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Abstract—Convolution is the central computation kernel for
various machine learning applications. The convolution stride
controls the number of pixels by which the kernel’s window
moves after each operation, thereby allowing for the reduction
of the output’s resolution. The streaming computation of strided
convolution inherently involves large periods of inactivity inter-
rupted by periods of actual computation. In this work, we propose
LeapConv, a new streaming convolution engine that computes
convolutions of arbitrary and reconfigurable stride using local
buffering and by leveraging efficient data and memory reuse.
The organization of LeapConv is based on the decomposition of
strided convolutions into a set of parallel unity-stride convolution
channels that are implemented by a merged hardware unit.
The experimental results show that LeapConv reduces power
consumption with increasing stride by eliminating redundant
data movement. The incurred area overhead due to the addi-
tional multiplexing logic required to support reconfigurability is
demonstrated to be marginal.

Index Terms—Strided convolution, convolutional neural net-
works, low power design, machine learning accelerators.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have become the
standard algorithms for many machine learning applications,
especially in the fields of audio [1] and image processing [2]–
[4]. Their widespread adoption has triggered the need to
accelerate their computation directly in hardware [5], [6]. In
this way, computational throughput requirements are satisfied
in the most energy-efficient way. For datacenter-scale applica-
tions, vector or tensor processing units have been adopted [7]–
[9]. In consumer devices, lower-cost streaming convolution
engines have been proposed, which utilize convolution-specific
memory architectures and unrolled hardware units. Such ar-
chitectures take advantage of the “sliding window” approach
that is intrinsic to visual processing and allows for local
buffering and efficient data and memory reuse [10]. Streaming
architectures have been enhanced for efficient parallelism [11]
and functional safety [12].

Ideally, the scalability of streaming convolution engines
should also be maintained when computing strided convo-
lutions, and, especially, in environments where the stride
can be dynamically reconfigured at runtime. The convolution
stride controls the number of pixels by which the kernel’s
window moves after each operation. This feature facilitates the
reduction of the output’s resolution. Fig. 1 graphically depicts
the application of strided convolution with stride length 2 of a
3×3 kernel on a 7×7 input image, resulting in a 3×3 output
image.

Fig. 1. The application of convolution with stride length 2 on a 7×7 input
image using a 3×3 kernel.

Strided convolution can be computed easily using a stream-
ing convolution engine by producing valid outputs only when
output pixels align with the strided slide of the kernel. Al-
though conceptually simple, this approach requires data move-
ments that are equivalent to unity-stride convolutions, which
are highly redundant when computing strided convolutions.
In fact, strided convolution inherently involves large periods
of inactivity interrupted by periods of actual computation.
Other approaches that do not rely on streaming convolution
engines try to reduce the complexity of strided convolutions
by utilizing Winograd’s algorithm [13], [14].

In this work, our goal is to design a streaming convolution
engine that efficiently supports arbitrary and reconfigurable
strides. The proposed LeapConv architecture exhibits the fol-
lowing key attributes:

• It decomposes strided convolutions into multiple inde-
pendent unity-stride convolution channels to avoid redun-
dancy in computation and data movements. Even though
the computations of each channel are performed in par-
allel, the overall hardware implementation is merged in
one unified structure to maximize efficiency and resource
utilization.

• The parallel channels are mapped to the same window
buffer, while the input is forwarded only to the registers
of the active channel. This approach improves the clock-
gating efficiency by limiting the data switching activity
during the engine’s operation to the absolute minimum
required for the correct implementation of the algorithm.

• The aforementioned architectural features reduce the
power consumption from 10% to 32%, for different ASIC
configurations implemented using a 45-nm standard-cell
library, without introducing any throughput penalty. The
area is slightly increased, due to the multiplexing logic
added to support the reconfigurability of the stride length.

The rest of this paper is organised as follows: Section II



(a) Streaming convolution engine

(b) Standard sliding window (c) Strided sliding window

Fig. 2. The organization of a streaming convolution engine and the slide of
the kernel over the input depending on the stride length.

describes the architecture of streaming convolution engines
used for strided convolutions. In Section III, we propose and
analyze the overall architecture of LeapConv. The experimen-
tal results are presented in Section IV, while conclusions are
drawn in Section V.

II. STREAMING CONVOLUTION ENGINES

In each clock cycle, a streaming convolution engine – such
as the one shown in Fig. 2(a) – accepts one input pixel and
computes one output pixel [15]. To do so, all pixels within the
corresponding input window must be available, as highlighted
in Fig. 2(b). For a W ×W filter, the pixels from the last W
rows are required. This requires row buffers with the ability
to store W − 1 rows, plus a window buffer that holds the
currently active input pixels. This sliding-window memory
architecture allows for data reuse and fine-grained parallelism.
Window buffers are normally implemented with registers,
while larger line buffers are mapped either to standard-cell-
based memories [16], or SRAM blocks [17].

A set of parallel multipliers and an addition tree perform the
actual computation by applying the weights of the kernel to
the pixels stored in the window buffer. The engine manages to
keep the input pixels properly aligned to the filter’s coefficient
by shifting the contents of the window buffer. In each clock
cycle, the input pixel is pushed in the top left corner of the
window buffer and in the top row of the line buffers. In
parallel, the window buffer is filled with pixels that come from
the line buffers and shifts its contents to the right to simulate
the rightward sliding of the filter over the input. The pixels
that belong to the same column with the incoming pixel are
also moved downwards in the line buffers, to simulate the
downward sliding of the filter. An algorithmic view of these
operations, assuming a W ×W window buffer (window) and
W − 1 line buffers (lb), is shown in Fig. 3.

The ability to compute a strided convolution using this
architecture would require minimal changes to the hardware.
In strided convolutions, the filter slides over the image with
a step S, in both dimensions. Fig. 2(c) illustrates this strided
slide in the ‘x’ dimension. As the filter moves S pixels away
from its previous location in the same row, the engine needs to

foreach input pixel (i,j)
// read line buffers and shift window buffer
for (m = 0; m < W; m++) {

tmp = (m < W-1) ? lb[m][j] : input;
for (n = 0; n < W; n++)

window[m][n] = (n < W-1)? window[m][n+1] : tmp;
}
// move data downwards in the line buffers
for (m=0; m < W-1; m++)

lb[m][j] = (m < W-1)? lb[m+1][j] : input;

Fig. 3. An algorithmic description of the data movement involved in the
window and line buffers of a streaming convolution engine.

receive S new pixels in a row-wise manner to align the input
pixels with the newly shifted location of the filter. This means
that the engine can produce a new output only when the pixel
that will be multiplied with the coefficient in the bottom right
corner of the filter becomes available. Thus, a new output of
the same row is computed every S cycles, assuming that one
new pixel arrives per clock cycle.

The same alignment should be performed when the filter
moves downwards with a step S. This means that after the
engine has produced the last output of a row, it must wait for
S−1 complete rows to be read before it can restart to produce
a valid output of the next active row.

Hence, the output of a strided convolution engine is char-
acterized by bursts of useful output computations that are
separated by large periods of inactivity. During the active
period, where, for an incoming pixel (i, j), it holds that i
mod S = (W − 1) mod S, the engine produces one pixel
every S clock cycles. On the contrary, the output remains idle
during the inactive period, i.e., when i mod S ̸= (W − 1)
mod S. During this time, the engine waits to read the next
S rows, before a new period of activity may resume. As the
value of S increases, the inactive period becomes significantly
larger than the “active” one.

By enhancing its functionality, a streaming convolution
engine can compute strided convolutions by computing an
output only when needed. However, to keep the pixels aligned
with the kernel, the data should always be shifted inside the
window buffer, and the line buffers must still follow the data
movement of standard unity-stride convolutions, even during
the large periods of inactivity. This redundant data movement
is effectively removed by LeapConv, thereby leading to sig-
nificant power consumption benefits.

III. LEAPCONV: ARCHITECTURAL OVERVIEW

The LeapConv architecture is based on the decomposition
of strided convolutions into a set of parallel non-strided con-
volution channels [18]. To avoid redundancy in computation
and data movement, instead of assigning the computation
directly to the parallel channels, the hardware implementation
of the latter is merged in one unified structure. Furthermore,
the parallel channels are mapped to the same window buffer,
while the input is forwarded only to the registers of the active
channel, thus effectively reducing the data switching activity.

A. Decomposition
Any strided convolution can be decomposed into the sum

of multiple unity-stride convolutions [19]. Since the filter is



Fig. 4. The decomposition of a 2-stride convolution into 4 parallel unity-
stride convolution channels.

applied with a stride S, each coefficient of the filter will be
multiplied only with a subset of the input elements. Therefore,
by grouping together the input pixels that each coefficient
“touches,” we can derive independent channels of sub-images
and sub-filters. Fig. 4 depicts the transformation of a strided
convolution with S = 2 into four independent channels. In the
general case, the number of channels created is equal to S2. A
pixel (i, j) belongs to the channel Chk,l with k = i mod S
and l = j mod S. Similarly, the coefficient hm,n belongs to
channel Chk,l when k = m mod S and l = n mod S.

The operation within each channel is, effectively, a unity-
stride convolution, since every pixel of each sub-image is
multiplied with every coefficient of the corresponding sub-
filter. After computing the output of each channel, we can
reconstruct the output of the original strided convolution by
simply performing a pixel-wise addition between the individ-
ual outputs of each channel.

LeapConv utilizes this decomposition but time-shares the
operation of each channel, thereby saving considerable amount
of redundant data switching activity and offering a highly
efficient overall hardware implementation.

B. Merged Hardware Architecture

In a direct implementation of the decomposition transfor-
mation, the strided convolution can be computed using S2

independent unity-stride convolution engines. The outputs of
all engines are added to produce a valid result. Therefore, to
produce the correct output, the operation of the engines should
be aligned.

The hardware implementation of the decomposed strided
convolution is shown in Fig. 5(a) for a 5×5 kernel applied
with a stride of S = 2. The engine of each channel utilizes
a smaller window buffer and requires fewer and shorter line
buffers, as the input image of each channel is a subset of the
original image.

The fragmentation of the line buffers can be avoided by
taking advantage of the fact that each channel uses a different
part of the input. For instance, channels A and B refer to
pixels that belong to even-indexed rows, while channels C

(a)

(b)
Fig. 5. The (a) multi-channel architecture that allows the computation of a 2-
stride convolution, and (b) the optimized architecture with shared line buffers.

Fig. 6. Mapping in place the window buffers of the 4 channels. Note that no
more registers are used here than in the unity-stride streaming architecture.

and D refer to odd-indexed rows. Therefore, the line buffers
of channels A and B can be merged, resulting in larger line
buffers that are equal to the size of the ones used in a
unity-stride engine. Adding some de-multiplexing, as shown in
Fig. 5(b), the line buffers can now push data either to channel
A or B, depending on the column index of the current input
pixel. Pixels from even columns will get pushed to channel
A and the rest to channel B. In the same way, we can merge
the line buffers for channels C and D. For uniform treatment,
channels C and D are also equipped with two line buffers.

The window buffer of each channel can be viewed as
a subset of the original window buffer. By rearranging the
window buffers of the four channels, we can reconstruct the



Fig. 7. The movement of data in the window buffer. Data moves between
the registers of each channel, thus, effectively, mimicking the strided kernel
movement.

window buffer of the unity-stride engine, as illustrated in
Fig. 6. The only difference lies in the connectivity between
the registers; each register connects only to the registers of
the same channel.

To keep the operation of all channels aligned, data move-
ment inside the window buffer occurs only during the active
periods. During said periods, output computation occurs only
when the window buffer has every pixel of the window of the
input image that overlaps with the filter. On the contrary, dur-
ing the inactive periods that arise naturally due to the strided
movement of the window, the window buffer in LeapConv is
completely inactive.

To understand the connectivity between registers and the
involved data transfers, Fig. 7 highlights the movement of the
data inside a 5 × 5 window buffer for a strided convolution
with S = 2, during an active period. Assume that in cycle
t0, when pixels {A3, C2, A4, C3, A5} are being pushed in
the first column (column 0) of the window buffer, channels A
and C are activated. At that time, the first 3 columns of the
window buffer are filled with data, while the last 2 have not
received any input yet. This means that channel A and C have
data in two of their columns, while channels B and D have
data only in their first column.

In cycle t1, pixel B3 is pushed into the window buffer from
the input. The rest of the second column of the window buffer
is filled with pixels D2, B4, D3 and B5 that come from the
line buffers. Pixels B3, B4 and B5 belong to channel B, while
D2 and D3 belong to channel D. These two channels are active
and they should shift the corresponding columns 1 and 3 of the
merged window buffer. The remaining registers of the window
buffer are unaffected. In total, only two columns out of the five
columns have experienced any data switching.

In the next cycle, t2, three columns are being updated.
Column 4 receives the data of column 2, and column 2 receives
the data of column 0. The newly arrived pixels {A6, C4, A7,
C5, A8} from the input and the line buffers are pushed into
column 0. In all cases, data move two columns forward (to the
right), following the stride length (S = 2) of the convolution.
In this cycle, only three columns experience data switching
activity.

Similar to the reduction in data movement inside the win-
dow buffer, LeapConv achieves an equal reduction to the
movement of the data between the line buffers. In the case
of the unity-stride convolution depicted in Fig. 3, in order to
emulate the downward shifting of the filter over the image, the
data of a line buffer is pushed to the next one, i.e., lb[m][j]

receives data from lb[m+1][j]. In LeapConv, the data of
the line buffers must move to the next active line buffer of the
same channel. Since input pixels are streamed in a row-wise
manner, until a complete row is read, only the (W − 1)/S
line buffers that belong to the active channels are being used.
As a result, instead of shifting all line buffers downwards in
each clock cycle, only the line buffers of the active channels
are being updated.

foreach input pixel (i,j)
// read line buffers and shift window buffer
if (active_row) // when on an active period
for (m = 0; m < W; m++) {

tmp = (m < W-1)? lb[m][j] : input;
// shift only active columns
for (n = j%S; n < W; n += S)

window[m][n] = (n < W-S)? window[m][n+S] : tmp;
}

// move data downwards in line buffers of active rows
for (m = i%S; m < W-1; m += S)

lb[m][j] = (m < W-1-S)? lb[m+S][j] : input;

Fig. 8. An algorithmic description of the data movement involved in the
window and line buffers of the proposed LeapConv architecture.

The update of the window buffer and the corresponding
line buffers in LeapConv is detailed in the code segment
shown in Fig. 8. For each input pixel, the windows buffers are
shifted only in the active rows. The shifting does not involve
all columns, but only the ones placed S columns apart, i.e.,
window[m][n] is connected to window[m][n+S]. The
same connectivity pattern is involved across line buffers, i.e.,
lb[m][j] receives a pixel from lb[m+S][j].

(a) LeapConv with Reconfigurable Stride

(b) Configuration for S = 2 (c) Configuration for S = 3
Fig. 9. The (a) overall architecture of LeapConv and the reconfigured design
that computes strided convolutions with (b) S = 2 and (c) S = 3.

C. Support for Reconfigurability

The purpose of LeapConv is to allow the computation of any
strided convolution for a specified filter size. By generalizing



the architecture of Fig. 6, we are able to design a streaming
convolution engine with reconfigurable stride.

To enable this feature, each register of the window
buffer is accompanied by a multiplexer, as shown in
Fig. 9(a). These multiplexers enable the shifting of data from
window[m][n+S] to window[m][n] for arbitrary values
of S, assuming that the stride length S is smaller than or
equal to the window size W . By appropriately configuring
the select signals of the multiplexers, a different stride length
may be chosen. The connectivity for a specific stride length
should be configured before the start of the computation and,
for correctness, it should not change until the output data is
computed.

To support an arbitrary stride, each column of the window
buffer is connected to all previous columns. Therefore, the
cost of multiplexing increases progressively from left to right.
Multiplexers are also added to the write port of the line
buffers to ensure that lb[m][j] receives an input from
lb[m+S][j] (as shown in Fig. 8), for all possible values of
S. The read port of each line buffer is connected directly to the
window buffer. The column of the window buffer that receives
the output of the line buffers – only during the active period
– is also determined by S. Example configurations for S = 2
and S = 3 are shown in Figs. 9(b) and 9(c), respectively.

IV. EXPERIMENTAL RESULTS

The goal of the experimental results is to highlight the
effectiveness of LeapConv, as compared to current state-of-
the-art approaches. To the best of our knowledge, LeapConv
is the first streaming convolution engine that is also optimized
for strided convolutions. Thus far, strided convolutions have
been optimized only for large-scale systolic arrays using
Winograd’s algorithm to reduce the cost of multiplications
in convolutions [13], [14], [19]. In these approaches, the
strided convolution is computed via smaller convolution ker-
nels mapped to Winograd-specific units. Since each Wino-
grad unit supports a specified kernel size, the decomposed
filters are zero-padded to be aligned with the predefined
kernel [13]. Moreover, the systolic way of computing the
final output does not allow for buffer sharing and regular data
movements, as facilitated by streaming convolution engines.
Thus, a comparison between a streaming convolution engine,
such as LeapConv, and any systolic-array-based design would
not provide meaningful insight, or be fair, since the two
architectural approaches are very different in both concept and
implementation.

Instead, the enhanced version of the unity-stride streaming
architecture presented in Section II for computing the strided
convolution remains cost efficient (even if it requires larger
data transfers than LeapConv) and it does not suffer from
irregularity in data accesses and lack of local buffer sharing,
which afflict the systolic-architecture-based approaches [13],
[14]. Hence, in the presented evaluation, we will compare
LeapConv to the above-mentioned enhanced 1-stride streaming
convolution engine, which serves as the benchmark for the
simplest possible architectural alternative.

Both architectures were fully implemented in C++ and
synthesized to Verilog RTL using Catapult HLS. The two
architectures were designed for 16-bit input images and filters

(a) 3×3 (b) 5×5

(c) 7×7
Fig. 10. The power consumption of the LeapConv and the enhanced unity-
stride streaming engine implementations for different filter sizes and stride
lengths.

and are reconfigurable with respect to stride length. For each
presented example, the size of the input images is assumed
to be equal to 256×256. The designs follow the behavioral
models shown in Figs. 3 and 8. However, the C++ models
used were optimized for HLS using coding templates that
favor efficient unrolling and reduced dependencies for efficient
pipelining. The Verilog RTL for each case was synthesized
with the Oasys RTL logic synthesis using a 45 nm standard-
cell library and targeting a clock frequency of 500 MHz. The
reported power is obtained from the PowerPro power analysis
and optimization tool.

The power consumption of the two architectures is il-
lustrated in Fig. 10 for different kernel sizes. For standard
convolutions, where a unity stride is assumed, LeapConv
incurs higher power consumption than the enhanced version of
the unity-stride streaming architecture. This power overhead
is a direct consequence of the reconfigurability provided by
LeapConv and the extra multiplexing logic added to support
it. Since the amount of the multiplexing is proportional to the
size of the window buffer, the difference in power consumption
between the two architectures increases as the size of the
window buffer increases. This power overhead ranges from
4% to 6%, depending on the filter size.

However, LeapConv achieves a substantial reduction in
power consumption when the engine computes convolutions
with stride lengths greater than one, as shown in Fig. 10. The
high inactivity of the window buffer and the efficient on-time
activation of the line buffers allow LeapConv to significantly
reduce the data switching activity. This translates to dynamic
power savings that increase with increasing stride length. This
result stems from the fact that the periods of inactivity of the
window buffer and the number of active line buffers in each
clock cycle are determined by the stride length. For the 3×3



Fig. 11. The area consumed by LeapConv and the enhanced unity-stride
streaming architectures.

kernel implementation, the reduction for a convolution with
stride length 2 is around 10%, while it can reach up to 20% for
longer strides. For the 5×5 and 7×7 kernel implementations,
the power savings range from 13% to 32%. These savings
are significant if we take into account the overhead of the
multiplexing logic to support the desired reconfigurability.

Fig. 11 depicts the area of both designs under comparison
for various kernel sizes. LeapConv is only marginally larger
than the architecture of Section II, which – as previously
mentioned – is the most efficient approach in implementing
streaming convolutions, since it maximizes buffer sharing and
relies on simple data access patterns. The source of this
area overhead is the added multiplexing logic and wiring
required to support the extra feature of stride reconfigurability.
The area overhead increases slightly with the window buffer
size, and ranges between 2.3% and 2.8%, for the different
implementations.

Finally, it should be noted that the area cost of multiplexing
does not translate to a delay overhead, since the multiplexers
drive the input pins of the window’s registers. The critical path
in all cases starts from the output pins of the same registers and
moves to the multiplication and addition logic that implements
the arithmetic part of the convolution engine. In other words,
LeapConv can achieve the same maximum possible operating
frequency as the baseline design.

V. CONCLUSIONS

Strided convolution can be inherently decomposed into a
sum of multiple channels of unity-stride convolutions. The
proposed LeapConv architecture takes advantage of this de-
composed form of computing convolutions of arbitrary stride
length to improve the power consumption of the streaming
convolution engine. In LeapConv, the result of each channel
is computed separately, albeit by using the same merged
hardware unit. Both the window and line buffers of a baseline
convolution engine built for unity-stride convolutions can hold
the input of each channel. Using appropriately selected data
movements, the data of each channel is properly aligned in
the window buffer, to allow for direct computation of the
desired result. The active and inactive periods of computation
enable reduced data switching activity and increased clock-
gating efficiency for the registers of the window buffer. Finally,
with the addition of multiplexing logic, LeapConv can also
support reconfigurable stride lengths.
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