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Abstract—In this paper, we propose a cost-effective 

microarchitectural technique capable of Instantaneously 
Detecting the Leakage and Duplication (IDLD) of the physical 
register identifiers used for register renaming in modern out-of-
order processor cores. Leakage occurs when a physical register 
identifier disappears, whereas duplication occurs when the 
physical register identifier appears twice throughout the 
renaming logic. IDLD checks each cycle that a code calculated 
by xoring the physical register identifiers read from and written 
to arrays, used for managing physical registers allocation, 
renaming and reclamation, is zero. This invariance is intrinsic 
to the register renaming subsystem functionality and allows 
detecting an identifier leakage and duplication instantaneously. 
Detection of bugs in the complex register renaming subsystem is 
challenging, since: (a) its operation is not directly observable in 
program or architectural visible locations, (b) it lies in time-
critical paths in the heart of every modern out-of-order core, 
and (c) it is often the target for optimizations in new core 
designs, and thus, more susceptible to bugs than legacy 
subsystems. We demonstrate that bugs in the renaming logic can 
be very difficult to root cause because, for numerous cases, it 
takes excessive time, e.g., millions of cycles, for a duplication or 
leakage to become an architecturally observable error. Even 
worse, activations of such bugs, depending on 
microarchitectural state, are often masked by subsequent 
hardware operations. Hence, an activation of a rarely occurring 
leakage or duplication bug during post-silicon validation can go 
undetected and escape in the field. The difficulty of root-causing 
register identifier duplication and leakage without IDLD is 
demonstrated using detailed bug modeling at the 
microarchitecture level, whereas the low overhead of IDLD is 
confirmed using RTL design analysis. 

Keywords—Post-silicon validation, register renaming, merged 
register file, microarchitecture, pipeline, design bugs 

I. INTRODUCTION 
As chip designs become more complicated, the gap 

between design and verification grows, and bugs in modern 
high-end processors are unavoidable, even with rigorous 
design processes and practices. In such a landscape, design 
correctness validation is a major challenge for the 
semiconductor industry [1] [2] that pushes manufacturers to 
spend extra effort, time, budget and chip area to ensure that 
the delivered products are operating correctly.  

Design bugs are often detected during pre-silicon 
verification using simulation-time assertions that are useful 
for the detection of functional bugs before the design is 
synthesized. If such simulation time assertions are 

synthesized [3] they can extend the pre-silicon bug detection 
capability by taking into consideration also non-functional 
parameters, such as technology and electrical issues, during 
the simulation of synthesized designs. Unfortunately, such an 
approach faces several challenges [4] as functional checks are 
not straightforward or cost-efficient to synthesize. 
Additionally, they require extra design and validation effort 
and when synthesized they prolong the simulation time. Even 
if only subset of the assertions is synthesized, it is non-trivial 
how to determine which assertions hold the largest potential 
to detect bugs. What is more, design bugs can escape into 
silicon due to the limited coverage of pre-silicon methods 
(which are simulation-based and thus have a limited 
throughput) or inaccurate models of silicon behavior [1]. 
Several publicly available official erratum reports, from 
major processor vendors, present hundreds of bugs escaping 
to the market that affect both the performance and the 
functionality of the processor [5]-[11]. To this end, effective 
post-silicon validation methods become indispensable to 
detect design flaws and manufacturing defects in prototype 
chips.  

Post-silicon validation allows detection of rare functional 
errors, but also electrical bugs that manifest themselves only 
under certain conditions, such as signal integrity, thermal 
effects, or process variations [12] [13]. Current industry 
(traditional) post-silicon validation methods mainly rely 
either on comparing the results of a program’s execution to 
simulation-based reference/golden models, or on using multi-
pass consistency end-of-test results [14]-[17]. However, both 
methods share a common drawback: they are incapable of 
detecting a bug activation that does not affect the correct 
functionality of the validation program. This occurs because 
the checking phase compares only the silicon’s outcome with 
a pre-generated reference model. As a result, when a bug, 
which is activated during the execution of a validation 
program, is getting masked by other valid processor 
operations, or that bug only affects the performance of the 
validation test, the final output of the prototype chip will 
completely match the reference (bug-free) model. This kind 
of bugs that remain undetected during post-silicon validation, 
eventually slip in the market and, unfortunately, get activated 
in a user visible manner be degraded performance or incorrect 
output. It is crucial to stress that, while not detecting soft 
errors that are masked is desirable [18], not detecting during 
post-silicon a rarely activated bug because is masked, 



 
 

depending on program and microarchitectural conditions, is 
not. Post-silicon validation phase is the last chance of 
verification teams to detect rare bugs and fixed them before 
the chip reaches the market, where a not-masked activation 
of the escaped bug will be user visible. To this end, such bugs 
are typically referred to as difficult-to-detect bugs.  

Another challenging requirement of post-silicon 
validation is that after a bug is detected, it needs to be 
localized to identify what is its root-cause and eventually fix 
it. Bug localization during post-silicon validation can be quite 
expensive, as it may require several weeks and even months 
to complete, delaying the market entry of a product and 
resulting in grave economic consequences [19]. Unlike pre-
silicon verification, post-silicon validation lacks 
observability and ease of control in the microarchitectural 
structures of the silicon prototype [20]. What makes bug 
localization so challenging is the potentially large time 
window between the bug activation cycle and its 
manifestation to an observable error (i.e., long bug detection 
latency). Such a large time-window needs to be analyzed with 
low-throughput simulators to root-cause the bug. 
Additionally, the fast detection of such bugs is of paramount 
importance since such bugs can be extremely difficult to be 
reproduced (i.e., the root-cause analysis can fail). For 
instance, a bug can be the result of a combination, at the same 
time, of a voltage droop and writing data over a critical 
control signal speed-path, which causes the data not to be 
written in an array. This combination of events is non-trivial 
to reproduce, especially, long after they occurred. 

Bug localization and root-cause analysis can be 
accelerated by employing in silicon assertions/checkers [21] 
[22]. Anecdotal sources suggest that typically, simple 
checkers can detect only simple bugs, and thus, they usually 
offer limited coverage for difficult-to-detect bugs. On the 
other hand, expensive checkers can provide more 
comprehensive coverage but are costly, primarily in terms of 
area overhead [23]-[25] (we discuss these and other previous 
art in Section VII). Therefore, it is instrumental to design 
simple yet effective checkers that can quickly localize rarely 
occurring and difficult-to-detect bugs in complex and time-
critical processor structures. 

Recently, Intel reported in publicly available errata, 
escaped bugs related to register renaming logic (focus of our 
paper), which persist across multiple CPU generations. For 
example, due to an escaped bug in the 6th generation Intel 
CPUs (SKZ6 erratum [26]), short loops using registers 
AH/BH/CH/DH may cause unpredictable system behavior. 
Also, as a workaround to the ICL065 erratum [27], which 
states “under complex microarchitectural conditions, when 
move elimination is performed, unpredictable system 
behavior may occur”, move elimination for general-purpose 
registers is disabled with a recent microcode patch on Ice 
Lake and Tiger Lake Intel processors [28]. Another very 
recent bug (February 2022), due to which the processor may 

incorrectly recover from a mispredicted branch due to a 
possible race condition in register checkpoint mechanism, 
has been also patched through a microcode update [29]. 
These recent examples clearly demonstrate that currently 
used post-silicon validation methods fail to detect severe 
bugs related to the register renaming logic of modern out-of-
order processors. 

To this end, we focus on the quick and effective post-
silicon validation of a critical microarchitectural structure: 
the register renaming subsystem (RRS) [30] found in modern 
out-of-order (OoO) processor cores. RRS is in the heart of 
every modern OoO core, contains many complex hardware 
flows that implement various functions and optimizations, 
and is often the target of new core design improvements [31] 
[32], as well as of increases in the number of physical 
registers (Pdsts) that RRS contains and in the number of 
registers it renames per cycle. This interplay of existing RRS 
flows with new ones, along with increasing size and tight 
critical paths makes the RRS severely prone to design, 
timing, or electrical bugs [1] [2]. Moreover, post-silicon 
validation of the RRS is exceptionally challenging because 
RRS lies in time-sensitive paths [33] and any auxiliary 
hardware-based validation technique for detecting bugs 
should be simple with minimal (ideally zero) impact on cycle 
time, providing at the same time comprehensive bug 
detection. For all these reasons, post-silicon validation of the 
RRS requires a special treatment as compared to other 
structures (or even the core as a whole).  

In this paper, we propose a simple yet quick and effective 
hardware technique, named Instantaneous Detection of 
Leakage and Duplication (IDLD). IDLD is a hardware bug 
detection approach that checks that a code produced by 
xoring each cycle the physical register identifiers read from 
and written to arrays, used for managing physical registers 
allocation, renaming and reclamation, is zero. This basic 
invariance is derived from the register renaming subsystem 
functionality and allows detecting an identifier leakage and 
duplication instantaneously. IDLD focuses on rare bugs and 
manufacturing defects in the RRS control logic. As we 
demonstrate, such bugs primarily result in a physical register 
identifier (PdstID) being duplicated (i.e., a PdstID appears 
twice) or leaked (i.e., a PdstID disappears). For example, a 
PdstID is leaked when it is read from one RRS array but is 
not written in another, whereas a PdstID is duplicated when 
it is written in one RRS array without being released from 
another. Particularly, this work: 
• Shows that PdstID leakage and duplication are 

manifestations of bugs in the control logic that manages 
the RRS physical register identifiers. PdstID leakage 
and duplication are new RRS bug models defined for 
the first time. 

• Proposes IDLD: a novel RRS microarchitectural 
scheme, used during the post-silicon validation phase, 
which leverages fundamental RRS and design 



 
 

properties to enable instantaneously the cost-effective 
detection of PdstID duplication and leakage. 

• Justifies the significance of IDLD using a 
comprehensive microarchitecture-level bug modeling 
that reveals manifestation latency to an observable error 
often occurs millions of cycles after the bug activation 
and in more than a few cases the bug remains 
unnoticed. 

• Designs a baseline RRS at the RTL level and enhance 
it with IDLD. Synthesis of the RTL designs reveals the 
minimal area overheads of IDLD. 

• Presents another IDLD use case for the Store-Sets 
memory dependence predictor [34] and discusses 
IDLD’s broader applicability. 

II. BACKGROUND & MOTIVATION 
Register renaming is a technique that enables OoO 

execution by eliminating false register dependences between 
instructions. Several implementations of register renaming 
have been proposed over the years [35] [36], however, in this 
work we focus on the register renaming with a merged 
register file, which is the typical implementation in most 
modern CPUs [37]-[43]. In such implementation, the results 
of operations are stored in a single physical register file that 
combines the architectural and speculative state. Register 
renaming with a merged register file uses a large pool of 
physical registers and translates a logical destination register 
(i.e., architectural register), of each data producing 
instruction, to a physical register. Figure 1 shows the RRS 
considered in this work, which consists of the following 
hardware arrays: 

Free List (FL): FL is a first-in-first-out (FIFO) hardware 
structure, where PdstIDs are initialized each time the 
processor core is powered on, with each PdstID pointing to a 
different entry in the physical register file. A free Pdst is 
allocated to rename the logical destination register (Ldst) of 
an instruction. Its PdstID is sent to the reservation station 
(RS) where the renamed instruction waits to execute. When 
the instruction executes, it updates the physical register 
pointed by its PdstID. 

Register Alias Table (RAT): RAT is a hardware array 
that keeps the most recent mapping of each logical register 
identifier to a PdstID. It is used to rename the input logical 
registers of an instruction. The renamed PdstIDs are 
forwarded to the RS of the instruction to determine when the 
instruction can be executed. 

Reorder Buffer (ROB): ROB is a FIFO hardware 
structure with an entry allocated per instruction. Each ROB 
entry has a field to hold the PdstID that is evicted from the 
RAT by the instruction (if the instruction writes to a register). 
The Pdst is reclaimed (i.e., its PdstID returned in the FL) 
when the instruction retires. 

Checkpoint Table (CKPT): CKPT is used to take 
regularly snapshots of the RAT.  

Register History Table (RHT): RHT is a FIFO 
hardware structure used to log the RAT changes per 
instruction, i.e., the logical destination register (if any) for an 
instruction and its allocated PdstID. 

The CKPT and RHT are useful for expediting recovery of 
the RRS following pipeline flushes (e.g., due to a mispredict). 
When an instruction causes a pipeline flush, the RRS state is 
restored using the CKPT and RHT. First, the RAT is 
recovered from the closest previous checkpoint to the 
offending instruction. Then the RHT is used to perform a 
(positive) walk to update the RAT with information logged 
between the RHT entry associated with the restored 
checkpoint and the RHT entry of the offending instruction. 
The recovery process performs another (negative) walk of the 
RHT to return to the FL all the identifiers of the Pdsts 
allocated after the offending instruction. In addition to 
recovering the arrays state, the tail pointers of the RHT and 
ROB are restored to the position corresponding to the flush 
causing instruction. The FL head pointer is not restored since 
the wrong path Pdsts are returned in the FL during the 
negative walk using the FL tail. 

RRS speed paths are very tight because in a superscalar 
OoO core it is required in a single cycle to rename multiple 
instructions together, so that in the next cycle another group 
of instructions can be renamed. As part of the renaming 
process, we determine which instructions can update the RAT 
with their allocated PdstID. This is non-trivial, as there may 
be more than one instruction that writes to the same logical 
register (Ldst), and this requires a multiplexing circuitry with 
numerous paths. The number of paths increase the wider a 
core gets. Additionally, register renaming related 
optimizations, such as move and idiom elimination [31], 
increase the possibilities for which PdstID is written in the 
RAT and increases the renaming logic complexity. 

Figure 1. Register renaming with merged register file. 
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Moreover, adding a new RRS optimization to a future OoO 
core, such as register-equality [44] and memory-renaming 
[45], will require validation not only of the specific 
optimization but also its interplay with other existing flows 
and logic.  

Consequently, RRS is non-trivial to validate. Moreover, 
adding extra circuitry to facilitate its validation should be 
done carefully to avoid increasing the RRS design 
complexity or increase the delay of its critical path with 
possible negative effects on cycle time or performance. 

III. BUGS & BUG MODELS FOR RRS 
This section discusses and justifies the types of bugs and 

bug models considered in this work for capturing the buggy 
behavior in the RRS control logic. The control logic is 
represented by the clouds in Figure 1 and is the one 
responsible for the allocation and reclamation of the Pdsts 
and the transfer of their PdstIDs between the various RRS 
arrays. We show that bugs within the RRS control logic can 
lead to serious malfunctions that compromise the entire 
processor core’s functionality. 

A. RRS Control Logic, Bugs and Bug Models 
The control logic in the RRS, depending on the state of 

the core, generates several signals such as those shown Table 
I, (i) to control the updates of the RRS arrays, (ii) to control 
the updates of the read/write pointers for the RRS arrays that 
are maintained as FIFOs, and (iii) to determine the RRS 
arrays accessed locations. The Checkpoint signal is generated 
at regular intervals; in our design at every fixed number of 
ROB entry allocations, to checkpoint the RAT. The Recovery 
signal is generated after a squash/flush to recover the RAT 
from a checkpoint. The selected checkpoint is a fixed 
function of the ROB position that causes the squash/flush. 
Additionally, the RRS contains logic that determines which 
of the allocated Pdst identifiers in a clock cycle are used to 
update the RAT. This is needed because some of the 
instructions may update the same logical register. 

For the other RRS arrays the selection (if any) of the 
PdstIDs that are used to update them is straightforward and 
we do not describe them further. Our discussion does not 
cover the complete set of signals in the RRS, but it reveals 
the numerous cases that may go wrong during register 
renaming in a processor core. A control logic bug can cause 

control signals not to be asserted or may cause a PdstID 
corruption. Such bugs can be the result of a design bug or 
timing error due to a weak electrical signal [1]. For instance, 
a weak signal can prevent a control signal to be asserted or it 
may corrupt a PdstID value to be written. Therefore, we use 
two bug models, which can describe the difficult-to-detect 
bug scenarios in the RRS: (i) Control Signal Corruption, a 
momentary control signal de-assertion when the signal 
should normally have been asserted (i.e., depending on the 
operation, this bug model can result in duplication or leakage 
or both) and (ii) PdstID Corruption, in which the PdstID gets 
corrupted when it is written in the RAT. 

B. Criticality of RRS Control Logic 
The severity of faults occurring within the RRS’s control 

logic is demonstrated with a simple walkthrough example in 
Figure 2. Assume for example that a new instruction must be 
renamed and, due to a bug, the write-enable control signal of 
the RAT is momentarily stuck at the logical value low. This 
implies that the entry pointed by the instruction’s Ldst in the 
RAT is not updated with the new PdstID (i.e., a leakage 
happens), since the write-enable signal is unasserted. Figure 
2(a) shows the state of the RRS prior to the arrival of a new 
instruction. As soon as the new instruction arrives, the 
physical register R3 is allocated, causing the PdstID of R3 to 
be popped from the FL, as shown in Figure 2(b). At the same 
time, the current mapping of the new instruction’s Ldst – that 
happens to be R1 in this example – must be copied from the 
RAT into the ROB, as also illustrated in Figure 2(b). Under 
normal circumstances, the renaming operation would then 
finish by overwriting the R1 identifier in the RAT with the 
R3 identifier that has been popped from the FL. However, 
since the RAT’s write-enable signal is stuck at low because 
of the bug, the R3 PdstID is never written into the RAT, and 
the R1 PdstID still resides in the RAT, since it was not 
overwritten by R3. This is a leakage scenario in RAT. 
However, note that the R3 PdstID is (correctly) written in 
RHT (as shown in Figure 2(c)), because the bug does not 
affect the correct operation of RHT. Therefore, since the bug 
prevents the R3 PdstID to be written in the RAT, the newly 
renamed instruction will write its result into register R3 (as 
shown in Figure 2(b); the correct R3 PdstID is used by the 
current instruction), but any subsequent consumers will read 
data from register R1 (since, due to the bug, this is the current 

TABLE I. REGISTER RENAMING SUBSYSTEM (RRS) CONTROL SIGNALS. 

 Read Enable Write Enable Recovery Checkpoint 
FL Advance read pointer Update array Update write pointer – – 

ROB Advance read pointer Update array Update write pointer Move write pointer to offending entry+1 – 
RHT Advance read pointer * Update array Update write pointer Move write pointer to offending entry+1 – 
RAT – Update array – Checkpoint to RAT – 

CKPT – – – – RAT to Checkpoint 
 * RHT uses two read pointers to perform a positive and negative walk during recovery 

 



 
 

mapping in RAT). This scenario violates the correct dataflow 
and will likely lead to incorrect program execution. Further, 
as shown in Figure 2(c), the Pdst identifier of register R3 has 
now been dropped (i.e., it has leaked and cannot be found in 
the FL, RAT, or ROB), while forcing the R1 PdstID to be 
duplicated within the RRS (R1 PdstID now residing in both 
ROB and RAT). Note that all these problems would remain 
undetected by schemes that can only detect corruption in a 
PdstID, since no Pdst corruption has occurred [46] [47]. 

Even though this example focuses on a particular control 
signal of the RAT, equally severe issues may also arise due 
to bugs in other RRS control signals. For example, bugs 
affecting the read/write signals of the FL, ROB, and RHT 
could lead to similar behavior as that exhibited in the example 
above, which would adversely affect the functional 
correctness of the entire core. 

It is important to note, that the bug activation, discussed 
in Figure 2, can have different effects depending on the 
microarchitectural state. Specifically, if the bug activation 
occurs in the correct path, as explained above, it is likely to 
become user visible (e.g., lead to a wrong output). On the 
other hand, if the bug activation occurs in the wrong path, it 
is possible to recover the corrupted PdstID from RHT after 
the pipeline flush (mispredict recovery) without any user 
visible effect. This underlines the criticality of detecting such 
bugs irrespective if their activation during testing happened 
to be masked since during field operation, under different 
microarchitectural conditions, the bug can remain unmasked 
and lead to a wrong output.  

C. Pdst Leakage and Duplication Bug Models 
In the previous subsection, we discussed the example 

shown in Figure 2, in which the primary effect of an RRS 
control logic bug is a leaked PdstID, and a secondary effect 
is a PdstID duplication. The examination of the bug 
manifestations for the various RRS control signals in Table I 
reveals that all bug manifestations in RRS logic can result in 
either or both a duplication and a leakage of Pdst identifiers.  

Assume for example all the cases in which an array’s 
write-enable signal incorrectly remains unasserted. This bug 
scenario will result in a PdstID leakage since the input PdstID 
is not written in the array. On the other hand, considering the 
case in which the read pointer of a FIFO hardware structure 
is erroneously not advanced (due to a bug in the RRS logic). 
This will result in a duplication the next time the array is read, 
since it will return the same PdstID. Now consider the case in 
which a wrong PdstID will be written in a RAT entry. This 
can correspond to the case where the FL has allocated one 
PdstID but, due to a bug, a different PdstID value is written 
in the RAT. This corresponds to a leakage, because the 
allocated register disappears, but also to a duplication since 
the wrong PdstID is getting written in the RAT while existing 
elsewhere in RRS. Another scenario could be that the RAT 
needs to be recovered due to a misprediction that leads to a 
pipeline flush, but, due to a bug, it is not recovered. This 
happens because the recovery signal remained unasserted, or 
it is recovered from a wrong checkpoint since the correct 
checkpoint was not taken (checkpoint signal remained 
unasserted due to a bug). This is similar to a PdstID 
corruption but instead of a single corruption, there can be 
multiple and, therefore, multiple PdstIDs are leaked and 
duplicated. To the best of our knowledge, there is no previous 
work which defines and presents in such a detail the bug 
models and their behavior, when they are activated in the 
control logic of the RRS. A bug model is an approximate 
behavior that abstracts the details of the actual physical 
causes of a bug and facilitates the development of methods to 
detect any physical bug that has the same behavior as defined 
by the bug model [48].  

IV. BUG MODELING ANALYSIS 
A. Microarchitecture Level Bug Modeling 

Before presenting our approach for the instantaneous 
detection of leakage and duplication of Pdst identifiers, we 
experimentally explore the behavior of the processor’s 
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operation in a full-system setup for numerous activations of 
the three bug models in the RRS logic during the execution 
of actual workloads. In such a way, we gain a deeper 
understanding of the effects that escaped design bugs from 
pre-silicon verification, electrical bugs or manufacturing 
defects can produce during silicon execution, as well as the 
conditions that prevent these bugs from being detected during 
the post-silicon validation as it is currently employed in 
industry (see discussion in Section I). For this experimental 
analysis, we employed ten benchmarks (end-to-end 
execution for each benchmark) from the MiBench suite [49] 
with diverse behavior and the widely used gem5 simulator 
[50] based on the x86-64 ISA, which is a state-of-the-art 
cycle-accurate microarchitectural simulator.  

The gem5 simulator is configured to model an OoO 
superscalar core using the renaming configuration presented 
in Section VI.A. Our experiments are based on bugs, which 
are activated in random clock cycles in the RRS gem5 
implementation. We run 3,000 distinct simulations for each 
of the ten benchmarks (i.e., 30,000 bug occurrences in total), 
2,000 for Read-enable and Write-enable Control Signal 
corruptions (broken into 1,000 runs for duplication bugs and 
1,000 runs for leakage) and 1,000 runs for PdstID corruption. 
During each run, we consider one single bug activation in the 
RRS logic (i.e., 30,000 bug activations in total) and we record 
in detail all the output files, logs, and statistics that 
correspond to each execution. Through this experimental 
analysis, we can classify the effects of each of the three bug 
models into fine-grained bug effect classes.  

For each run, we also keep track of the commit trace of 
the simulator. Therefore, we can monitor the bug activation 
cycle (i.e., in which cycle the bug is activated) and the bug 
manifestation cycle (i.e., at which time the bug affects the 
committed instructions; the commit trace becomes different 
from the bug-free commit trace). The results of this detailed 
analysis, help demonstrate the severity of the bug models and 
the reasons why the bugs defined in Section III are difficult 
to detect, and when they are detected, it is difficult to root-
cause them due to their excessively long manifestation times. 

As explained in Section I, bug activations that do not 
affect the functionality of the program are extremely difficult 
to detect during post-silicon validation. These are classified 
into three classes depending on their effect on execution: 

Benign: When the execution terminates with no 
deviations from the bug-free execution and the output file is 
identical to the bug-free reference output. 

Performance: This effect is functionally the same with 
Benign, but the difference is that there is a deviation in the 
cycles of the committed instructions. The program’s output 
is correct, the instructions are committed correctly, but some 
instructions are not committed in the correct cycle (compared 
to the bug-free committed instructions).  

Control Flow Deviation: This effect is again 
functionally the same with Benign, but the difference is that 
there is a deviation in the committed instructions (i.e., a 
deviation in the control flow). This means that in a correct 
clock cycle, a different instruction of the program is 
committed as compared to the bug-free committed 
instruction, but the output is identical to the bug-free 
reference output. This occurs when control flow diverges 
from program order and shortly re-converges back without an 
effect to the program output (e.g., this can happen for a 
conditional branch that irrespective of its direction, the 
control flow after the branch’s execution re-converges at a 
control independent point in the program control flow). 

B. Masking Effect and Bug Persistence 
All the above classes of bug activation effects (Benign, 

Performance, Control Flow Deviation) do not affect the 
functionality of the program, and we collectively referred to 
all as a unified Masked class. Figure 3 shows the fraction of 
activations for each bug model in our experimentation that do 
not affect the program output. As we can see in Figure 3, there 
is a high probability for duplication and leakage bug models 
to get masked (i.e., the bug is classified to any of the three 
major classes: Benign, Performance, Control Flow 
Deviation) while using actual benchmarks, which of course 
stress and thoroughly exercise the RRS logic. More 
specifically, Figure 3 clearly shows how severe is the 
masking effect of the ten different programs. The leakage bug 
model has the highest masking probability (up to 71%). The 
duplication bug model has a lower, but undoubtedly, 
significant masking probability (up to 22%), while the PdstID 
corruption has the lowest masking probability (up to 3%). At 
the rightmost bars, we can see the average values for any bug 
model. Therefore, it is clearly shown that a high number of 
undetected bugs can occur due to the high probability of 
masking effects in the RRS, although the bug is activated.  
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Another take-away from Figure 3, is that different 
activation instances of the same bug model can either be 
masked or not masked, this suggests a dependence on 
microarchitectural conditions (e.g., whether a bug activation 
happens in the wrong path; see Section III.B). It is, therefore, 
desirable to develop a checker that is fast – detects bug as 
soon as it occurs – to avoid sensitivity to microarchitectural 
conditions. 

It is important to note that the effects of masked faults 
(i.e., a PdstID disappears or is duplicated in the RRS) may 
persist after the end of the program’s execution. For example, 
assume a Leakage scenario in which a PdstID is freed from 
the ROB and should return to the FL, but this PdstID is not 
written in the FL due to a bug (i.e., the FL write signal is 
unasserted), and thus, this PdstID will never be allocated 
again. In this scenario, the effect of the masked bug (i.e., the 
leaked PdstID) persists until the processor resets. However, 
there are cases in which the leaked PdstID can be recovered. 
For example, this happens when a leaked PdstID from the FL 
exists in the RHT, and after a squash, this PdstID is recovered 
and eventually returned to the FL. Figure 4 shows the 
percentage of masked bugs that their effect persists in the 
processor, even if the program finishes its execution. The 
results clearly demonstrate that even if the bug is activated 
without providing any indication of its occurrence (i.e., it gets 
masked), there is a probability (up to 81%) that the bug effect 
persists until the processor resets. When this occurs, it is very 
likely for this bug to affect another program’s execution. 
Note that sha and qsort are not shown in Figure 4, since they 
both have zero probability of persisting bug effects. Overall, 
the analysis reveals that usually the largest fraction of masked 
bugs does not persist and will remain undetected by 
traditional post-silicon validation methods. 

C. Bug Manifestation Times 
In this section, we analyze the other tedious issue of post-

silicon validation flow: bug localization and root-cause 
identification. If the time window between the bug activation 

and the bug manifestation (i.e., when the bug shows some 
evidence of its existence) is excessively long, it is extremely 
difficult for debug engineers to root cause the bug and thus 
fix it. Figure 5 shows the manifestation times in the x-axis. 
For a clear demonstration of our findings, we group the 
manifestation times in eight buckets on a logarithmic scale, 
as shown in the x-axis. The y-axis shows the number of bugs 
that belong to each bucket of the x-axis.  

The results are shown for both non-masked bugs with the 
green-line, and masked bugs with some side effect 
(“Performance” or “Control Flow Deviation”) with the red-
line. The masked bugs can be detected if processors add a 
tracing mechanism that monitors for deviations from a 
reference trace in the program order or timing (a feature that 
is not available today). As shown in Figure 5, the 77% of the 
bugs which belong to the masked class but with some side-
effect, and the 23% of the bugs that eventually affect the 
program’s output (i.e., non-masked) manifest themselves 
between 10K and 100M cycles after their activation. It is 
evident that a large fraction of bugs in the RRS, either the 
non-masked ones or the masked with side-effects (assuming 
that they are detectable), have extremely long bug detection 
latency, making the root-cause analysis an exceedingly 
difficult task, because there are no means to determine the 
temporal or the spatial location of the bug during the root-
cause analysis.  

Additionally, 13.5% of the bugs are benign (not shown in 
a graph) with no evidence that a bug has occurred during a 
run. Note that, as we discuss in detail in Section VII, diverse-
execution based approaches, such as QED [19] [51] or [52] 
[53] that aim at reducing the bug detection latency, cannot 
detect such kind of bugs that occur deep in the processor’s 
pipeline, mainly because these approaches can detect bugs 
only if they affect the program’s execution (i.e., bugs that 
eventually become visible to the ISA layer). This bug 
modeling analysis provides clear motivation for a fast, low-
cost, and high coverage method for detecting RRS 
duplication and leakage. 
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Figure 4. The percentage of the masked bugs that will persist in the 
processor until it is reset. 
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V. DETECTING ERRORS IN RRS CONTROL LOGIC 
In this work, we propose IDLD a bug error detection 

approach that can detect PdstID leakage and duplication 
instantaneously. 

A. Basic RRS Invariances 
The novelty of the proposed IDLD technique lies in 

recognizing and exploiting the following fundamental 
property and invariant operational characteristic of the RRS:  

By design, PdstIDs during program execution move 
between three RRS arrays: FL, RAT and ROB. There is a 
known read that is the last read of a PdstID from each of these 
arrays at which point the PdstID is transferred to one and only 
one of the other arrays. Hence, there cannot be two writes of 
the same PdstID to any of these arrays without an intervening 
last read. 

Specifically, a PdstID is allocated from the FL and used 
to update the RAT (unless it is written in the ROB when 
another younger instruction that gets renamed, together in the 
same cycle, has the same logical register destination). A 
PdstID remains in the RAT until it is evicted. A PdstID is 
evicted from the RAT when its associated logical register gets 
a mapping to a new physical register. The ROB holds the 
PdstIDs evicted from the RAT until the instruction that 
caused eviction commits at which time the PdstID is 
reclaimed by the FL. This means that each PdstID can be 
found at any given time in one and only one of the three 
arrays. Therefore, each PdstID that is read from RRS arrays 
in a cycle must be written in another array by the cycle end. 

This invariance is present in systems with closed loop 
management of tokens. In such a system when a token is 
allocated it is always subsequently returned to the system and 
a token it cannot be returned to the system without first been 
allocated. The analogy with RRS is that a token corresponds 
to a PdstID that needs to be allocated from the FL and then 
reclaimed back in the FL. The main difference of RRS from 
a closed loop token management system is that between 
allocation and reclamation PdstIDs can reside in either the 
RAT or the ROB but not both. This analogy besides being 
instructive it also usefully identifies other use cases (see 
Section F). 

The above invariance is generic and valid for the basic 
RRS implementation of an OoO core with merged register 
file without any physical register reuse or idiom elimination 
optimizations [31]. However, any such optimization in the 
RRS logic is compatible with IDLD, since depending on the 
optimization, minor modifications can be considered during 
the IDLD implementation. We demonstrate the effectiveness 
and the flexibility of IDLD in Section E, where we explain 
how IDLD can be made compatible with RRS optimizations. 

B. Proposed Post-Silicon Validation Method 
The main idea behind IDLD is to monitor that the RRS 

invariance presented in Section A is not violated. A violation 

of this invariance, henceforth referred to collectively as 
PdstID-invariance, can be the result of a bug, and can result 
in a PdstID duplication or a PdstID leakage or both (see 
Section III). The proposed scheme (shown in Figure 6) tracks 
the PdstID-invariance with low-cost hardware by computing 
each cycle the bitwise exclusive-or (XOR) of all the PdstIDs 
written/read to/from the FL, RAT and ROB and checking that 
it is always zero (shown as 0 in Figure 6). The XOR function 
trades-off detection accuracy with cost as there can be 
situations where the XOR remains the same when multiple 
PdstIDs are duplicated or leaked. Such situations are not 
expected to happen at once but rather be the result of 
incremental (one at a time) occurrence of duplication and 
leakage or both, which is detectable by the proposed scheme. 

More specifically, the proposed scheme tracks separately 
the XOR of the PdstIDs read/written from/to the FL, RAT, 
and ROB, the three arrays that all PdstIDs must be found in. 
The three XORs are denoted as FLXOR, RATXOR and ROBXOR. 
Each of the three arrays uses a register to store its current 
XOR value and whenever a PdstID is inserted or removed 
from the array, it is XORed with the value in its register. The 
central invariance that the scheme checks is that when a 
PdstID is read from one array it should be written to another 
array – this holds true for the FL, RAT, and ROB. The 
PdstID-invariance is violated when FLXORꚚRATXORꚚ 
ROBXOR ≠ 0. In such a case, an error is detected indicating 
the bug activation in RRS. Figure 6 shows that the added 
IDLD logic does not lie in the access timing-critical path of 
any RRS array. Section VI evaluates the IDLD area and 
energy implications.  

It is important to highlight that IDLD is intended for the 
post-silicon validation of prototype chips; it is not necessary 
during field operation. The feature can either be removed 
completely from the masks used for manufacturing market 
products or when the processor chips are released to the 

Figure 6. IDLD Protection for the RRS. 
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market. Thus, the IDLD hardware can be disabled using the 
“chicken bits” in the corresponding control registers [54]-
[56]. Therefore, any power overhead of IDLD (see discussion 
in Section VI.A) is not a burden for in the field operation. 
However, IDLD can be re-activated if needed to focus on a 
customer’s issue, since industry relies on enabling such 
features when a customer experiences an anomaly to help 
isolate/triage the bug as motivated in [57]. 

C. Pipeline Flushes 
Logically speaking the PdstID-invariance should always 

hold, but due to practical implementation reasons processors 
realize pipeline flush actions over several cycles and possibly 
for some arrays independently and concurrently; this can lead 
to PdstID-invariance violations during the recovery phase 
without the presence of any bug. Consequently, PdstID-
invariance must be checked at points of time when the 
processor is not in a recovery mode. Another implication of 
flushes is the extra bookkeeping required to correctly track 
the XOR of the PdstIDs they contain. After a flush, the 
content of the RAT is recovered from CKPT, without reading 
the previous PdstIDs and without inserting the new PdstIDs 
through regular RAT read and write ports. As a result, after 
recovery the RATXOR can be inconsistent with the RAT 
content. This problem can be easily resolved by including in 
a RAT checkpoint the RATXOR. This contributes to a small 
area increase (few bits per checkpoint). After recovering a 
RAT from a checkpoint, the RHT is walked to restore the 
RAT: updated from PdstIDs from RHT (positive reclamation 
of PdstIDs from the instructions between checkpoint and 
flush causing instruction; see Section II). Such updates are 
done through the regular RAT ports, so RATXOR is updated 
and eventually becomes coherent with the RAT content. 

The ROB is naturally implemented as a FIFO queue in 
most cases. After a flush, the ROB tail pointer is moved back 
to the entry that caused the flush without reading out the 
PdstIDs in between. Therefore, the ROBXOR becomes 
inconsistent with the ROB content. One way to overcome this 
inconsistency is to checkpoint the ROBXOR on every RAT 
checkpoint. Subsequently, on a flush when a RAT and 
RATXOR is recovered and RAT is walked, the ROBXOR is also 
recovered and walked with the PdstIDs evicted from the RAT 
during positive reclamation from the RHT. At the end, the 
ROBXOR becomes coherent with the ROB content. The 
checkpoint cost of ROBXOR is equal to that of checkpointing 
the RATXOR and is quite small. The extra checkpointed info 
is shown in Figure 6 as part of a RAT checkpoint but in an 
implementation, this information can be stored in a separate 
structure. The FL after a flush is updated from PdstIDs from 
RHT (negative Pdst reclamation from instructions that are 
flushed). Since these updates are done through the regular FL 
write port, the FLXOR is always consistent with the FL 
content, so there is no need for special FLXOR handling.  

One of the IDLD strengths is the cost-effective debugging 
of multi-cycle RRS flows (e.g., flush recovery) by simply 
checking that IDLD’s invariance is maintained after each 
execution of such flows. 

D. IDLD Coverage 
Overall, IDLD can detect instantaneously any bug 

activation that affects the correct RRS operation (not only the 
bug activations that affect the correct execution of a program, 
but also bug activations that do not affect the program’s 
output) during post-silicon validation. Such scenarios 
describe any bug which occurs in the control logic (grey 
clouds in Figure 6) that causes PdstID duplication, PdstID 
leakage or combined duplication-leakage, and PdstID 
corruption during the write operation in an RRS structure. 
Note that the purpose of the proposed IDLD scheme is not to 
detect bugs that cause a Pdst corruption while a PdstID is 
already stored in FL, RAT, or ROB. Such simple bugs can be 
detected by other well-established schemes, like ECC [46] or 
circular parity [47]. Such schemes are orthogonal to IDLD 
and can be combined to provide a comprehensive RRS 
protection. 

One subtle but important point about IDLD is that if the 
PdstID with value 0 gets duplicated or leaked, the proposed 
scheme will not detect it (XOR with zero does not cause a 
change). This can be fixed by logically extending all the 
PdstIDs by one bit with value 1. This bit should not be stored 
in the arrays but only used as an input constant in the XOR 
calculation for each array. In this work, we assume the 
various XORs are maintained using registers with size equal 
to the bits needed to encode a PdstID+1 bit, to account for the 
0-value PdstID.  

Another important coverage concern is the “infinite 
validation space”: we cannot know all the possible bugs that 
can exist in the silicon prototype, even with exhaustive 
validation [56]. Apparently, as we demonstrated in Section 
IV, there are several difficult-to-detect bugs in RRS 
“pestering” the industry [29], not only due to their high 
probability to get masked, but also due to the long bug 
detection latency. IDLD aims at detecting any difficult-to-
detect bug occurring in RRS, thus, significantly improving 
the post-silicon validation phase. 

The IDLD method does not suffer false-positives – it 
needs to detect any bug activation - unless there is a problem 
with the IDLD logic itself. Although, possible, this is unlikely 
as IDLD is a simple design that lies off the critical path. In an 
extreme situation where IDLD feature is problematic, it can 
be disabled using control fuses provisioned in the design for 
this purpose. 

E. Alternatives & Discussion 
An alternative way [58] to track the PdstID-invariance is 

with a bit-vector that has as many bits as unique Pdsts (we 
refer to this as the bit-vector (BV) scheme). The bit position 



 
 

corresponding to a Pdst is set when its PdstID is freed and 
unset when allocated. Duplication is detected when a PdstID 
becomes free, and its bit is already set. Leakage is detected 
by counting the number of free registers (bits set in the 
bitvector) in the free list when the pipeline is empty and 
checking that it is equal to the difference between the number 
of physical and logical registers. This approach is costly in 
terms of both state and logic. It requires as many bits as the 
number of unique Pdsts (100s of bits in modern cores). The 
bitvector access logic is complex since at any given time 
several different Pdsts are allocated or freed. Moreover, the 
vector needs recovery in case of flushes, which adds 
overhead.  

In comparison, IDLD requires significantly less state, in 
the order of the bits needed to encode a Pdst, and its logic is 
simple: the bitwise XOR of the circulated PdstIDs. Both 
IDLD and bit-vector can detect a Pdst duplication and 
leakage, but IDLD can detect a bug instantaneously when it 
occurs whereas the BV scheme only when a duplicated 
PdstID is reclaimed or when the pipeline is empty. The 
latency for such events is not bounded, for example, a 
duplicated PdstID stored in a RAT table entry will not be 
reclaimed until an instruction renames the logical register 
corresponding to that entry and evicts it from the RAT. 
However, even this is not sufficient since it is possible that 
the other copy of a duplicated PdstID is allocated by the time 
the other duplicated PdstID is reclaimed. What is more, the 
bit-vector scheme is unable to detect bugs that are masked, 
for example, a bug activation that occurs while in the wrong 
path and the bug activation is masked (see Section III for an 
example where leakage is recovered from the RHT). In the 
evaluation section (Section VI) we compare the coverage of 
IDLD against that of the BV scheme. 

Another way to track the PdstID-invariance is by 
counting the number of free and allocated registers and 
checking that their sum is equal to the number of unique 
Pdsts. This scheme is inexpensive as it requires log2(#Pdsts) 
bits and can detect PdstID duplication and leakage. However, 
unlike IDLD, this scheme cannot detect a combined 
duplication and leakage, since the total number of PdstIDs 
remains invariant (x+1–1=x). Further, it cannot capture 
corruption in a PdstID and counting is more complex than the 
bitwise XOR. 

As discussed in Section A, IDLD represents an effective 
post-silicon validation approach. However, there is a 
possibility that, due to implementation specific RRS 
optimizations, the invariants in which IDLD is based on, to 
be violated without any bug occurrence. E.g., when a physical 
register is reused during the move elimination optimization 
[31], its PdstID will appear more than once in the RRS. 
Similarly, the identifiers for hardwired registers of zero and 
one used to realize the 0/1-idiom elimination optimization 
[31] can also appear multiple times in the RRS. When such 
optimizations are employed, as in many modern high-end 

cores, IDLD can be easily configured to provide bug 
coverage for them, by leveraging the control signals that 
enable them. For instance, a control signal will be 
communicated to the RAT when a second instance of a 
PdstID is created (without been allocated from the FL which 
means the FLXOR is not updated) for a move elimination. The 
signal is needed so that the PdstID is marked in the RAT as 
duplicated (need this to determine when the specific PdstID 
can be returned to the FL). This signal can be used to inform 
IDLD to not take into consideration at that time the 
corresponding duplicated PdstID for a RATXOR or ROBXOR 
calculation. If this signal, due to a bug, is not activated it will 
cause IDLD assertion because the RATXOR or ROBXOR will 
be updated without the FLXOR being updated. 

It is important to note that IDLD is easy to port and scale 
across different core generations if the basic RRS 
microarchitecture remains the same (e.g., as in Figure 6). This 
will be the case for when a core gets wider, uses complex 
design optimizations to hit the target frequency, the number 
of registers increase, and additional register renaming 
optimizations are employed. This is to say that the main 
IDLD design and validation effort will be incurred once and 
thereafter IDLD can easily be reused and ported across 
microarchitectural generations. 

F. Other Use Cases 
The IDLD approach is applicable for debugging other 

circuits with closed-loop functionality that manage fixed 
resources, or information. An example of such a circuit is the 
Store-Sets Memory-Dependence-Predictor (MDP) [34]. A 
MDP is used in modern cores to minimize the penalty from 
memory order violations. For the Store-Sets MDP predictor 
(shown in Figure 7 where acronyms are explained), when an 
ID, unique identifier for each store currently in the pipeline, 
is entered in the LFST table; the entry needs to be removed 
from LFST subsequently. Otherwise, if the ID is not 
removed, a load may cause execution to hang because it can 
have a dependency on a store that has left the pipeline. Note 
that if this bug occurs in the correct path the bug affects 
correct functionality and availability. LFST insertions are 
removed when the store’s address is computed or read before 
it is overwritten by another store instance that happens to map 
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to the same LFST entry. The interested reader can refer to 
[34] for more details on this MDP operation. For the purposes 
and scope of this paper, what is important is the requirement 
that each LFST insertion is eventually removed. Such 
invariance clearly suggests opportunity for IDLD use as 
shown in Figure 7. IDLD uses two registers to track the XOR 
of the ID’s that are inserted and removed from the LFST 
table. The other important part is to identify when to check 
for invariance violation: the two XORs should be equal but 
they are not. One option for this is every time a counter, that 
is incremented on insertions and decremented on removals, 
becomes zero. A possibly simpler alternative is to do this 
whenever the Store Queue (SQ) of the core is empty. To 
facilitate frequent checking, in case the SQ removals are 
lagging the insertions, i.e., rarely SQ becomes empty, one can 
take a checkpoint of the insertion XOR when a specific SQ 
entry is allocated and compare the checkpoint with the 
removal XOR when that SQ entry commits. This is 
insufficient, however, because the removal XOR is updated 
out-of-order (e.g., whenever a store address becomes 
known). One way to overcome this is to compare with a 
second version of the removal XOR that is updated only from 
SQids that are between the current SQ tail and the SQ 
position where checkpoint is taken and the IDLD invariance 
gets checked. This second removal XOR gets a copy of the 
original removal XOR after each invariance check. Due to 
space limitations, we do not provide details about the MDP 
use case (e.g., handling of pipeline flushes). 

The IDLD approach is applicable to any system where 
there is incoming and outgoing information flow from read 
and write ports, and it is a system invariance that the overall 
outgoing and incoming info should match. This has 
applicability in many situations (bus communication, 
exchanges between NoC links, FIFOs etc.). The requirements 
for adopting IDLD are: i) to identify that such invariance 
exists (in some situations is non-obvious, e.g., the MDP use 
case), ii) determine the conditions for when the invariance 
holds and can be checked (e.g., for the MDP use case one 
possibility is when STQ is empty), iii) introducing additional 
state to enable invariance checking that is otherwise not 
possible,(e.g., checkpointing the RATXOR, FLXOR, ROBXOR 
and recovering it on flushes for the RRS use case), and iv) 
introducing checkpoint state to facilitate more frequent 
checks (e.g., checkpointing the out XOR in the MDP use case 
when a specific SQ entry is allocated and inserted). 

VI. EXPERIMENTAL EVALUATION 

A. IDLD Hardware Implementation Analysis 
The IDLD technique is evaluated in terms of hardware 

area, and energy (note that any energy consumption overhead 
is only presented for the completeness of the IDLD 
presentation and does not affect the field operation of the 
processor which implements IDLD). Timing results are not 

present as IDLD is completely off the critical path. A 
complete RRS is implemented as a fully functional, cycle-
accurate module in SystemVerilog. Specifically, all hardware 
structures and logic described in Section II are implemented 
and integrated into a fully functional RRS. We investigate 1-
wide, 2-wide, 4-wide, 6-wide, and 8-wide register renaming. 
In this way, we cover both scalar (single-issue) and high-
performance superscalar (multiple issue) OoO pipelines. The 
baseline RRS and the baseline extended with the proposed 
IDLD technique are fully implemented in SystemVerilog. 
Both designs are (1) thoroughly validated at the RTL level 
for functional correctness using many tests to capture both 
normal and corner-case behaviors, with and without bug 
occurrences; (2) synthesized to a commercial 45 nm 
standard-cell library under worst-case conditions (1.1 V, 125 
℃); and (3) placed-and-routed using the Cadence digital 
implementation flow. The RRS arrays are implemented as 
standard-cell-based memories, using flip-flops in the place of 
SRAM cells, following an internal clock-gated organization 
like [59]. The implemented RRS supports 128 physical 
registers, which determine the size of the RHT and FL (i.e., 
128 entries each), and it includes a 96-entry ROB, a 32-entry 
RAT, and 4 RAT checkpoints.  

B. Experimental Results for Area Overhead and  
Energy 
The post-place-and-route results pertaining to the 

hardware cost of the baseline and IDLD designs are 
summarized in Table II. The table reports the area and energy 
for each design. As shown in Table II, the proposed IDLD 
design has a small area increase (up to 12% for the 8-wide 
compared to the baseline). For example, IDLD can achieve 
84,377μm2 area overhead at 1.1 V (for 8-wide register 
renaming), as opposed to 75,998μm2 area overhead for the 
baseline. The key here is not the absolute values of the 
baseline, but the relative difference between the baseline and 
IDLD. The provided numbers in Table II clearly indicate that 
IDLD scales well all the way up to 8-wide renaming. Note 
also that the numbers shown in Table II refer to the RRS only, 
and not to the full OoO core and that while we increase the 
width of the core, we do not scale the number of Pdsts and 
the size of the RRS structures (i.e., the additional area 
overhead of IDLD should be negligible). An estimate of the 
overall area contribution of IDLD to a state-of-the-art OoO 

TABLE II. AREA AND POWER FOR BASELINE AND IDLD FOR DIFFERENT 
WRITE PORT COUNTS (% IS OVERHEAD RELATIVE TO THE BASELINE). 

 Baseline IDLD 
Ports Area(μm2) Energy(pJ) Area(μm2) Energy (pJ) 

1 36,891 6.04 37,891 (3%) 6.28 (4%) 
2 53,441 7.64 54,903 (3%) 8.38 (10%) 
4 65,480 11.14 73,701 (12%) 12.29 (10%) 
6 73,001 13.12 80,258 (10%) 14.29 (9%) 
8 75,998 13.71 84,377 (11%) 15.38 (12%) 

 
 



 
 

core is about 0.12%. This is based on the area breakdown for 
a 2-way OoO core with a merged register file at 45nm, which 
shows renaming taking ~4% of the real estate. Given our 
design increases by 3% the area of a 2-way RRS at 45nm, and 
RRS corresponds to 4% of the core area, then 4% x 3% = 
0.12%. 

Although the power overhead of IDLD does not burden 
the field operation, since IDLD is enabled only for the 
validation purposes (see Section V.B), we present it for the 
completeness. The IDLD mechanism incurs an energy 
overhead over the baseline implementation that ranges from 
4% to 12% for 1-wide and 8-wide register renaming, 
respectively. The energy consumption numbers refer to the 
total energy of the RRS (not the whole OoO core).  

Overall, the results in Table II show that IDLD is cost-
efficient mechanism in terms of all hardware metrics. Both 
baseline and IDLD behave similarly when scaling to wider 
renaming (e.g., 8-wide), as the observed trends are dominated 
by the increase in the complexity of the renaming logic.  

C. Bug Modeling Evaluation & Bug Detection 
Exploiting further our microarchitecture-level bug 

modeling, in this section we also present some results about 
the distribution of any bug effect in RRS and the bug 
detection capability of IDLD compared to the traditional end-
of-test checking method. Apart from the three bug effect 
classes discussed in subsection IV.B, there are also four more 
classes which belong to any observable bug effect.  

SDC (Silent Data Corruption): The execution finishes 
normally (and the commit trace is comparable to the bug-free 
trace), but the program output is different as compared to the 
bug-free reference output, without observable indications. 

Timeout: The execution is not finished within a certain 
amount of time, equal to 2.5 times the bug-free execution 
time. These executions are externally stopped to resolve 
potential deadlock or livelock situations. 

Assert: The execution is unexpectedly terminated due to 
a high-level condition that the simulator is unable to handle. 
This means that the simulator cannot decide how a real 
system would behave and raises an assertion. 

Crash: The execution does not reach the end, because it 
is interrupted by a catastrophic event. As a result, no program 
output is produced. A crash may refer to a process crash 
(killed process) or a system crash (kernel panic). 

Figure 8 presents the detailed results for each benchmark 
for the Control Signals bug model. Different workloads 
provide different behavior for each bug effect class. The 
ramifications of control logic bugs vary arbitrarily depending 
on workload characteristics and execution patterns. This 
makes the validation process and the generation of validation 
tests more difficult and lowers the probability of the bug in 
the RRS logic to be detected. Figure 9 summarizes the results 
of our experiments for bug detection capability. IDLD can 

detect all 30,000 bug occurrences (20,000 bugs for control 
signals corruption (duplication and leakage) and 10,000 bugs 
for Pdst corruption); i.e., bug coverage 100%.  

Conversely, the traditional end-of-test checking 
techniques detects only 24,632 bugs (bug coverage 82.1%). 
This difference is due to the limitations of current validation 
techniques since they miss bugs that do not affect the 
program’s output. As argued earlier, although a bug 
manifests itself during the post-silicon validation, there is a 
great chance to not affect the output of the validation test. 
Thankfully, IDLD guarantees the instantaneous detection, 
not only of bugs that provide visible evidence of their 
existence (e.g., SDC, crash, assert, timeout), but also for 
masked bug occurrences, therefore, such difficult-to-detect 
bugs become detectable.  

In Figure 10, we also analyze the coverage of the BV 
method when combined with the traditional end-of-test 
checking post-silicon validation. As the results reveal, BV 
offers only 1% higher additional coverage when combined 
with the traditional end-of-testing method. Thus, a significant 
fraction of the bugs remains undetected even with the BV 
(about 17%). As discussed earlier, a bug in the RRS has a 
high probability of being masked without any persist effect, 
for example, when it occurs in the wrong path, something that 
the BV method is unable to detect as it only checks for bugs 

Figure 9. Bug detection capability of IDLD and traditional end-of-
test checking post-silicon validation. 
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on reclamation and when the pipeline is empty. The graph 
also shows the fraction of bugs the BV detects before the 
traditional end-of-testing approach. This is about 8.6% of the 
bugs, which indicates that a significant fraction of bugs 
(74.5%) is detected first by the traditional end-of-test 
checking. An analysis of the latency of the faster BV bug 
detections (not shown in a graph), reveals that BV detections 
may occur even up to millions of cycles after their activation. 
This analysis highlights the advantages offered by IDLD with 
its 100% coverage, instantaneous detection latency and 
simplicity. 

VII. RELATED WORK 
DIVA [23] is a technique that uses a simple checker core 

to validate what a more complex core is doing. It delivers 
very high bug coverage capable of detecting various types of 
errors in the core. The main drawbacks of DIVA are 
redundant execution units and new paths to the register file 
and caches. Regarding register renaming, DIVA leverages 
the availability of a split speculative and architectural register 
file for dynamic verification (validate values read using 
renamed registers by comparing prior to commit the 
architectural register values read using the logical register 
names). With a merged register file, as the one evaluated in 
this work and which is more widely used in recent products 
[37]-[42], there is no distinction between architectural and 
speculative state and unclear whether a cost-efficient DIVA 
variation exists for such scenario. Numerous techniques are 
employed in products to detect and, in some cases, correct 
errors due to faults [60]-[68]. However, few techniques can 
detect bugs that do not cause a corruption in a stored or 
generated value. For instance, an ECC protected array cannot 
detect a bug that prevents to write into an array. Even 
redundant lock-step systems cannot detect faults due to 
systematic bugs [69], since the same fault is activated in the 
redundant systems. Another previously proposed RRS 
protection method relies on the use of a regiment of simple 
checkers that monitor whether many basic microarchitectural 
invariances are upheld [70]. The approach of [70] detects 

corruption in the RRS arrays by checking that a physical 
register is reclaimed after being allocated. Invariance 
checking in [70] requires extending the functionality of time 
critical structures, for example adding read ports to a 
structure tracking operand readiness. It also suffers from 
delayed detection since an error is detected not when it 
occurs, but when it causes an invariance violation. This 
means that errors that get masked between these points of 
time are not detected at all. While not detecting soft errors 
that get masked is desirable, not detecting a bug that happens 
to get masked is not. IDLD overcomes such limitation. 

Other approaches for bug and fault detection rely on a 
comparison of signatures that encode what should happen 
during execution vs. what actually happens [24] [25] [71] 
[72]. The schemes in [71] [72] require instruction set and 
compiler support, however, in our work we consider 
hardware only approaches for instantaneous detection of 
bugs. A key advantage of the proposed IDLD scheme is that 
it needs simple microarchitecture support and does not 
require ISA extensions and compiler support. Along the same 
lines, QED [51] and all its extensions cannot directly localize 
bugs at the level of hardware granularity, since they mainly 
aim at detecting faults in pre-silicon verification, and in post-
silicon validation they can only detect bugs that primarily 
affect the program’s execution. Moreover, hardware-based 
QED approaches provide expensive checkers in terms of area 
overhead [19]. Since timing/electrical bugs cannot be easily 
reproduced in simulation, software-based techniques such as 
QED or others which are based on diverse execution [52]: (1) 
cannot guarantee the bug detection, and (2) even when they 
detect the bug, the root-cause analysis will be impossible, 
since the bug is virtually non-reproducible. In [73] a column 
parity-based approach is proposed to protect FIFOs by 
tracking the information that enters and leaves a FIFO. IDLD 
is applicable to complex sub-systems with non-FIFOs, and it 
can check for invariance violations more frequently. 

Other hardware approaches entail significant area and 
power overheads (reported to be 5-10% overall) and 
pervasive changes in time sensitive pipeline paths, e.g., 
extending arrays (physical register file [25] and renaming 
table [24]), multiplexers, buses and buffers in the OoO core 
engine to propagate and store multi-bit signatures. While the 
schemes in [24] [25] provide comprehensive bug coverage, 
including the RRS, unlike IDLD, they cannot capture bugs 
that cause only Pdst leakage because they do not affect 
correctness. [24] [25] can detect duplication, i.e., when two 
Pdsts point to the same physical register, when the 
invariances checked by [24] [25] are violated, but unlike 
IDLD (which detects instantaneously), there is no time 
guarantee for when this will occur (it depends on whether bug 
activation is not masked and on few other conditions). In any 
case, there is a value for cost-effective schemes that can target 
the bug protection of a specific core sub-system as we 
propose for the RRS in this paper. The specific choice for a 

Figure 10. Bug detection capability of IDLD, traditional end-of-
test checking post-silicon validation, traditional+BV. 
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bug protection technique is clearly driven by return-on-
investment (ROI) vs. overhead. For processors that already 
employ numerous RAS features the ROI from a new core-
wide coverage scheme may be lower than just adding 
protection to a critical core sub-system that enables to detect 
critical bugs. 

VIII.   CONCLUSION 
The paper shows that control logic bugs in the RRS of a 

modern OoO core result in duplication and leakage of Pdsts 
used in renaming. The work uses microarchitectural bug 
modeling to report that a significant percentage of bugs in 
RRS will not affect the program’s functionality (i.e., 
masked), although they manifest themselves during post-
silicon validation, and thus, they are extremely difficult to be 
detected. Even when they are not masked and manifest into 
deviations from the expected output, the control flow or the 
performance, these manifestations occur much later (often 
millions of cycles) after the bug activation time. These 
findings underline the significant challenge faced by a root 
causing effort of bugs in the RRS control logic. These 
findings motivate the proposed IDLD, a simple cost-effective 
hardware technique that can detect leakage and duplication in 
the RRS instantaneously after the bug occurrence. Synthesis 
analysis of an RTL design of an RRS with IDLD reveals 
minimal area overhead as compared to the baseline RRS 
design. 
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