the masked class but with some side-
effect, and the 23% of the bugs that eventually affect the
program’s output (i.e., non-masked) manifest themselves
between 10K and 100M cycles after their activation. It is
evident that a large fraction of bugs in the RRS, either the
non-masked ones or the masked with side-effects (assuming
that they are detectable), have extremely long bug detection
latency, making the root-cause analysis an exceedingly
difficult task, because there are no means to determine the
temporal or the spatial location of the bug during the root-
cause analysis.

Additionally, 13.5% of the bugs are benign (not shown in
a graph) with no evidence that a bug has occurred during a
run. Note that, as we discuss in detail in Section VII, diverse-
execution based approaches, such as QED [19] [51] or [52]
[53] that aim at reducing the bug detection latency, cannot
detect such kind of bugs that occur deep in the processor’s
pipeline, mainly because these approaches can detect bugs
only if they affect the program’s execution (i.e., bugs that
eventually become visible to the ISA layer). This bug
modeling analysis provides clear motivation for a fast, low-
cost, and high coverage method for detecting RRS
duplication and leakage.

0
1000
2000
3000
4000
5000
6000
7000
8000

[1
,10
)

[1
0,1
00
)

[1
00
,1
K)

[1
K,
10
K)

[1
0K
,1
00
K)

[1
00
K,
1M
)

[1
M
,1
0M
)

[1
0M
,1
00
M
]

N
u

m
b

e
r

o
f

B
u

g
s

Manifestation Time (Cycles)

Non-Masked

Masked

23%

77%

Figure 5. Number of bugs (y-axis) and bug manifestation times (x-
axis) grouped into eight distinct buckets.

Figure 4. The percentage of the masked bugs that will persist in the
processor until it is reset.

1
2

%

0
% 1
% 3
%

0
% 2
% 3
% 5
%

2
.6

%1
5

% 2
8

%

1
9

%

4
5

%

8
1

%

2
5

%

2
8

%

8
%

2
4

.8
%

1
5

% 2
8

%

7
3

%

3
9

%

3
5

%

2
0

% 2
9

%

1
8

% 2
5

.7
%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

d
ijk

st
ra ff
t

g
sm

sm
o

o
th

ri
jn

d
ae

l

ad
p

cm

b
as

ic
m

at
h

cj
p

eg

A
ve

ra
g

e

Leakage
Duplication
Pdst Corruption

V. DETECTING ERRORS IN RRS CONTROL LOGIC
In this work, we propose IDLD a bug error detection

approach that can detect PdstID leakage and duplication
instantaneously.

A. Basic RRS Invariances
The novelty of the proposed IDLD technique lies in

recognizing and exploiting the following fundamental
property and invariant operational characteristic of the RRS:

By design, PdstIDs during program execution move
between three RRS arrays: FL, RAT and ROB. There is a
known read that is the last read of a PdstID from each of these
arrays at which point the PdstID is transferred to one and only
one of the other arrays. Hence, there cannot be two writes of
the same PdstID to any of these arrays without an intervening
last read.

Specifically, a PdstID is allocated from the FL and used
to update the RAT (unless it is written in the ROB when
another younger instruction that gets renamed, together in the
same cycle, has the same logical register destination). A
PdstID remains in the RAT until it is evicted. A PdstID is
evicted from the RAT when its associated logical register gets
a mapping to a new physical register. The ROB holds the
PdstIDs evicted from the RAT until the instruction that
caused eviction commits at which time the PdstID is
reclaimed by the FL. This means that each PdstID can be
found at any given time in one and only one of the three
arrays. Therefore, each PdstID that is read from RRS arrays
in a cycle must be written in another array by the cycle end.

This invariance is present in systems with closed loop
management of tokens. In such a system when a token is
allocated it is always subsequently returned to the system and
a token it cannot be returned to the system without first been
allocated. The analogy with RRS is that a token corresponds
to a PdstID that needs to be allocated from the FL and then
reclaimed back in the FL. The main difference of RRS from
a closed loop token management system is that between
allocation and reclamation PdstIDs can reside in either the
RAT or the ROB but not both. This analogy besides being
instructive it also usefully identifies other use cases (see
Section F).

The above invariance is generic and valid for the basic
RRS implementation of an OoO core with merged register
file without any physical register reuse or idiom elimination
optimizations [31]. However, any such optimization in the
RRS logic is compatible with IDLD, since depending on the
optimization, minor modifications can be considered during
the IDLD implementation. We demonstrate the effectiveness
and the flexibility of IDLD in Section E, where we explain
how IDLD can be made compatible with RRS optimizations.

B. Proposed Post-Silicon Validation Method
The main idea behind IDLD is to monitor that the RRS

invariance presented in Section A is not violated. A violation

of this invariance, henceforth referred to collectively as
PdstID-invariance, can be the result of a bug, and can result
in a PdstID duplication or a PdstID leakage or both (see
Section III). The proposed scheme (shown in Figure 6) tracks
the PdstID-invariance with low-cost hardware by computing
each cycle the bitwise exclusive-or (XOR) of all the PdstIDs
written/read to/from the FL, RAT and ROB and checking that
it is always zero (shown as 0 in Figure 6). The XOR function
trades-off detection accuracy with cost as there can be
situations where the XOR remains the same when multiple
PdstIDs are duplicated or leaked. Such situations are not
expected to happen at once but rather be the result of
incremental (one at a time) occurrence of duplication and
leakage or both, which is detectable by the proposed scheme.

More specifically, the proposed scheme tracks separately
the XOR of the PdstIDs read/written from/to the FL, RAT,
and ROB, the three arrays that all PdstIDs must be found in.
The three XORs are denoted as FLXOR, RATXOR and ROBXOR.
Each of the three arrays uses a register to store its current
XOR value and whenever a PdstID is inserted or removed
from the array, it is XORed with the value in its register. The
central invariance that the scheme checks is that when a
PdstID is read from one array it should be written to another
array – this holds true for the FL, RAT, and ROB. The
PdstID-invariance is violated when FLXORꚚRATXORꚚ
ROBXOR ≠ 0. In such a case, an error is detected indicating
the bug activation in RRS. Figure 6 shows that the added
IDLD logic does not lie in the access timing-critical path of
any RRS array. Section VI evaluates the IDLD area and
energy implications.

It is important to highlight that IDLD is intended for the
post-silicon validation of prototype chips; it is not necessary
during field operation. The feature can either be removed
completely from the masks used for manufacturing market
products or when the processor chips are released to the

Figure 6. IDLD Protection for the RRS.

FL RAT

ROB

RHT

RS Pdst RS Psrc(s)

Pdst
Initialization

Array

Bus

Control Logic

IDLD

RATXOR

ROBXOR
RATXOR

ROBXOR
RATXOR

ROBXOR
RATXOR

ROBXOR

CKPT
FLXOR

RATXOR

ROBXOR

0

Bug
Detected

market. Thus, the IDLD hardware can be disabled using the
“chicken bits” in the corresponding control registers [54]-
[56]. Therefore, any power overhead of IDLD (see discussion
in Section VI.A) is not a burden for in the field operation.
However, IDLD can be re-activated if needed to focus on a
customer’s issue, since industry relies on enabling such
features when a customer experiences an anomaly to help
isolate/triage the bug as motivated in [57].

C. Pipeline Flushes
Logically speaking the PdstID-invariance should always

hold, but due to practical implementation reasons processors
realize pipeline flush actions over several cycles and possibly
for some arrays independently and concurrently; this can lead
to PdstID-invariance violations during the recovery phase
without the presence of any bug. Consequently, PdstID-
invariance must be checked at points of time when the
processor is not in a recovery mode. Another implication of
flushes is the extra bookkeeping required to correctly track
the XOR of the PdstIDs they contain. After a flush, the
content of the RAT is recovered from CKPT, without reading
the previous PdstIDs and without inserting the new PdstIDs
through regular RAT read and write ports. As a result, after
recovery the RATXOR can be inconsistent with the RAT
content. This problem can be easily resolved by including in
a RAT checkpoint the RATXOR. This contributes to a small
area increase (few bits per checkpoint). After recovering a
RAT from a checkpoint, the RHT is walked to restore the
RAT: updated from PdstIDs from RHT (positive reclamation
of PdstIDs from the instructions between checkpoint and
flush causing instruction; see Section II). Such updates are
done through the regular RAT ports, so RATXOR is updated
and eventually becomes coherent with the RAT content.

The ROB is naturally implemented as a FIFO queue in
most cases. After a flush, the ROB tail pointer is moved back
to the entry that caused the flush without reading out the
PdstIDs in between. Therefore, the ROBXOR becomes
inconsistent with the ROB content. One way to overcome this
inconsistency is to checkpoint the ROBXOR on every RAT
checkpoint. Subsequently, on a flush when a RAT and
RATXOR is recovered and RAT is walked, the ROBXOR is also
recovered and walked with the PdstIDs evicted from the RAT
during positive reclamation from the RHT. At the end, the
ROBXOR becomes coherent with the ROB content. The
checkpoint cost of ROBXOR is equal to that of checkpointing
the RATXOR and is quite small. The extra checkpointed info
is shown in Figure 6 as part of a RAT checkpoint but in an
implementation, this information can be stored in a separate
structure. The FL after a flush is updated from PdstIDs from
RHT (negative Pdst reclamation from instructions that are
flushed). Since these updates are done through the regular FL
write port, the FLXOR is always consistent with the FL
content, so there is no need for special FLXOR handling.

One of the IDLD strengths is the cost-effective debugging
of multi-cycle RRS flows (e.g., flush recovery) by simply
checking that IDLD’s invariance is maintained after each
execution of such flows.

D. IDLD Coverage
Overall, IDLD can detect instantaneously any bug

activation that affects the correct RRS operation (not only the
bug activations that affect the correct execution of a program,
but also bug activations that do not affect the program’s
output) during post-silicon validation. Such scenarios
describe any bug which occurs in the control logic (grey
clouds in Figure 6) that causes PdstID duplication, PdstID
leakage or combined duplication-leakage, and PdstID
corruption during the write operation in an RRS structure.
Note that the purpose of the proposed IDLD scheme is not to
detect bugs that cause a Pdst corruption while a PdstID is
already stored in FL, RAT, or ROB. Such simple bugs can be
detected by other well-established schemes, like ECC [46] or
circular parity [47]. Such schemes are orthogonal to IDLD
and can be combined to provide a comprehensive RRS
protection.

One subtle but important point about IDLD is that if the
PdstID with value 0 gets duplicated or leaked, the proposed
scheme will not detect it (XOR with zero does not cause a
change). This can be fixed by logically extending all the
PdstIDs by one bit with value 1. This bit should not be stored
in the arrays but only used as an input constant in the XOR
calculation for each array. In this work, we assume the
various XORs are maintained using registers with size equal
to the bits needed to encode a PdstID+1 bit, to account for the
0-value PdstID.

Another important coverage concern is the “infinite
validation space”: we cannot know all the possible bugs that
can exist in the silicon prototype, even with exhaustive
validation [56]. Apparently, as we demonstrated in Section
IV, there are several difficult-to-detect bugs in RRS
“pestering” the industry [29], not only due to their high
probability to get masked, but also due to the long bug
detection latency. IDLD aims at detecting any difficult-to-
detect bug occurring in RRS, thus, significantly improving
the post-silicon validation phase.

The IDLD method does not suffer false-positives – it
needs to detect any bug activation - unless there is a problem
with the IDLD logic itself. Although, possible, this is unlikely
as IDLD is a simple design that lies off the critical path. In an
extreme situation where IDLD feature is problematic, it can
be disabled using control fuses provisioned in the design for
this purpose.

E. Alternatives & Discussion
An alternative way [58] to track the PdstID-invariance is

with a bit-vector that has as many bits as unique Pdsts (we
refer to this as the bit-vector (BV) scheme). The bit position

corresponding to a Pdst is set when its PdstID is freed and
unset when allocated. Duplication is detected when a PdstID
becomes free, and its bit is already set. Leakage is detected
by counting the number of free registers (bits set in the
bitvector) in the free list when the pipeline is empty and
checking that it is equal to the difference between the number
of physical and logical registers. This approach is costly in
terms of both state and logic. It requires as many bits as the
number of unique Pdsts (100s of bits in modern cores). The
bitvector access logic is complex since at any given time
several different Pdsts are allocated or freed. Moreover, the
vector needs recovery in case of flushes, which adds
overhead.

In comparison, IDLD requires significantly less state, in
the order of the bits needed to encode a Pdst, and its logic is
simple: the bitwise XOR of the circulated PdstIDs. Both
IDLD and bit-vector can detect a Pdst duplication and
leakage, but IDLD can detect a bug instantaneously when it
occurs whereas the BV scheme only when a duplicated
PdstID is reclaimed or when the pipeline is empty. The
latency for such events is not bounded, for example, a
duplicated PdstID stored in a RAT table entry will not be
reclaimed until an instruction renames the logical register
corresponding to that entry and evicts it from the RAT.
However, even this is not sufficient since it is possible that
the other copy of a duplicated PdstID is allocated by the time
the other duplicated PdstID is reclaimed. What is more, the
bit-vector scheme is unable to detect bugs that are masked,
for example, a bug activation that occurs while in the wrong
path and the bug activation is masked (see Section III for an
example where leakage is recovered from the RHT). In the
evaluation section (Section VI) we compare the coverage of
IDLD against that of the BV scheme.

Another way to track the PdstID-invariance is by
counting the number of free and allocated registers and
checking that their sum is equal to the number of unique
Pdsts. This scheme is inexpensive as it requires log2(#Pdsts)
bits and can detect PdstID duplication and leakage. However,
unlike IDLD, this scheme cannot detect a combined
duplication and leakage, since the total number of PdstIDs
remains invariant (x+1–1=x). Further, it cannot capture
corruption in a PdstID and counting is more complex than the
bitwise XOR.

As discussed in Section A, IDLD represents an effective
post-silicon validation approach. However, there is a
possibility that, due to implementation specific RRS
optimizations, the invariants in which IDLD is based on, to
be violated without any bug occurrence. E.g., when a physical
register is reused during the move elimination optimization
[31], its PdstID will appear more than once in the RRS.
Similarly, the identifiers for hardwired registers of zero and
one used to realize the 0/1-idiom elimination optimization
[31] can also appear multiple times in the RRS. When such
optimizations are employed, as in many modern high-end

cores, IDLD can be easily configured to provide bug
coverage for them, by leveraging the control signals that
enable them. For instance, a control signal will be
communicated to the RAT when a second instance of a
PdstID is created (without been allocated from the FL which
means the FLXOR is not updated) for a move elimination. The
signal is needed so that the PdstID is marked in the RAT as
duplicated (need this to determine when the specific PdstID
can be returned to the FL). This signal can be used to inform
IDLD to not take into consideration at that time the
corresponding duplicated PdstID for a RATXOR or ROBXOR
calculation. If this signal, due to a bug, is not activated it will
cause IDLD assertion because the RATXOR or ROBXOR will
be updated without the FLXOR being updated.

It is important to note that IDLD is easy to port and scale
across different core generations if the basic RRS
microarchitecture remains the same (e.g., as in Figure 6). This
will be the case for when a core gets wider, uses complex
design optimizations to hit the target frequency, the number
of registers increase, and additional register renaming
optimizations are employed. This is to say that the main
IDLD design and validation effort will be incurred once and
thereafter IDLD can easily be reused and ported across
microarchitectural generations.

F. Other Use Cases
The IDLD approach is applicable for debugging other

circuits with closed-loop functionality that manage fixed
resources, or information. An example of such a circuit is the
Store-Sets Memory-Dependence-Predictor (MDP) [34]. A
MDP is used in modern cores to minimize the penalty from
memory order violations. For the Store-Sets MDP predictor
(shown in Figure 7 where acronyms are explained), when an
ID, unique identifier for each store currently in the pipeline,
is entered in the LFST table; the entry needs to be removed
from LFST subsequently. Otherwise, if the ID is not
removed, a load may cause execution to hang because it can
have a dependency on a store that has left the pipeline. Note
that if this bug occurs in the correct path the bug affects
correct functionality and availability. LFST insertions are
removed when the store’s address is computed or read before
it is overwritten by another store instance that happens to map

SSID ID

St.PC
SSIT LFST

St.ID

1
St.ID

St.ssid

If equal

INV

pr_ID

2

3
4

1

2
3

4

MAP

EXEC
pr_ID

OUTXORINXOR

Bug DetectedSTQ.Empty == TRUE

Last Fetched Store Table (LFST)

Store-Sets ID Table (SSIT)

Store-Sets ID (SSID)

St (a store)

St.ID a store’s ID in the pipeline

Figure 7. IDLD use case for MDP. Black circles represent the
MDP flow for a store instruction at the map stage and the grey

circles the flow when the store address is known at execute.

to the same LFST entry. The interested reader can refer to
[34] for more details on this MDP operation. For the purposes
and scope of this paper, what is important is the requirement
that each LFST insertion is eventually removed. Such
invariance clearly suggests opportunity for IDLD use as
shown in Figure 7. IDLD uses two registers to track the XOR
of the ID’s that are inserted and removed from the LFST
table. The other important part is to identify when to check
for invariance violation: the two XORs should be equal but
they are not. One option for this is every time a counter, that
is incremented on insertions and decremented on removals,
becomes zero. A possibly simpler alternative is to do this
whenever the Store Queue (SQ) of the core is empty. To
facilitate frequent checking, in case the SQ removals are
lagging the insertions, i.e., rarely SQ becomes empty, one can
take a checkpoint of the insertion XOR when a specific SQ
entry is allocated and compare the checkpoint with the
removal XOR when that SQ entry commits. This is
insufficient, however, because the removal XOR is updated
out-of-order (e.g., whenever a store address becomes
known). One way to overcome this is to compare with a
second version of the removal XOR that is updated only from
SQids that are between the current SQ tail and the SQ
position where checkpoint is taken and the IDLD invariance
gets checked. This second removal XOR gets a copy of the
original removal XOR after each invariance check. Due to
space limitations, we do not provide details about the MDP
use case (e.g., handling of pipeline flushes).

The IDLD approach is applicable to any system where
there is incoming and outgoing information flow from read
and write ports, and it is a system invariance that the overall
outgoing and incoming info should match. This has
applicability in many situations (bus communication,
exchanges between NoC links, FIFOs etc.). The requirements
for adopting IDLD are: i) to identify that such invariance
exists (in some situations is non-obvious, e.g., the MDP use
case), ii) determine the conditions for when the invariance
holds and can be checked (e.g., for the MDP use case one
possibility is when STQ is empty), iii) introducing additional
state to enable invariance checking that is otherwise not
possible,(e.g., checkpointing the RATXOR, FLXOR, ROBXOR
and recovering it on flushes for the RRS use case), and iv)
introducing checkpoint state to facilitate more frequent
checks (e.g., checkpointing the out XOR in the MDP use case
when a specific SQ entry is allocated and inserted).

VI. EXPERIMENTAL EVALUATION

A. IDLD Hardware Implementation Analysis
The IDLD technique is evaluated in terms of hardware

area, and energy (note that any energy consumption overhead
is only presented for the completeness of the IDLD
presentation and does not affect the field operation of the
processor which implements IDLD). Timing results are not

present as IDLD is completely off the critical path. A
complete RRS is implemented as a fully functional, cycle-
accurate module in SystemVerilog. Specifically, all hardware
structures and logic described in Section II are implemented
and integrated into a fully functional RRS. We investigate 1-
wide, 2-wide, 4-wide, 6-wide, and 8-wide register renaming.
In this way, we cover both scalar (single-issue) and high-
performance superscalar (multiple issue) OoO pipelines. The
baseline RRS and the baseline extended with the proposed
IDLD technique are fully implemented in SystemVerilog.
Both designs are (1) thoroughly validated at the RTL level
for functional correctness using many tests to capture both
normal and corner-case behaviors, with and without bug
occurrences; (2) synthesized to a commercial 45 nm
standard-cell library under worst-case conditions (1.1 V, 125
℃); and (3) placed-and-routed using the Cadence digital
implementation flow. The RRS arrays are implemented as
standard-cell-based memories, using flip-flops in the place of
SRAM cells, following an internal clock-gated organization
like [59]. The implemented RRS supports 128 physical
registers, which determine the size of the RHT and FL (i.e.,
128 entries each), and it includes a 96-entry ROB, a 32-entry
RAT, and 4 RAT checkpoints.

B. Experimental Results for Area Overhead and
Energy
The post-place-and-route results pertaining to the

hardware cost of the baseline and IDLD designs are
summarized in Table II. The table reports the area and energy
for each design. As shown in Table II, the proposed IDLD
design has a small area increase (up to 12% for the 8-wide
compared to the baseline). For example, IDLD can achieve
84,377μm2 area overhead at 1.1 V (for 8-wide register
renaming), as opposed to 75,998μm2 area overhead for the
baseline. The key here is not the absolute values of the
baseline, but the relative difference between the baseline and
IDLD. The provided numbers in Table II clearly indicate that
IDLD scales well all the way up to 8-wide renaming. Note
also that the numbers shown in Table II refer to the RRS only,
and not to the full OoO core and that while we increase the
width of the core, we do not scale the number of Pdsts and
the size of the RRS structures (i.e., the additional area
overhead of IDLD should be negligible). An estimate of the
overall area contribution of IDLD to a state-of-the-art OoO

TABLE II. AREA AND POWER FOR BASELINE AND IDLD FOR DIFFERENT
WRITE PORT COUNTS (% IS OVERHEAD RELATIVE TO THE BASELINE).

 Baseline IDLD
Ports Area(μm2) Energy(pJ) Area(μm2) Energy (pJ)

1 36,891 6.04 37,891 (3%) 6.28 (4%)
2 53,441 7.64 54,903 (3%) 8.38 (10%)
4 65,480 11.14 73,701 (12%) 12.29 (10%)
6 73,001 13.12 80,258 (10%) 14.29 (9%)
8 75,998 13.71 84,377 (11%) 15.38 (12%)

core is about 0.12%. This is based on the area breakdown for
a 2-way OoO core with a merged register file at 45nm, which
shows renaming taking ~4% of the real estate. Given our
design increases by 3% the area of a 2-way RRS at 45nm, and
RRS corresponds to 4% of the core area, then 4% x 3% =
0.12%.

Although the power overhead of IDLD does not burden
the field operation, since IDLD is enabled only for the
validation purposes (see Section V.B), we present it for the
completeness. The IDLD mechanism incurs an energy
overhead over the baseline implementation that ranges from
4% to 12% for 1-wide and 8-wide register renaming,
respectively. The energy consumption numbers refer to the
total energy of the RRS (not the whole OoO core).

Overall, the results in Table II show that IDLD is cost-
efficient mechanism in terms of all hardware metrics. Both
baseline and IDLD behave similarly when scaling to wider
renaming (e.g., 8-wide), as the observed trends are dominated
by the increase in the complexity of the renaming logic.

C. Bug Modeling Evaluation & Bug Detection
Exploiting further our microarchitecture-level bug

modeling, in this section we also present some results about
the distribution of any bug effect in RRS and the bug
detection capability of IDLD compared to the traditional end-
of-test checking method. Apart from the three bug effect
classes discussed in subsection IV.B, there are also four more
classes which belong to any observable bug effect.

SDC (Silent Data Corruption): The execution finishes
normally (and the commit trace is comparable to the bug-free
trace), but the program output is different as compared to the
bug-free reference output, without observable indications.

Timeout: The execution is not finished within a certain
amount of time, equal to 2.5 times the bug-free execution
time. These executions are externally stopped to resolve
potential deadlock or livelock situations.

Assert: The execution is unexpectedly terminated due to
a high-level condition that the simulator is unable to handle.
This means that the simulator cannot decide how a real
system would behave and raises an assertion.

Crash: The execution does not reach the end, because it
is interrupted by a catastrophic event. As a result, no program
output is produced. A crash may refer to a process crash
(killed process) or a system crash (kernel panic).

Figure 8 presents the detailed results for each benchmark
for the Control Signals bug model. Different workloads
provide different behavior for each bug effect class. The
ramifications of control logic bugs vary arbitrarily depending
on workload characteristics and execution patterns. This
makes the validation process and the generation of validation
tests more difficult and lowers the probability of the bug in
the RRS logic to be detected. Figure 9 summarizes the results
of our experiments for bug detection capability. IDLD can

detect all 30,000 bug occurrences (20,000 bugs for control
signals corruption (duplication and leakage) and 10,000 bugs
for Pdst corruption); i.e., bug coverage 100%.

Conversely, the traditional end-of-test checking
techniques detects only 24,632 bugs (bug coverage 82.1%).
This difference is due to the limitations of current validation
techniques since they miss bugs that do not affect the
program’s output. As argued earlier, although a bug
manifests itself during the post-silicon validation, there is a
great chance to not affect the output of the validation test.
Thankfully, IDLD guarantees the instantaneous detection,
not only of bugs that provide visible evidence of their
existence (e.g., SDC, crash, assert, timeout), but also for
masked bug occurrences, therefore, such difficult-to-detect
bugs become detectable.

In Figure 10, we also analyze the coverage of the BV
method when combined with the traditional end-of-test
checking post-silicon validation. As the results reveal, BV
offers only 1% higher additional coverage when combined
with the traditional end-of-testing method. Thus, a significant
fraction of the bugs remains undetected even with the BV
(about 17%). As discussed earlier, a bug in the RRS has a
high probability of being masked without any persist effect,
for example, when it occurs in the wrong path, something that
the BV method is unable to detect as it only checks for bugs

Figure 9. Bug detection capability of IDLD and traditional end-of-
test checking post-silicon validation.

82.1%100%

30,000
detected
bugs 24,632

detected
bugs

IDLD Traditional

46%

24%

0% 0% 0% 3% 1% 2% 0%
0%

10%

20%

30%

40%

50%

as
se

rt

tim
eo

ut

pe
rf.

be
ni

gn

ct
rlf

lo
w

cr
as

h

sd
c

as
se

rt

tim
eo

ut

be
ni

gn

control signals pdst corruption

95%

undetected

un
de
te
ct
ed

Figure 8. Breakdown of Outcomes for Bug injections in Control
Signals per Benchmark.

30%
40%
50%
60%
70%
80%
90%
100%

ad
pc
m fft

rijn
da
el

dijk
str
a
cjp
eg

ba
sic
ma
th

gs
m
sm
oo
th

qs
ort sh

a

assert timeout benign perf. ctrlflow crash sdc

on reclamation and when the pipeline is empty. The graph
also shows the fraction of bugs the BV detects before the
traditional end-of-testing approach. This is about 8.6% of the
bugs, which indicates that a significant fraction of bugs
(74.5%) is detected first by the traditional end-of-test
checking. An analysis of the latency of the faster BV bug
detections (not shown in a graph), reveals that BV detections
may occur even up to millions of cycles after their activation.
This analysis highlights the advantages offered by IDLD with
its 100% coverage, instantaneous detection latency and
simplicity.

VII. RELATED WORK
DIVA [23] is a technique that uses a simple checker core

to validate what a more complex core is doing. It delivers
very high bug coverage capable of detecting various types of
errors in the core. The main drawbacks of DIVA are
redundant execution units and new paths to the register file
and caches. Regarding register renaming, DIVA leverages
the availability of a split speculative and architectural register
file for dynamic verification (validate values read using
renamed registers by comparing prior to commit the
architectural register values read using the logical register
names). With a merged register file, as the one evaluated in
this work and which is more widely used in recent products
[37]-[42], there is no distinction between architectural and
speculative state and unclear whether a cost-efficient DIVA
variation exists for such scenario. Numerous techniques are
employed in products to detect and, in some cases, correct
errors due to faults [60]-[68]. However, few techniques can
detect bugs that do not cause a corruption in a stored or
generated value. For instance, an ECC protected array cannot
detect a bug that prevents to write into an array. Even
redundant lock-step systems cannot detect faults due to
systematic bugs [69], since the same fault is activated in the
redundant systems. Another previously proposed RRS
protection method relies on the use of a regiment of simple
checkers that monitor whether many basic microarchitectural
invariances are upheld [70]. The approach of [70] detects

corruption in the RRS arrays by checking that a physical
register is reclaimed after being allocated. Invariance
checking in [70] requires extending the functionality of time
critical structures, for example adding read ports to a
structure tracking operand readiness. It also suffers from
delayed detection since an error is detected not when it
occurs, but when it causes an invariance violation. This
means that errors that get masked between these points of
time are not detected at all. While not detecting soft errors
that get masked is desirable, not detecting a bug that happens
to get masked is not. IDLD overcomes such limitation.

Other approaches for bug and fault detection rely on a
comparison of signatures that encode what should happen
during execution vs. what actually happens [24] [25] [71]
[72]. The schemes in [71] [72] require instruction set and
compiler support, however, in our work we consider
hardware only approaches for instantaneous detection of
bugs. A key advantage of the proposed IDLD scheme is that
it needs simple microarchitecture support and does not
require ISA extensions and compiler support. Along the same
lines, QED [51] and all its extensions cannot directly localize
bugs at the level of hardware granularity, since they mainly
aim at detecting faults in pre-silicon verification, and in post-
silicon validation they can only detect bugs that primarily
affect the program’s execution. Moreover, hardware-based
QED approaches provide expensive checkers in terms of area
overhead [19]. Since timing/electrical bugs cannot be easily
reproduced in simulation, software-based techniques such as
QED or others which are based on diverse execution [52]: (1)
cannot guarantee the bug detection, and (2) even when they
detect the bug, the root-cause analysis will be impossible,
since the bug is virtually non-reproducible. In [73] a column
parity-based approach is proposed to protect FIFOs by
tracking the information that enters and leaves a FIFO. IDLD
is applicable to complex sub-systems with non-FIFOs, and it
can check for invariance violations more frequently.

Other hardware approaches entail significant area and
power overheads (reported to be 5-10% overall) and
pervasive changes in time sensitive pipeline paths, e.g.,
extending arrays (physical register file [25] and renaming
table [24]), multiplexers, buses and buffers in the OoO core
engine to propagate and store multi-bit signatures. While the
schemes in [24] [25] provide comprehensive bug coverage,
including the RRS, unlike IDLD, they cannot capture bugs
that cause only Pdst leakage because they do not affect
correctness. [24] [25] can detect duplication, i.e., when two
Pdsts point to the same physical register, when the
invariances checked by [24] [25] are violated, but unlike
IDLD (which detects instantaneously), there is no time
guarantee for when this will occur (it depends on whether bug
activation is not masked and on few other conditions). In any
case, there is a value for cost-effective schemes that can target
the bug protection of a specific core sub-system as we
propose for the RRS in this paper. The specific choice for a

Figure 10. Bug detection capability of IDLD, traditional end-of-
test checking post-silicon validation, traditional+BV.

82.1%100%

30,000
detected
bugs 24,632

detected
bugs

IDLD Traditional

24,927
detected
bugs

2,583

Traditional+BV BV faster than
Traditional

83.09% 8.61%

bug protection technique is clearly driven by return-on-
investment (ROI) vs. overhead. For processors that already
employ numerous RAS features the ROI from a new core-
wide coverage scheme may be lower than just adding
protection to a critical core sub-system that enables to detect
critical bugs.

VIII. CONCLUSION
The paper shows that control logic bugs in the RRS of a

modern OoO core result in duplication and leakage of Pdsts
used in renaming. The work uses microarchitectural bug
modeling to report that a significant percentage of bugs in
RRS will not affect the program’s functionality (i.e.,
masked), although they manifest themselves during post-
silicon validation, and thus, they are extremely difficult to be
detected. Even when they are not masked and manifest into
deviations from the expected output, the control flow or the
performance, these manifestations occur much later (often
millions of cycles) after the bug activation time. These
findings underline the significant challenge faced by a root
causing effort of bugs in the RRS control logic. These
findings motivate the proposed IDLD, a simple cost-effective
hardware technique that can detect leakage and duplication in
the RRS instantaneously after the bug occurrence. Synthesis
analysis of an RTL design of an RRS with IDLD reveals
minimal area overhead as compared to the baseline RRS
design.

ACKNOWLEDGMENT
This research has been supported by the European Union

Horizon 2020 programme through a H2020 Tetramax project
TTX (Grant 761349), the H2020 UniServer project (Grant
688540), the FP7 Clereco project (Grant 611404), and by a
Cisco and an Intel Research grant. The first three authors
performed part of this work while working with Intel at the
Israel Design Center in Haifa.

REFERENCES
[1] S. Mitra, S. A. Seshia, and N. Nicolici, “Post-silicon validation

opportunities, challenges and recent advances,” Design Automation
Conference (DAC), 2010, pp. 12-17. doi:
https://doi.org/10.1145/1837274.1837280

[2] Amir Nahir, “Post-Silicon Validation – Tackling 4 Billions Risks per
Second,” MEDIAN Workshop, 2012.

[3] H. Sohofi and Z. Navabi, "Assertion-based verification for system-
level designs," Fifteenth International Symposium on Quality
Electronic Design, 2014, pp. 582-588, doi:
https://doi.org/10.1109/ISQED.2014.6783379.

[4] H. Foster, “Synthesizing assertions into hardware for faster silicon
debug,” Tech Design Forum, July 2012
https://www.techdesignforums.com/practice/technique/synthesizing-
assertions-into-hardware-for-faster-silicon-debug/

[5] “Intel Core 2 Extreme Processor X6800 and Intel Core 2 Duo Desktop
Processor E6000 and E4000 Sequence Specification Update,” 2008.

[6] “Revision Guide for AMD Athlon 64 and AMD Opteron Processors,”
2005.

[7] “5th Generation Intel® CoreTM Processor Family, Intel® CoreTM M
Processor Family, Mobile Intel® Pentium® Processor Family, and
Mobile Intel® Celeron® Processor Family, Specification Update,”
October 2015, Revision 015, Reference Number 330836-015.

[8] “Mobile 4th Generation Intel® CoreTM Processor Family, Mobile
Intel® Pentium® Processor Family, and Mobile Intel® Celeron®
Processor Family, Specification Update,” November 2015, Revision
028, Reference Number 328903-028.

[9] “Intel® Xeon® Processor E3-1200 v3 Product Family Specification
Update,” January 2016, Reference Number 328908-014US.

[10] “Intel® Xeon® Processor E7-8800/4800 v3 Product Family,
Specification Update,” March 2016, Reference Number 332317-
007US.

[11] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS: A
Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs,” International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2015, pp. 517-529. doi:
https://doi.org/10.1145/2694344.2694366

[12] P. Patra, “On the cusp of a validation wall,” IEEE Design & Test of
Computers, vol. 24, no. 2, March-April 2007, pp. 193-196. doi:
https://doi.org/10.1109/MDT.2007.54

[13] G. Papadimitriou, D. Gizopoulos, A. Chatzidimitriou, T. Kolan, A.
Koyfman, R. Morad, and V. Sokhin, “Unveiling difficult bugs in
address translation caching arrays for effective post-silicon validation,”
International Conference on Computer Design (ICCD), 2016, pp. 544-
551, doi: https://doi.org/10.1109/ICCD.2016.7753339

[14] A. Adir, M. Golubev, S. Landa, A. Nahir, G. Shurek, V. Sokhin, and
A. Ziv, “Threadmill: A post-silicon exerciser for multi-threaded
processors,” Design Automation Conference (DAC), 2011, pp. 860-
865. doi: https://doi.org/10.1145/2024724.2024916

[15] J. Goodenough and R. Aitken, “Post-silicon is too late avoiding the $50
million paperweight starts with validated designs,” Design Automation
Conference (DAC), 2010, pp. 8-11, doi:
https://doi.org/10.1145/1837274.1837279

[16] B. Bentley, “Validating the intel pentium 4 microprocessor,” Design
Automation Conference (DAC), 2001, pp. 244–248. doi:
https://doi.org/10.1145/378239.378473

[17] D. Josephson, “The good, the bad, and the ugly of silicon debug,”
Design Automation Conference (DAC), 2006, pp. 3-6, doi:
https://doi.org/10.1145/1146909.1146915

[18] S. S. Mukherjee, C.r T. Weaver, J. S. Emer, S. K. Reinhardt, T. M.
Austin, “A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor.”
International Symposium on Microarchitecture (MICRO), 2003, 29-
42. doi: https://doi.org/10.1109/MICRO.2003.1253181

[19] E. Singh, D. Lin, C. Barrett and S. Mitra, “Logic Bug Detection and
Localization Using Symbolic Quick Error Detection ,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2018. doi: https://doi.org/10.1109/tcad.2018.2834401

[20] A. Nahir, M. Dusanapudi, S. Kapoor, K. Reick, W. Roesner, K.-D.
Schubert, K. Sharp, and G. Wetli, “Post-silicon validation of the IBM
POWER8 processor,” Design Automation Conference (DAC), 2014,
pp. 1–6. doi: https://doi.org/10.1145/2593069.2593183

[21] D. Lee and V. Bertacco, "”MTraceCheck: Validating non-
deterministic behavior of memory consistency models in post-silicon
validation,” International Symposium on Computer Architecture
(ISCA), 2017, pp. 201-213, doi:
https://doi.org/10.1145/3079856.3080235

[22] C.-H. Hsu, D. Chatterjee, R. Morad, R. Ga and V. Bertacco,
“ArChiVED: Architectural checking via event digests for high
performance validation,” Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, pp. 1-6. doi:
https://doi.org/10.7873/DATE.2014.330

[23] T. M. Austin, "DIVA: a reliable substrate for deep submicron
microarchitecture design," International Symposium on
Microarchitecture (MICRO), 1999, pp. 196-207. doi:
https://doi.org/10.1109/MICRO.1999.809458

[24] J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. González, “End-
to-end register data-flow continuous self-test,” International
Symposium on Computer Architecture (ISCA), 2009, pp. 105-115. doi:
https://doi.org/10.1145/1555754.1555770

[25] R. Nathan and D. J. Sorin, "Nostradamus: Low-cost hardware-only
error detection for processor cores," Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2014, pp. 1-6, doi:
https://doi.org/10.7873/DATE.2014.173

[26] “Intel Core X-Series Processor Family Specification Update,” Rev.
009, Document Number: 335901-009, February 2020,
https://www.intel.com/content/dam/www/public/us/en/documents/spe
cification-updates/6th-gen-x-series-spec-update.pdf

[27] “10th Generation Intel® Core™ Processor Specification Update,” Rev.
013, Document Number: 341079-013, October 2021,
https://cdrdv2.intel.com/v1/dl/getContent/615213

[28] A. Abel and J. Reineke, "Accurate Throughput Prediction of Basic
Blocks on Recent Intel Microarchitectures”, 2021,
https://arxiv.org/pdf/2107.14210.pdf

[29] “Intel February 2022 Microcode Update,”
https://access.redhat.com/articles/6716541#register-checkpoint-race

[30] Robert M. Tomasulo. "An efficient algorithm for exploiting multiple
arithmetic units," IBM Journal of Research and Development, vol. 11,
no. 1, Jan. 1967, pp. 25-33. doi: https://doi.org/10.1147/rd.111.0025

[31] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar and A. Yoaz, “A novel
renaming scheme to exploit value temporal locality through physical
register reuse and unification,” International Symposium on
Microarchitecture (MICRO), 1998, pp. 216-225. doi:
https://doi.org/10.1109/MICRO.1998.742783

[32] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, 1. Miller, and M.
Upton, “Hyper-threading technology architecture and
microarchitecture,” Intel Technology Journal, vol. 6, no. 1, 2002. pp.
4-15, 2002.

[33] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” International Symposium on Computer
Architecture (ISCA), 1997, pp. 206-218. doi:
https://doi.org/10.1145/264107.264201

[34] G. Z. Chrysos, and J. S. Emer. "Memory dependence prediction using
store sets," International Symposium on Computer Architecture
(ISCA), 1998, pp. 142-153. doi:
https://doi.org/10.1109/ISCA.1998.694770

[35] A. Gonzalez, F. Latorre and G. Magklis, “Processor Microarchitecture.
An Implementation Approach,” Morgan & Claypool Publishers, 2011.
https://doi.org/10.2200/S00309ED1V01Y201011CAC012

[36] J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts
in pipelined processors,” International Symposium on Computer
Architecture (ISCA), 1985, pp. 36–44. doi:
https://doi.org/10.1145/327070.327125

[37] I. E. Papazian, “Next Generation Intel Xeon(R) Scalable Server
Processor: Icelake-SP,” HotChips31 Symposium (HCS), 2020. doi:
https://doi.org/10.1109/HCS49909.2020.9220434

[38] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol.
19, no. 2, pp. 24–36, March-April 1999. doi:
https://doi.org/10.1109/40.755465

[39] K. C. Yeager, “The Mips R10000 superscalar microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28-41, April 1996, doi:
https://doi.org/10.1109/40.491460

[40] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, Alan Kyker
and Patrice Roussel. “The microarchitecture of the Pentium® 4
processor,” Intel Technology Journal, 2001.

[41] I. Anati, D. Blythe, J. Doweck, H. Jiang, W. f. Kao, J. Mandelblat, L.
Rappoport, E. Rotem and A. Yasin, “Inside 6th gen Intel® Core™:
New microarchitecture code named Skylake,” HotChips28
Symposium (HCS), 2016. doi:
https://doi.org/10.1109/HOTCHIPS.2016.7936222

[42] M. Clark, “A new x86 core architecture for the next generation of
computing,” HotChips28 Symposium (HCS), 2016. doi:
https://doi.org/10.1109/HOTCHIPS.2016.7936224

[43] J. Mandelblat, “Intel’s Next Generation Microarchitecture Code Name
Skylake,” Intel Developer Forum, 2015.

[44] A. Perais, F. A. Endo and A. Seznec, “Register sharing for equality
prediction,” International Symposium on Microarchitecture (MICRO),
2016, pp. 1-12. doi: https://doi.org/10.1109/MICRO.2016.7783707

[45] A. Moshovos and G. Sohi, “Streamlining Inter-Operation Memory
Communication via Data Dependence Prediction.” International
Symposium on Microarchitecture (MICRO), 1997, pp. 235-245. doi:
https://doi.org/10.1109/MICRO.1997.645814

[46] N. J. Wang, J. Quek, T. M. Rafacz and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,”
International Conference on Dependable Systems and Networks
(DSN), 2004, pp. 61-70, doi:
https://doi.org/10.1109/DSN.2004.1311877

[47] R. Gabor, Y. Sazeides, A. Bramnik, A. Andreou, C. Nicopoulos, K.
Patsidis, D. Konstantinou, and G. Dimitrakopoulos, “Error-Shielded
Register Renaming Sub-system for a Dynamically Scheduled Out-of-
Order Core,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019, pp. 812-817, doi:
https://doi.org/10.23919/date.2019.8715194

[48] M. Bushnell and V. Agrawal, “Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits,” Springer
Publishing Company, Incorporated, 2013.

[49] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and
R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite," International Workshop on Workload
Characterization (WWC), 2001, pp. 3-14. doi:
https://doi.org/10.1109/WWC.2001.990739

[50] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T.r Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2, pp.
1–7, May 2011, doi: https://doi.org/10.1145/2024716.2024718

[51] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. Abdel Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, "QED: Quick Error Detection
tests for effective post-silicon validation," International Test
Conference (ITC), 2010, pp. 1-10, doi:
https://doi.org/10.1109/test.2010.5699215

[52] N. Foutris, D. Gizopoulos, M. Psarakis, X. Vera, and A. Gonzalez,
“Accelerating microprocessor silicon validation by exposing ISA
diversity,” International Symposium on Microarchitecture (MICRO),
2011, pp. 386-397. doi: https://doi.org/10.1145/2155620.2155666

[53] I. Wagner and V. Bertacco, "Reversi: Post-silicon validation system for
modern microprocessors," International Conference on Computer
Design (ICCD), 2008, pp. 307-314, doi:
https://doi.org/10.1109/ICCD.2008.4751878

[54] C. Turner, “Safety and security for automotive SoC design,” ARM,
2016. https://docplayer.net/42298283-Safety-and-security-for-
automotive-soc-design.html

[55] J. Fruehe, “AMD Epyc brings new RAS capability increasing
Reliability, Availability and Serviceability in the latest AMD Design.”
Moor Insights and Strategy, June 2017.

[56] I. Wagner and V. Bertacco, “The Verification Universe” in “Post-
Silicon and Runtime Verification for Modern Processors”, Springer,
2011.

[57] N. Foutris, D. Gizopoulos, X. Vera, and A. Gonzalez, “Deconfigurable
microprocessor architectures for silicon debug acceleration,”
International Symposium on Computer Architecture (ISCA), 2013, pp.
631–642. doi: https://doi.org/10.1145/2485922.2485976

[58] RISC-V Boom RTL Simulation Assertions for Leakage and
Duplication https://github.com/riscv-boom/riscv-
boom/blob/ad64c5419151e5e886daee7084d8399713b46b4b/src/main
/scala/exu/rename/rename-freelist.scala#L95

[59] P. Meinerzhagen, S. M. Y. Sherazi, A. Burg and J. N. Rodrigues,
“Benchmarking of Standard-Cell Based Memories in the Sub-VT
Domain in 65-nm CMOS Technology,” in IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 173-182,
June 2011. doi: https://doi.org/10.1109/JETCAS.2011.2162159

[60] R. R. Hornish, “777 Autopilot Flight Director System,” Digital
Avionics Systems Conference (DASC), 1994, pp. 151-156, doi:
https://doi.org/10.1109/dasc.1994.369488

[61] “MP2128 3X MicroPilot's Triple Redundant UAV Autopilot,” White
paper, 2015.

[62] S. Siceloff, “Shuttle Computers Navigate Record of Reliability,”
NASA, Tech. Rep. June, 2010.

[63] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall,
T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F.
Webb, “IBM's S/390 G5 microprocessor design,” IEEE Micro, vol. 19,
no. 2, pp. 12-23, March-April 1999, doi:
https://doi.org/10.1109/40.755464

[64] S. S. Mukherjee, M. Kontz and S. K. Reinhardt, “Detailed design and
evaluation of redundant multi-threading alternatives,” International
Symposium on Computer Architecture, 2002, pp. 99-110, doi:
https://doi.org/10.1145/545214.545227

[65] “Intel® GO™ Autonomous Driving Solutions.”
https://www.intel.com/content/dam/www/public/us/en/documents/pla
tform-briefs/go-automated-accelerated-product-brief.pdf, 2017

[66] “TMS570LS3137 Product Manual,” Texas Instrument, 2015

[67] D. Henderson, “POWER8 Processor Based Systems RAS Introduction
to Power Systems Reliability, Availability, and Serviceability,”
Whitepaper, 2016

[68] K. T. Nguyen, “New Reliability, Availability and Serviceability (RAS)
Features in the Intel Xeon Processor Family.”, Whitepaper, 2017

[69] https://www.kvausa.com/random-failure-vs-systematic-failure

[70] V. Reddy and E. Rotenberg, "Coverage of a microarchitecture-level
fault check regimen in a superscalar processor," International
Conference on Dependable Systems and Networks (DSN), 2008, pp.
1-10. doi: https://doi.org/10.1109/dsn.2008.4630065

[71] A. Meixner, M. E. Bauer and D. J. Sorin, “Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores,” in IEEE Micro, vol.
28, no. 1, pp. 52-59, Jan.-Feb. 2008, doi:
https://doi.org/10.1109/micro.2007.18

[72] A. Meixner and D. J. Sorin, “Error Detection Using Dynamic Dataflow
Verification,” International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2007, pp. 104-118, doi:
https://doi.org/10.1109/PACT.2007.4336204

[73] I. Sideris and K. Pekmestzi, “A column parity based fault detection
mechanism for FIFO buffers,” Integration, vol. 46, no. 3, 2013, pp.
265-279. doi: https://doi.org/10.1016/j.vlsi.2012.03.004

