
Dynamic Adjustment of Test-Sequence Duration for
Increasing the Functional Coverage

Zacharias Takakis†, Dimitrios Mangiras†, Chrysostomos Nicopoulos‡, Giorgos Dimitrakopoulos†
†Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

‡Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

Abstract—The importance of functional coverage during front-
end verification is steadily increasing. Complete coverage statis-
tics, possibly spanning from block- to top-level, are required as
a proof of verification quality and project development status. In
this work, we present a coverage-driven verification methodology
that relies on coverage-directed stimulus generation, with the
goal being to increase functional coverage and decrease test
application time. The test application time given to each one of
the available constrained-random test sequences is dynamically
adjusted by a feedback-based mechanism that observes online
the quality of each applied test. The higher the quality, the more
cycles are assigned to this test for future trials. Misbehaving
test sequences are automatically replaced by new ones, in order
to spend verification cycles on other tests that actually improve
functional coverage. The proposed methodology is successfully
applied to the register renaming sub-system of a 2-way super-
scalar out-of-order RISC-V processor. The results demonstrate
both increased functional coverage and reduced test application
time, as compared to a purely random approach.

I. INTRODUCTION

Diminishing technology feature sizes deep into the
nanoscale regime have enabled digital systems of enormous
sizes and complexities. As designs become increasingly more
complex, the time required to verify their functionality – i.e.,
ensuring that all specifications are met under all circumstances
– becomes prohibitively long, and occupies an ever increasing
portion of the entire product development cycle.

Moreover, the criticality of verification is progressively
growing, as modern approaches go beyond traditional func-
tional verification, i.e., verifying that a chip “does what it
is supposed to do”. Nowadays, verification extends to new
emerging requirements arising from security and functional
safety demands, which have transformed the role of verifica-
tion into the more elaborate process of verifying also that a
chip “does nothing that it is not supposed to do” [1]. Given
these elevated verification demands, the time needed to achieve
desired coverage goals inevitably increases.

Therefore, it is imperative to develop effective techniques
that can expedite design verification, in order to minimize the
time-to-market effort.

As a fundamental ingredient of the overall verification
plan, simulation-based verification is of paramount importance
in identifying design bugs. During simulation, appropriately
selected test sequences are applied to the Design Under Test
(DUT) and the obtained response is monitored. The DUT’s
behavior is checked for correctness by comparing it to a golden
reference model, and/or by utilizing assertions to identify
design-property violations. The applied test sequences may
either target specific features of the design (aka direct tests),
or they may take the form of constrained-random tests that

gradually and progressively explore the entire design state-
space.

The two main figures of merit used to quantify the success
of simulation-based functional verification are the structural
and functional coverages [2]. The former metric checks how
much of a design’s RTL code has been exercised, and it is
typically automatically calculated during simulation. On the
contrary, functional coverage is more nuanced and cannot be
automatically deduced by the design [3]. Instead, the verifi-
cation engineer must identify the architecturally “interesting”
semantics of the design and validate the overall functionality
by counting events that trigger salient aspects of the design.
Obviously, the quality of the applied test stimuli dictates the
highest achievable level of functional coverage.

Assuming that an appropriate set of test sequences – of
unknown quality – has been developed by the verification
engineer, a critical question is how to apply those sequences
(in terms of application order and simulation duration) to
reach the maximum possible functional coverage in as little
time as possible [4], [5], [6]. Ideally, one would prefer an
automated test application process that (a) scales efficiently
with design size and complexity, and (b) can rapidly converge
to the maximum coverage possible under the chosen set of
test sequences.

This overarching goal is precisely the target of this paper,
which focuses on one particular aspect of the test application
phase: how to intelligently decide the simulation duration of
each of the available test sequences, in order to achieve cov-
erage closure as quickly as possible [7]. Specifically, a novel
feedback-based technique is proposed, which autonomously
modulates the simulation duration of each test sequence during
the entire verification campaign. The mechanism uses each
sequence’s incremental contribution to the functional coverage
as feedback in deciding how long each sequence will execute
in the next round of simulations. This feedback loop is
instrumental in dynamically identifying sequence durations
that enable faster increases in the coverage. Even though the
proposed approach does not tinker with the order that the
various test sequences are applied, our experimental results
indicate that by optimizing the sequence duration alone is still
enough to yield impressive gains in simulation times.

To validate the efficacy of the new feedback-based veri-
fication technique, we apply it to the UVM-based verifica-
tion [8] of the Register Renaming Sub-system (RRS) of a
2-way superscalar out-of-order RISC-V processor [9], [10],
the architecture of which is similar to the ARM Cortex-
A53 and ARM Cortex-A57 [11]. The proposed technique
takes a set of given constrained-random sequences of different

61978-1-7281-2671-5/19/$31.00/ c©2019 IEEE

parameters and various direct-test sequences and orchestrates
their application (in terms of sequence duration) to the RRS
module under test. The obtained results demonstrate that much
higher functional coverage levels are achieved in substantially
smaller simulation time, as compared to conventional simula-
tion that executes each test sequence for the same number
of a priori decided cycles. Reaped simulation-time savings
of approximately 70% are reported for different sets of test
sequences.

II. THE PROPOSED FEEDBACK-BASED VERIFICATION

METHODOLOGY

The proposed methodology optimizes the duration of the
test sequences applied to the DUT, with the goal being to
reach coverage goals faster than a traditional approach that
applies fixed-duration test sequences.

Initially, the test sequences are constructed and the expected
coverage goals defined. In general, each test sequence targets
one of the various interfaces of the DUT, and each interface
is exercised by a number of distinct test sequences. The
test sequences of each interface can either be monolithic, or
parameterizable objects. Selecting a different parameter for
each parameterized sequence can generate different instances
of the same sequence. The granularity of parameter selection
depends on the number of parameters and the relation of each
parameter to the functionality of the DUT.

In the proposed framework, the test sequences are fixed
beforehand, and all their parameters are pre-selected by em-
ploying a representative random parameter sampling. After this
selection step, the framework does not allow any sequence
to change any of its parameters, or its constraints. Note that
the process of constructing and selecting test sequences is
orthogonal to this work; it is up to the verification engineer to
select a set of high-quality (in terms of achievable functional
coverage) test sequences. The methodology introduced in this
paper focuses on how a given set of test sequences is applied
to the DUT.

In addition to constructing a set of appropriate test se-
quences for the design, the verification engineer also defines
a set of coverpoints that describe architecturally interesting
aspects of the DUT; e.g., a particular queue being empty,
or full. The achieved coverage of those coverpoints during
simulation provides a quantitative measure of the effectiveness
of the test plan, and the ability of the test sequences to
adequately explore the DUT. Each coverpoint is characterized
by a set of bins, with each bin assuming a different number
of values. For example, if a coverpoint includes the value of a
2-bit counter, then 22 bins will be created to keep track of the
number of times each value of the counter occurs. For each
bin, one must also define a coverage goal. A bin is considered
fully covered when it is “hit” (actually encountered during
simulation) at least as many times as its pre-defined coverage
goal.

Each test sequence is allowed to execute for a certain
number of cycles. During the application of the sequence to
the DUT, the exercised coverpoints and bins are recorded. The
“quality” of each test sequence – which is calculated upon
completion of the sequence’s run – is a measure of how many
coverpoints/bins it hits, and, by extension, its contribution to

increasing the attained functional coverage. When giving a
quality rating to an applied sequence, we only count those
bins that have still not reached their goal. The bins that have
reached their goal are removed from the active list of bins that
determine the quality. In this way, as the various bins reach
their coverage goal, the proposed technique focuses on the
hard-to-reach properties.

In general, there are two key attributes orchestrating the
application of the various test sequences to the DUT: (1) the
order of the test sequences, and (2) the duration of each
sequence. The proposed technique targets the second attribute
(duration), so the application order is assumed to be random,
as is frequently the case in existing approaches.

Fig. 1. Overview of the proposed feedback mechanism for selecting the
duration of active test sequences. Poorly performing test sequences are
replaced by new ones from a pool of available constrained-random test
sequences.

Let us assume that the verification process commences with
a set of K active test sequences, and an additional number
of inactive test sequences that can be used on-demand to
replace any of the K active ones (as will be described later
on). The proposed technique uses the K active test sequences
and the feedback mechanism highlighted in Figure 1 to guide
the verification of the DUT. The technique outlined in the
algorithm evaluates the quality of each test sequence and uses
this measure as feedback in deciding the duration of each test
sequence the next time it will be selected again.

Initially, all K active test sequences have a duration of STEP
cycles. The feedback-based methodology randomly selects
Sequence i to run for STEP cycles. Upon completion of the
run, the quality of the sequence is calculated (based on the
number of hit coverpoint bins), as follows:

Quality =
bins hit

total uncovered bins

However, this quality metric refers only to the most recent
run of Sequence i. In order to have a more complete picture
of the entire performance of Sequence i thus far, the proposed
technique also utilizes a so called drifting quality metric for
each test sequence, which is updated each time a sequence
completes its execution:

DriftQuality[i]=(1−α)·DriftQuality[i]+α·Quality (1)

The drifting quality is calculated by placing more weight
on the last recorded quality figure than on the previous
ones. The α parameter in Equation 1 takes values between
0 and 1, and it is a weight that modulates the emphasis
to be given to the most recent quality, as opposed to prior
values. The higher the value of α, the higher the emphasis
on the most recent quality. For example, if α = 0.8, the
current drifting average = 0.9, and the most recent calculated

62 4th International Verification and Security Workshop (IVSW)

TABLE I
EACH TEST SEQUENCE IS CLASSIFIED INTO ONE OF 5 REGIONS, BASED ON

ITS MEASURED DRIFTING QUALITY VALUE. THESE REGIONS THEN

DICTATE THE NEW RUNTIME FOR EACH SEQUENCE.

Region Range New runtime
R1 [0, max bound/5] 0 or STEP/2
R2 (max bound/5, 2*max bound/5] STEP/2
R3 (2*max bound/5, 3*max bound/5] STEP
R4 (3*max bound/5, 4*max bound/5] 2*STEP
R5 (4*max bound/5, max bound] 3*STEP

quality = 0.1, then: drift avg[i] = (1−0.8)·0.9+0.8·0.1 =
0.2 · 0.9 + 0.8 · 0.1 = 0.26. As can be seen, even though
Sequence i has had a very high drifting quality so far (0.9), a
bad quality result in its most recent execution (0.1) is enough
to drop the drifting quality from 0.9 to 0.26.

The drifting quality approach ensures that any sequence
that starts yielding lower quality figures – after a potentially
long streak of good-quality runs – will quickly be identified
as a sequence that no longer contributes significantly to the
coverage.

It is this drifting quality value that is subsequently used to
decide the duration (in cycles) that Sequence i will be allowed
to execute the next time it is selected again. Specifically, we
first designate the value of the (currently) maximum drifting
quality among all sequences as max bound. Next, we divide
the range [0, max bound] into 5 regions, as shown in Table I.
Finally, the drifting quality of Sequence i is used to classify
the sequence into one of those 5 regions, which dictate the new
runtime (duration) for Sequence i the next time it is selected
(as per Table I).

For instance, if the calculated drift quality for Sequence i
falls into R2, then the runtime of Sequence i will be STEP/2
clock cycles the next time it is selected again.

If the calculated drift quality for Sequence i falls into region
R1, then Sequence i will be removed from the K active
sequences, and it will be replaced with a new sequence (from
the inactive pool of sequences), assuming that the number of
sequence replacements so far has not reached an arbitrarily
chosen maximum number (max replacements). If Sequence
i cannot be replaced (due to reaching max replacements), it
will have a runtime of STEP/2 cycles the next time around.

Note that the regions described above are of equal size.
In reality, it is up to the verification engineer to decide the
region bounds, i.e., the size of each region, and this decision
is expected to vary with each DUT. In general, the size
of each region affects the balance of fairness between the
sequences and the overall aggressiveness of the algorithm. For
example, one can artificially restrict the number of sequence
replacements (decided by the algorithm) by making the R1
region smaller. Moreover, one may assign more clock cycles
to the sequences exhibiting good drifting quality to make the
algorithm more aggressive.

Upon completion of the above-mentioned steps, a new test
sequence is randomly selected and the algorithm is repeated.
This process continues until a desired functional coverage goal
is reached.

The expected outcome of the proposed approach is shown
graphically in Figure 2. We expect both higher coverage and
lower overall test application time, since both easy-to-reach
properties and harder corner cases are covered by test se-

Fig. 2. The expected outcome of feedback-based test-sequence application.
The proposed technique achieves both higher coverage and lower overall test
application time.

quences applied according to their effectiveness (as identified
through the feedback loop).

III. CASE STUDY: FEEDBACK-BASED VERIFICATION OF

THE RRS MODULE OF A SUPERSCALAR, OUT-OF-ORDER

PROCESSOR

The proposed feedback-based verification technique can be
applied at various levels of abstraction. At a low abstraction
level, verification may target an individual sub-system, or unit,
of a design. At the highest abstraction level, verification targets
the entire system as a whole. Without loss of generality, in
this paper we will focus – as proof of concept – on the
verification of a single (albeit quite complex) sub-system in a
superscalar Out-of-Order (OoO) microprocessor. Specifically,
we will verify the Register Renaming Sub-system (RRS) of a
2-way superscalar RISC-V processor.

A. Fundamentals of Register Renaming

Register renaming is a technique that enables OoO ex-
ecution by eliminating false register dependencies between
instructions. There exist several alternative implementations
of register renaming [12]. In this work, we evaluate register
renaming with a merged register file. In such implementation,
the results of operations are stored in a single physical register
file that combines architectural and speculative state [13].

Register renaming with a merged register file uses a large
pool of physical registers and translates the logical destination
register of each instruction that produces data to a physical
register. Typically, each instruction consists of a logical des-
tination register (i.e., an architectural register that is part of
the Instruction Set Architecture), and two logical source (or
input) registers. During register renaming, each instruction’s
logical register specifiers are replaced with corresponding
physical register specifiers, i.e., Pdst (physical destination) and
Psrc (physical source) specifiers. Register renaming can be
performed on either a single instruction at a time (in scalar
processors), or on multiple instructions simultaneously (in
superscalar processors). For example, the 2-way superscalar
processor used in this work employs 2-way register renaming,
i.e., 2 instructions can be renamed and retired per clock cycle.

Figure 3 shows the RRS assumed in this work (for simplic-
ity the RRS of a scalar processor is drawn) that consists of
the following hardware arrays:

Free List (FL): is a FIFO where Pdsts are initialized each
time a core is powered on. A free Pdst is allocated to rename
the logical destination register of an instruction. The Pdst

4th International Verification and Security Workshop (IVSW) 63

Fig. 3. The organization of the Register Renaming Sub-system (RRS) unit
and its interfaces to the rest of the processor’s pipeline.

is sent to the Reservation Station (RS) where the renamed
instruction waits to execute. When the instruction executes, it
updates the physical register pointed by its Pdst.

Register Alias Table (RAT): is a table with the most recent
mapping of each logical register specifier to a Pdst. It is
used to rename the input (i.e., source) logical registers of an
instruction. The renamed Pdsts are forwarded to the RS of the
instruction to determine when the instruction can execute.

Re-Order Buffer (ROB); not explicitly shown in Figure 3: is
a FIFO with an entry allocated per instruction. Even though
the ROB is not a part of the RRS, it interacts extensively with
it. Each ROB entry has a field to hold the Pdst that is evicted
from the RAT by the instruction (if the instruction writes to a
register). The Pdst is freed when the instruction retires.

Checkpoint Table (CKPT): is used to take snapshots of
the RAT. A single snapshot is taken every time an incoming
branch instruction is encountered.

During processor operation, the CKPT buffer is useful for
expediting the restoration of the RRS state following pipeline
flushes. When a mispredicted branch instruction causes a
flush, the RRS state is restored using the CKPT. The RAT is
restored with the checkpoint stored when the offending branch
instruction was originally encountered. The restoration process
also returns to the FL all the Pdsts allocated after the offending
instruction.

In addition to restoring the state of the arrays, the tail pointer
of the ROB must be restored to the position corresponding
to the flush-causing instruction. The FL head pointer is not
restored, since the wrong-path Pdsts are written back to the
FL upon completion of the CKPT retrieval using the FL tail.

B. Applying Feedback-based Verification to the RRS Unit of
a Processor

To verify the RRS unit, we employ the ubiquitous UVM
approach, which exemplifies verification modularity and
reusability. The crux of UVM-based verification is the test-
bench that comprises two main parts: (a) the one that produces
the stimulus driving the inputs of the design, and (b) the
checker that is used to verify the design’s output against the
modeled (expected) output. The stimulus – e.g., a test sequence
– is produced by sequence generators, as will be explained
shortly.

The RRS unit is connected to the rest of the processor
via the four separate interfaces described in Table II. During
simulation, each interface is fed by distinct test sequences that

TABLE II
THE PARAMETERIZED TEST SEQUENCES USED IN THE RRS UNIT.

Interface Functionality Test sequence parameters

Decode

The connection to the
Decode stage. The RR
stage receives the
decoded instructions
from the ID stage using
a valid/ready protocol.

Generation rate: The
probability to generate decoded
instructions.
Dual instruction fetch rate:
The probability to generate two
decoded instructions.
Branch rate: The probability
of a decoded decoded instruction
to be considered a branch.
Dependence rate: The
probability that each source of a
decoded instruction is equal
its destination.

Issue

The RR stage outputs
the renamed instructions
to the Issue stage for
execution.

Ready rate: The probability
that the Issue stage will
backpressure the RR stage by
accepting or not the renamed
instructions.

Re-Order
Buffer
(ROB)

The RR stage is updated
by the ROB unit about
the commits and the
freed physical registers.

Commit rate:The probability
that the ROB will retire an
executed instruction.
Rob full rate: The probability
that the ROB will backpressure
the RR stage by being Full.
Rob two empty rate: The
probability that the ROB will
issue that it has two or more
available entries.

Flush

The RR stage is updated
by the flush controller
about the issued flushes
to properly restore RAT.

Flush rate: The probability
for a branch to be mispredicted.

mimic the behavior of the interfaces when connected to the
remaining sub-systems of the processor, and while the proces-
sor is executing real programs. The test sequences that drive
each interface are the result of an independent constrained-
random generator customized by a set of parameters, which
are depicted in the right-most column of Table II for each
interface.

For example, the Issue interface sits at the output of the RRS
unit and transfers the renamed instructions (i.e., instructions
that have had their logical register identifiers replaced with
corresponding physical register identifiers) to the processor’s
Issue stage. The latter is then responsible to dispatch the
renamed instructions to the various execution pipelines/units.
The random sequences driving this interface are controlled
by a single parameter, as shown in Table II. Said parameter
represents the probability that the Issue stage can accept the
renamed instructions (as opposed to back-pressuring the RRS
unit).

IV. RRS INTERFACES TO THE REST OF THE PROCESSOR

Given that the four interfaces are characterized by a number
of parameters, we need to select a specific set of parameters
for each test sequence that would remain fixed during the
simulation. For example, in the case of the Re-Order Buffer
(ROB) interface, a specific parameter choice could be Commit
Rate = 40%, ROB Full Rate = 5%, and ROB Two Empty
Rate = 80%; this would imply that the generated test sequence
would exercise the ROB interface with stimuli conforming to
those specific parameter rates.

In order to limit the search space, we assume that each of the
interface parameters listed in Table II can take at most three
distinct values. For example, the “Commit Rate” parameter

64 4th International Verification and Security Workshop (IVSW)

TABLE III
FUNCTIONAL COVERPOINTS AND NUMBERS OF BINS USED FOR THE

SIMULATION OF THE RRS UNIT. EACH COVERPOINT HAS A

PRE-DETERMINED “HIT” GOAL.

No Coverpoint [#Bins]
Hits

(at least)
1 Instruction rename from port 1 [1] 1K
2 Instruction rename from port 2 [1] 1K
3 Free list gone full [1] 1K
4 Free List gone empty [1] 1K
5 Dual push to FL [1] 1K
6 Dual pop from FL [1] 1K
7 Write to every entry of RAT [31×2 ports] 1K
8 RAT checkpoint [1] 1K
9 Dual RAT checkpoint [1] 1K

10 Write to every entry of Checkpoint array [4] 1K
11 Flush to every RAT id [4] 1K

12
RAT: Both write ports write to same
entry [31]

100

13
Two instructions fetched for rename but only
1 preg available [1]

100

14 All combination of renames [4] 100

15
All combination of allocations between Lregs
and Pregs [(31lregs*63pregs)= 1953 * 2 ports]

20

of the ROB interface assumes values of 5%, 40%, and 80%,
which represent a low, medium, and high instruction-commit
rate. From all available sequences, we select 50 test sequences
randomly. This number was empirically chosen to ensure that
each one of the possible parameter values (rates) is used at
least one time. However, the verification engineer is free to
choose any specific parameter set.

After selecting the test sequences that will be used during
simulation, we need to define the coverage goals that each run
must cover. A set of representative cover properties defined
for the RRS unit are shown in Table III. For each functional
coverpoint, Table III also lists – in square brackets – the
number of bins associated with each coverpoint. For example,
coverpoint 7 (“Write to every entry of RAT”) is associated
with 31×2=62 bins, because the Register Alias Table (RAT)
has a size of 31 entries and is dual-ported. Thus, each bin
measures the number of times a write has been issued to a
particular RAT entry from a particular write port.

The coverpoints of Table III are considered fully covered
when the bins of each coverpoint are “hit” at least as many
times as the number indicated in the right-most column for
each property. The hit goal set for each coverpoint is design-
specific and is decided by the verification engineer. The goals
may vary across the various coverpoints depending on their
architectural significance. The actual hit goal numbers are
orthogonal to how the proposed methodology works; in this
work, we use the indicative numbers of Table III without loss
of generality, and for proof-of-concept purposes.

V. EXPERIMENTAL RESULTS

During simulation-based verification, the proposed
feedback-based framework applies the selected test sequences
to the DUT. The duration of each sequence is dynamically
adjusted based on its measured quality. Additionally,
sequences that no longer contribute to increasing the coverage
– and, consequently, decreasing the simulation time – are
eventually replaced with other sequences. The ultimate goal
is to reach coverage closure in as little time as possible.

In general, the development of a verification plan is an
iterative process, and the coverpoints shown in Section IV

Fig. 4. The evolution of obtained coverage over simulation time. The proposed
feedback-based methodology rises to a higher coverage in less time, and it
eventually achieves 100% coverage.

constitute a ’snapshot’ of the test plan used for the in-house
verification process of the RRS. With this set of properties, we
were allowed to (a) find interesting bugs during simulation,
and (b) quantify the quality of the test sequences in covering
the functional properties of the DUT.

In the first set of experiments, we highlight the effectiveness
of the proposed feedback-based technique in achieving better
coverage in smaller simulation time. This is demonstrated
through a comparison with a baseline technique that does not
alter the duration of test sequences, i.e., each test sequence has
a fixed duration time. A set of 50 test sequences is available
for the experiments.

When using the proposed feedback-based technique, we
initially pick the first 10 test sequences (out of the available
pool of 50) to be the active ones (see Section II). As the
testing progresses, the algorithm intelligently replaces active
sequences with other ones from the pool of 50, as described
in Section II. Thus, under the proposed technique, only 10
sequences are active at any given time during the experiment,
and sequence replacements seize if and when the entire
pool has been exhausted. Each active sequence is selected
randomly. Initially, all sequences have a runtime duration of
200 cycles. Based on their measured quality, the duration of
each sequence changes dynamically during the experiment and
can take values of 0, 50, 100, 200, and 300, which correspond,
respectively, to the 5 regions (R1–R5) described in Section II.

Under the baseline technique, all 50 test sequences are
available throughout the experiment. Each sequence is selected
randomly (just like under the proposed technique), and it is
applied to the DUT for a fixed duration of 200 cycles.

Both experiments consisted of 5000 trials, i.e., 5000 test-
sequence applications, and the results are depicted in Figure 4.
The graph illustrates the evolution of the total coverage of the
DUT over time for one initial random seed. It is evident in the
figure that the proposed feedback-based methodology quickly
rises to a higher coverage in smaller time, and it manages to
reach coverage closure and 100% coverage. On the other hand,
the baseline approach without feedback control only manages
to reach a coverage of 91% by the end of the experiment.
The proposed method was tested with and without drifting.
When drifting is not enabled, the measured quality for each
test sequence is simply the average quality observed so far
for that particular sequence. When drifting is enabled (and by
using α = 0.5), the achieved coverage increases more quickly
than in the case where drifting is not enabled. Regardless, both
schemes (with and without drifting) eventually converge to the
same final coverage.

4th International Verification and Security Workshop (IVSW) 65

TABLE IV
RESULTS OF COMPARISON BETWEEN THE PROPOSED FEEDBACK-BASED

TECHNIQUE AND A BASELINE APPROACH WITH NO FEEDBACK. THE

PROPOSED METHODOLOGY REACHED 100% COVERAGE UNDER ALL 5
INITIAL SEEDS.

Seed
Baseline
Coverage

Baseline
#cycles

Feedback
#cycles

Timing Savings

1 94.56 1,000,000 300,900 70%
2 95.00 1,000,000 309,600 69%
3 94.97 1,000,000 307,600 69%
4 94.83 1,000,000 307,000 69%
5 94.79 1,000,000 301,700 70%

Average 94.83 1,000,000 305,360 69%

The proposed method used all 50 sequences available in the
pool; i.e., after starting with the initial 10 active sequences,
the algorithm made a total of 40 replacements throughout the
experiment. All of the replacements were triggered when the
drifting quality of a sequence was too low, and the quality was
inside the R1 region.

This comparison between the baseline and feedback-based
approaches was repeated for 5 additional random initial seeds
(and, thus, 5 different pools of 50 test sequences each). The
proposed methodology reached 100% coverage under all 5
initial seeds, as opposed to the baseline approach. The results
are shown in Table IV. As indicated, the proposed technique
achieved full coverage very rapidly (in around 300k cycles
in all cases). Instead, the baseline approach used up the
entire duration of the experiment (1M cycles) without reaching
coverage closure. On average, the feedback-based approach
resulted in around 70% smaller simulation time, while also
achieving higher coverage (full closure).

Finally, the sensitivity of the proposed method to the size
of the set of active test sequences was also evaluated. We
increased the number of active test sequences from 10 (out
of the total of 50) sequences to 20, 30, 40, and 50, and
recorded the functional coverage achieved after 5000 trials.
The obtained results are depicted in Figure 5. The smaller the
number of active sequences at any given time, the higher the
coverage obtained after 5000 trials. When the number of active
sequences is small, the sequences are explored quickly for their
efficiency. If they behave well, they are regularly repeated. If
they provide poor coverage, they are quickly replaced by new
test sequences. On the contrary, when the number of active test
sequences approaches the total number of available sequences,
then each sequence is repeated less often, and judgment about
its quality is delayed. Inevitably, many test trials are “lost” to
useless (in terms of their contribution to coverage) sequences,
until they are replaced by new sequences.

Fig. 5. The coverage obtained after a total of 5000 trials, by varying the size
of the set of active test sequences.

VI. CONCLUSIONS

Successful test application involves many parameters, such
as appropriate test sequence selection, tuning of constrained-
random generator parameters, determining the order of ap-
plication of the derived tests, and deciding the duration of
each test sequence. In this paper, we focus on optimising
the test-duration parameter by dynamically optimizing how
long each test sequence should be applied. Instead of relying
on predetermined test durations, we measure the coverage
achieved by the applied test after each trial. The higher the
coverage, the more cycles will be dedicated to this sequence
in future trials. Test sequences that do not improve coverage
are penalized by receiving fewer cycles in the future. When
the number of cycles per sequence continuously diminish, the
test sequence is replaced by a new one, hoping for greater
performance. This coverage-driven test application technique
is applied to the register renaming sub-system of a RISC-
V processor, demonstrating that it can efficiently reduce test
application time and improve the final functional coverage. In
the future, we plan to apply the proposed technique to top-
level software tests that verify the processor as a whole.

ACKNOWLEDGMENTS

Dimitrios Mangiras is supported by the Onassis Foundation
- Scholarship ID: G ZO 014-1/2018-2019.

REFERENCES

[1] W. C. Rhines, “Design verification challenges: Past, present and future,”
Design and Verification Conf. (DVCON)- Keynote Address, 2016.

[2] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verifica-
tion: The Complete Industry Cycle. Morgan Kaufmann, 2005.

[3] S. Mutschler, “Mitigating risk through verification: Automatic coverage
model generation technology continues to advance,” Dec, 2018.
[Online]. Available: http://semiengineering.com/mitigating-risk-through-
verification/

[4] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” IEEE Design and Test, vol. 18, no. 4, pp. 36–45,
Jul. 2001.

[5] E. Nelson, “Improving constrained random testing by achieving sim-
ulation verification goals through objective functions, rewinding and
dynamic seed manipulation,” in Design and Verification Conf. (DVCON),
2017.

[6] R. Roy, C. Duvedi, S. Godil, and M. Williams, “Deep predictive
coverage collection,” in Design and Verification Conf. (DVCON), 2018.

[7] M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets, and Y. Wolf-
sthal, “A study in coverage-driven test generation,” in Proc. of the
ACM/IEEE Design Automation Conference (DAC), 1999, pp. 970–975.

[8] R. Salemi, The UVM Primer: A Step-by-Step Introduction to the Uni-
versal Verification Methodology. Boston Light Press, 2013.

[9] A. Waterman, “Design of the RISC-V instruction set
architecture,” Ph.D. dissertation, EECS Department, University
of California, Berkeley, Jan 2016. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

[10] K. Patsidis, D. Konstantinou, C. Nicopoulos, and G. Dimitrakopoulos,
“A low-cost synthesizable RISC-V dual-issue processor core leveraging
the compressed instruction set extension,” Microprocessors and Mi-
crosystems, vol. 61, pp. 1 – 10, 2018.

[11] C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and
K. Asanović, “BOOM v2: an open-source out-of-order
RISC-V core,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2017-157, Sep 2017. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-
2017-157.html

[12] A. González, F. Latorre, and G. Magklis, Processor Microarchitecture:
An Implementation Perspective. Synthesis Lectures on Computer
Architecture,Morgan & Claypool Publishers, 2010.

[13] K. C. Yeager, “The mips r10000 superscalar microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28–41, April 1996.

66 4th International Verification and Security Workshop (IVSW)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

