
Soft-Clustering Driven Flip-flop Placement Targeting
Clock-induced OCV

Dimitrios Mangiras†, Pavlos Mattheakis‡, Pierre-Olivier Ribet‡, Giorgos Dimitrakopoulos†
†Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

‡Mentor, a Siemens Business, Grenoble, France

ABSTRACT
On-ChipVariation (OCV) in advanced technology nodes introduces
delay uncertainties that may cause timing violations. This prob-
lem drastically affects the clock tree that, besides the growing de-
sign complexity, needs to be appropriately synthesized to tackle
the increased variability effects. To reduce the magnitude of the
clock-induced OCV, we incrementally relocate the flip-flops and
the clock gaters in a bottom-up manner to implicitly guide the
clock tree synthesis engine to produce clock trees with increased
common clock tree paths. The relocation of the clock elements is
performed using a soft clustering approach that is orthogonal to
the clock tree synthesis method used. The clock elements are re-
peatedly relocated and incrementally re-clustered, thus gradually
forming better clusters and settling to more appropriate positions
to increase the common paths of the clock tree. This behavior is
verified by applying the proposed method in industrial designs, re-
sulting in clock trees which aremore resilient to process variations,
while exhibiting improved overall timing.

CCS CONCEPTS
• Hardware → Electronic design automation; Physical de-
sign (EDA); Placement; Physical synthesis; Clock-network
synthesis.

KEYWORDS
on-chip variations; soft clustering; flip-flop placement; clock tree
synthesis
ACM Reference Format:
Dimitrios Mangiras, Pavlos Mattheakis, Pierre-Olivier Ribet, Giorgos Dim-
itrakopoulos. 2020. Soft-Clustering Driven Flip-flop Placement Targeting
Clock-induced OCV. In Proceedings of the 2020 International Symposium
on Physical Design (ISPD ’20), March 29-April 1, 2020, Taipei, Taiwan. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3372780.3375564

1 INTRODUCTION
The On-Chip Variation (OCV) effect refers to the intrinsic variabil-
ity involved in semiconductor manufacturing processes and the
fluctuation of operating conditions, such as voltage and tempera-
ture, and how they impact a circuit’s timing [7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISPD ’20, March 29-April 1, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7091-2/20/03…$15.00
https://doi.org/10.1145/3372780.3375564

Due to OCV, some cells may be faster or slower than expected,
thus introducing delay uncertainties in data and clock path delays,
resulting in more stringent timing constraints. In order to model
them, timing derates are introduced that are multiplied with the
net and cell delays [2]. For example, in the case of the clock tree,
a launch clock path can be slower than expected, while a capture
clock path can be faster than expected. In this case, if there is no
sufficient positive slack, the increase of clock skew uncertainties
may cause a violation of the late (setup) timing constraints. Never-
theless, this opposite derating of the launch and the capture clock
paths cannot occur on the part of the clock tree that is common
to both paths. The common path should not be derated since the
clock can be either slower or faster for both the launch and capture
paths. Common path pessimism removal discards this artificial pes-
simism during timing analysis [2].

Previous research tries to alleviate the impact of OCV either dur-
ing Clock Tree Synthesis (CTS), or by optimizing already synthe-
sized clock trees. Optimizing the quality of the top-level clock tree
by reducing clock divergence and optimizing placement of clock
logic and buffers was the goal in [3] and [21]. In [18], a statisti-
cal centering based clock routing method is proposed that makes
the clock skew more tolerant to interconnect variations. The work
of [26] reconstructs the topology of a synthesized clock tree by
reconnecting buffers for removing OCV timing violations, while
improving the lower bounds on the Worst Negative Slack (WNS)
and the Total Negative Slack (TNS).

The work in [23] improves timing in multiple modes and mul-
tiple corners by applying useful clock skew on an already con-
structed clock tree. A formulation based on linear programming
similar to [17, 22] computes optimal positive or negative clock
skew offsets that are applied on the clock tree using buffer inser-
tion, removal, or relocation. Similarly, the work of [12] minimizes
the sum of skew variations over all adjacent sink pairs using both
global and local optimization that includes solving a linear pro-
gram and utilizing machine learning to predict the impact of local
moves on clock latency. Improving the correlation between the pre-
dicted clock skew offsets for tackling OCV and the achieved timing
quality after CTS was the focus of [8].

Non-tree clock structures have also been tested as a means for
reducing clock-induced OCV. Clock meshes [10] and clock trees
with cross links [9, 20] represent the most relevant approaches.
Non-tree structures reduce clock skew and improve the robustness
of clock networks compared to tree-shaped clock networks, but in-
cur an additional non-trivial cost.

In this work, we try to bring appropriately selected flip-flop and
clock gaters closer, while respecting both their initial spatial lo-
cality and the functional clock-gating hierarchy, in order to cre-
ate a better seed for CTS to produce clock trees with less path di-
vergence that are inherently less sensitive to clock-induced OCV.

https://doi.org/10.1145/3372780.3375564
https://doi.org/10.1145/3372780.3375564

Once global placement and in-place datapath optimization have
finished, flip-flops and clock gaters are first clustered in a bottom-
up fashion, using soft clustering [11], and then moved iteratively
closer to the weighted mean location of the center of all neigh-
bor clusters. Flip-flop-to-cluster membership is not a hard decision
and it is not fixed at any stage of the algorithm. The membership
of flip-flops to clusters is quantified by weights that model the
physical proximity and timing adjacency of the examined clock
cells as well as their timing criticality. Membership weights are not
constant but they are dynamically updated as flip-flop/clock-gater
relocation evolves. It should be noted that, in this work, cluster-
ing is only used for guiding clock cell relocation, and it does not
lead to circuit restructuring, as done in clustering-driven CTS en-
gines [6, 25], or in other approaches that use clustering for register
clumping [5, 13, 19, 27] or multibit register composition [15, 16, 24].

The presented approach has been integrated intoMentor’s Nitro
SoCTM place-and-route flow and tested using six industrial designs
implemented at various technologies between 14 and 28nm. The
results after post-CTS optimizations, show that the proposed pre-
CTS clock cell relocation effectively guides CTS to produce clock
trees with increased common paths. As a result, timing metrics are
improved in all cases, without degrading overall clock tree com-
plexity. In overall, the main contributions of this work are summa-
rized as follows:

• The utilization of soft clustering, for the first time, for guid-
ing clock cell relocation across clock hierarchy.
• The novel definition of membership grades that quantifies
effectively physical and timing adjacency.
• The evaluation of the proposed approach under a realistic
industrial setup.

The proposed method is applied before CTS and is inherently or-
thogonal to any previous work that optimizes directly the clock
tree topology for reducing clock-induced OCV. Even if clock cell re-
location is allowed in modern CTS or post-CTS optimization flows,
still the distances that the cells can travel are significantly restricted
compared to the pre-CTS stage of the implementation flow that is
the focus of this work.

The rest of the paper is organized as follows: Section 2 presents
the motivation behind the hierarchical clustering-based flip-flop
relocation. Section 3 describes the overall flip-flop relocation algo-
rithm, while Section 4 presents the experimental results. Conclu-
sions are drawn in Section 5.

2 MOTIVATION–PROBLEM FORMULATION
In this paper, we focus on changing the clock cell placement to al-
low the CTS engine to produce clock trees with as many common
paths as possible thus reducing the effect of clock-induced OCV
timing degradation. One generic approach to guide CTS into plac-
ing selected clock cells on the same clock branch is to bring those
cells closer in the physical layout. To take advantage of this prop-
erty, we need to identify (a) which clock cells, when put closer,
would alleviate OCV derates, and (b) how to relocate the selected
cells. The following example will shed more light on to how we
attack the problem of OCV-aware relocation of clock cells.

Let us consider the example shown in Fig. 1(a) that involves
three flip-flops A, B, C, and a clock gater that drives flip-flops B
and C.The clock skew for each one of the three register-to-register

A B C

D1

D0
D2

D4 D5

D3

clock

clock tree
buffer

(a)

A

clock

D4 D5

B C

D3
new

D2
new

D0
new

D1
new

new new

(b)
Figure 1: Physical proximity of selected clock cells driven by
the same clock nets reduces clock divergence and improves
common clock path delay. (a)The original clock tree, and its
(b) optimized version to tackle clock-induced OCV.

timing paths AB, BC, and CA is the delay difference between the
clock launch and the capture path. The delay of any common path
between the launch and capture paths is omitted when computing
their delay difference. Due to OCV, when considering the worst-
case scenario in terms of late constraints, the delay of the launch
clock path is increased by a derating factor γ . For the sake of sim-
plicity, we also assume that the delay of the capture clock path is
decreased by the same factor. Therefore, the late clock skew of all
paths, after the clock divergence point for each path, is the differ-
ence between the maximum clock path delay of the launch path
and the minimum clock path delay of the capture path.

skewlate
AB = Dmax

1 − (Dmin
2 + Dmin

3 + Dmin
4)

= (D1 − D2 − D3 − D4) + γ (D1 + D2 + D3 + D4)

skewlate
BC = Dmax

4 − Dmin
5

= (D4 − D5) + γ (D4 + D5)

skewlate
CA = (D

max
2 + Dmax

3 + Dmax
5) − Dmin

1

= (D2 + D3 + D5 − D1) + γ (D2 + D3 + D5 + D1)

The equations are derived assuming that Dmax
i = Di (1 + γ) and

Dmin
i = Di (1 − γ), where Di represents the mean delay (without

OCV) and includes both wire and logic delay.
To reduce the impact of OCV, we need to minimize the sum of

clock path delays multiplied by γ . To do so for this example, we
start from the lower levels of the clock hierarchy and try to mini-
mize delays D4 and D5. As shown in Fig. 1(b), this is achieved by
moving flip-flops B and C closer relative to Fig. 1(a).This relocation

of flip-flops B and C guides the CTS to place the common branch
point of B and C in close proximity, effectively diminishing the de-
rating effect on path BC. This movement is justified, since B and
C are the endpoints of the same clock net of the same timing path.
Of course, moving B and C closer, for improving OCV, should not
degrade data-path timing.

Next, we move up the clock hierarchy and focus on minimizing
the OCV derates on paths AB and CA. In this case, our goal is to
transfer part of the delays D1 and D2 to the common path D0. To
achieve this, we need to bring the clock gater and flip-flop A closer,
as shown in Fig. 1(b). Flip-flop A and the clock gater are driven
by the same clock net and participate in the same timing paths.
Therefore, bringing them closer increases the probability that CTS
will drive them with a common clock path.

On the contrary, moving A closer to B, or C, would not improve
clock-induced OCV and their relative placement should be decided
by other criteria. These flip-flops belong to different clock sub-nets
and their last common clock point is above the clock gater. The
gater inevitably acts as a divergence point for the clock net, sepa-
rating the clock branch that drives B and C from the clock branch
that drives flip-flop A, irrespective of the physical proximity of A
to B and C. The same arguments hold for all flip-flops that belong
to different clock nets. Such flip-flops can be considered irrelevant
for the interaction of their placement with OCV, since their clock
divergence point belongs to an upper level of the clock tree.

In any case, moving clock cells closer should not tradeoff an
increase in clock latency. Latency increase is avoided if cells don’t
move far away from the cells they drive in the clock tree hierarchy.
For instance, in Fig. 1(b) the clock gater should approach A but at
the same time, it should not move too far away from flops B and C.
This the reason for not drawing the gater next to A in this example.

This example highlights that, by creating physical clusters of
selected clock cells (timing neighbors), after examining the cells’
launch-capture connectivity and their position on the clock tree
hierarchy, we increase the probability that those cells are put on
the same clock branch during CTS.

A

G2

G3

Fclock

Level 0Level 1Level 2

clock
subnet

G

bottom up traversal

G1

B

C

D

E

Figure 2: An example to explain the definition of timing
neighbor clock cells, depending on their connectivity and
positions in the functional clock tree hierarchy.

Two clock cells are timing neighbors if they have clock pins on
the same net that belong to the launch and capture clock parts of
a constrained timing path. For example, in Fig. 2, flip-flop C is a
timing neighbor of flip-flop D and not of flip-flop B. Even if flip-
flop C is connected to both flip-flops B and D, it neighbors only

Algorithm 1: OCV-aware clock Cell Relocation
1 foreach level k of the clock tree - bottom up do
2 foreach clock net n of level k do
3 Cells[n]← all cells at the endpoints of n;
4 Clusters[n]← InitClusters(Cells[n]);
5 repeat // Cluster and Relocate
6 repeat // Soft Clustering
7 Computem(i, j) ∀i ∈ Cells[n] and

j ∈ Clusters[n] using eq. (2);
8 Update the centers of all Clusters[n] using

eq. (4);
9 until convergence;

// Cell relocation

10 foreach cell i ∈ Cells[n] do
11 if i not timing critical && not reached

displacement limit then
12 Move i closer to the weighted mean

location of the centers of Clusters[n];
13 end
14 end
15 UpdateTiming();
16 until no cell moved;
17 end
18 end

with flip-flop D since flip-flop B has its clock pin on different net
from C. Also, clock gaterG1 is a timing neighbor cell for gaterG2,
since they have their clock pins on the same net (the net driven by
gaterG) and there is a constrained timing path that connects them
through their children (G1 → A→ B → G2). However, the same
is not true forG1 andG3. Although they are endpoints of the same
clock net, there is no timing path that connects their leaves.

3 SOFT CLUSTERING-BASED PLACEMENT
The proposed approach is based on a repetitive process of incre-
mental clustering and clock cell relocation with the goal to bring
timing neighbors closer and increase the probability that they are
driven by the same clock branch after CTS.

Algorithm 1 depicts the overall structure of the proposedmethod.
The clock cells are examined hierarchically beginning from the
leaves of each clock net. The clock cells at the sinks of each clock
net are clustered using the k-Harmonic Means (kHM) soft cluster-
ing algorithm [28]. kHMbeginswith an initial guess of the solution
(line 4 of Alg. 1), and then refines the position of the centers un-
til it reaches convergence, i.e., the positions of the cluster centers
change by less than 1% per iteration (lines 6–9 of Alg. 1).

In contrast to hard clustering algorithms [14, 27], kHM is a soft
clustering algorithm and allows the cells to belong to more than
one cluster [11]. Function m(si , c j), with 0 ≤ m(si , c j) ≤ 1 and∑k
j m(si , c j) = 1, defines the grade of membership of clock cell si to

the jth cluster with center c j . This membership function effectively
combines the physical location of the cells with the location of their
timing neighbors.

Once the cell-to-clustermemberships have been computed, each
examined cell tries to approach the center of the clusters accord-
ing to the computed membership grades (lines 10–14 of Alg. 1).
The soft membership nature of the proposed clustering algorithm
allows all nearby clusters to contribute to the movement of each
clock cell. This feature would have been impossible with cluster-
ing algorithms that employ hard membership functions.

Once all candidate cells have tried one new position, routing and
timing are incrementally updated to reflect the available slacks at
the inputs and the outputs of the affected cells (line 15 of Alg. 1).

3.1 Initialize cluster centers
The kHM soft clustering algorithm is executed independently on
each clock net n, assuming a predetermined number of clusters K .
The number of clusters is computed based on a maximum-allowed
cluster size that tries to mimic the maximum-fanout constraint im-
posed on the clock tree.

During initialization, we partition the cells driven by each clock
net in equally-sized groups of clock elements (flip-flops and clock
gaters), and select randomly the position of one cell from each
group as the initial cluster center. As it will be shown in Algorithm
2, the initial cluster centers are derived after taking into account
the cells of each net as well as the cluster centers already defined
for the hierarchically lower clock nets. This addition is needed to
avoid clock cells being placed far away from the cells they drive,
which could increase clock wirelength and latency. The upper lev-
els of the clock-tree hierarchy are sparse and involve in most cases
a few clock gaters placed far apart from each other. Therefore,
bringing those cells closer, as dictated by the proposed method,
would risk to separate them from the cells they drive. This risk
does not appear on the lower levels of the clock tree where bring-
ing cells closer involves only local moves.

The recursive partitioning of the cells driven by each clock net is
highlighted in Algorithm 2. In particular, we first define the bound-
ing box that encloses all cells of clock net n, i.e., Cells[n]. Then, we
add to Cells[n] all cluster centers of the lower level of the clock tree
that are connected to each cell of Cells[n] and placed inside the
bounding box of n (Line 4 of Algorithm 2). In this way, the cluster
initialization of clock net n is done on AllCells that includes both
the cells connected to n and the pre-defined cluster centers of the
hierarchically lower clock sub-nets. Then, the set of points that de-
termine the initialization of the clusters of net n are first sorted ge-
ographically, and they are recursively partitioned to equally-sized
sets using RecPartition function described in Algorithm 2.

3.2 Compute membership function
In kHM clustering algorithm [28] the probability of a cell si being
a member of the jth cluster is determined by the harmonic average
of the distances of each cell to the centers of all K clusters and is
given by:

d(si , c j) =
si − c j−p−2∑K

k=1 ∥si − ck ∥
−p−2 (1)

Parameter p is set to 4, to distinguish more clearly the cells that
are located far from the center of the cluster relative to those that
are placed in a nearby position. For traditional 2D clustering, the
scaled physical distance of a cell from the centers of all clusters
given by d(si , c j) would have been a sufficient clustering quality

Algorithm 2: Initialize Clusters
1 function InitClusters (Cells[n])

// Set #clusters using cells of subnet n

2 K ← Cells[n] / MAX_CLUSTER_SIZE;
3 BB← BoundingBox(Cells[n]);

// Include cluster centers of next level that are inside BB

4 AllCells← Cells[n] ∪ Valid_Centers;
5 step← AllCells / K ;
6 SortedCells← Sort AllCells according to their (x,y)

co-ordinates (x first).;
7 return RecPartition(SortedCells, step);
8 endfunction
// Recursive partitioning to equal size groups

9 function RecPartition (SortedCells, step)
10 if sizeof(SortedCells) ≤ step then
11 return a random point j ∈ SortedCells;
12 end

// Split SortedCells in two sets

13 C1 ←SortedCells[1 : step];
14 C2 ←SortedCells[(step+1) : sizeof(SortedCells)];
15 RecPartition(C1, step);
16 RecPartition(C2, step);
17 endfunction

metric [27, 28]. However, for the OCV-aware placement of sequential
cells, this is not enough. A cluster is a good candidate for cell si , if
the timing neighbors of si , denoted as N(si), also belong to the
same cluster, especially the most timing critical ones. In this way,
CTS is guided to put them on the same clock branch and effectively
reducing clock-induced OCV.

3.2.1 The proposedmembership grade. Membership gradem(si , c j)
should reflect both the spatial proximity of si to the center of the
jth cluster c j , as expressed by d(si , c j), as well as the physical prox-
imity of the neighbors of si to the same cluster. Effectively, the
closer a timing neighbor of si is to cluster j the larger the “pres-
sure” towards cell si to group to the same cluster as well.

To express these dependencies, we define themembership grade
of cell si to the jth cluster as follows:

m(si , c j) = a · d(si , c j) + (1 − a)

|N(si) |∑
k=1

t(sk , si)d(sk , c j)

|N(si) |∑
k=1

t(sk , si)
(2)

The distanced(sk , c j) of each timing neighbor sk of si contributes
relative to its timing criticality t(sk , si) with respect to si (see Sec-
tion 3.2.2). The more critical the timing path that connects sk and
si , the stronger the need to bring them closer, expecting that CTS
will drive them with a common clock tree path.

For a = 1, membership is determined only by the physical dis-
tance of each cell to the center of each cluster. This corresponds to
traditional flip-flop clumping [27], where flip-flops are clustered
together based only on their (x,y) coordinates. On the contrary,
a = 0 would try to bring closer all timing neighbors ignoring the
original locations of the cells. Empirically, picking an intermediate

value for a = 0.35 offers a balanced clustering that could realisti-
cally increase the common clock paths and decrease OCV derating.

3.2.2 Timing criticality of timing neighbors. The timing criticality
t(sk , si) expresses how critical sk is, in terms of timing, with respect
to the timing paths launching at si . It is computed by mapping the
effective slack eslk(sk , si) of all neighbors sk ∈ N(si) of si to a
value in the range [0,1], using the function (3) suggested in [1]. If
sk is the most critical neighbor of N(si), then t(sk , si) = 1, while
t(sk , si) → 0 if sk has much greater slack than the average slack
of the rest neighbors.

t(sk , si) = e
b
(
minES−eslk (sk ,si)
avдES−minES

)
(3)

Effective slack eslk(sk , si), is the total negative slack at sk due to
paths launching at si , or the worst positive slack when no negative
timing path exists between si and sk . TermsminES and avдES are
theminimum and the average effective slack of all neighborsN(si),
and b is a tuning parameter; b = 2 was used since it consistently
gave better results.

To compute the effective slack eslk(sk , si), we need to consider
the following cases:
• If sk and si are both flip-flops, then we consider the timing
paths that connect them directly.
– If sk is a launch flip-flop for cell si , effective slack corre-
sponds to its output-Q pin slack.

– If sk is a capture flip-flop for si , effective slack is the slack
at its input-D pin.

• If sk and si are clock gaters we consider the D/Q pin slacks
of the flip-flops placed at the endpoints of their transitive
fanout and not just the slack of their enable pins. This is
done, because we want si to approach the clock gater (sk)
that drives the more critical flip-flops.

For instance, following the clock tree hierarchy shown in Fig. 2,
eslk(G1,G2) involves the timing path A → B and is equal to the
slack of the Q pin of flip-flop A. Similarly, for eslk(G2,G1) we
should examine again the path A → B, but in this case we con-
sider the slack at the input-D pin of flip-flop B. For eslk(G3,G2),
we examine the paths B → C and B → E and consider the slack
on the input-D pin of flip-flops C and E. Path C → D – that is in-
ternal to the subnetwork rooted byG3 – does not contribute to the
effective slack of any of its timing neighbors.

3.3 Update cluster center
Once the membership grade of each cell si placed at (xsi ,ysi) to
all clusters has been computed, the location of the center of each
cluster (xc j ,yc j) needs to be updated using (4).

xc j =

∑#cells
i=1 m(si , c j)w(si)xsi∑#cells
i=1 m(si , c j)w(si)

yc j =

∑#cells
i=1 m(si , c j)w(si)ysi∑#cells
i=1 m(si , c j)w(si)

(4)

Computing the position of the cluster center also takes into ac-
count the grade of influence w and the grade of membershipm of
each cell. This is a unique feature of the kHM soft-clustering algo-
rithm, and makes it less sensitive to the initialization of the cluster

centers. The grade of influence w(si) of cell si to the positions of
all clusters is given by [28]:

w(si) =
∑K
j=1

si − c j−p−2(∑K
j=1

si − c j−p)2 (5)

By definition, the impact of cells that are not close to any center is
increased, while the impact of cells that are close to one or more
center is decreased. This principle helps in spreading the centers
to cover the positions of all cells.

3.4 Relocate Cells
After soft clustering has converged, each cell moves closer to the
centers of the more preferable clusters. With this move it attracts
its timing neighbors to prefer the same cluster, and increases the
probability of sharing a common clock branchwith them after CTS.

Clock cell si placed at (xsi ,ysi) in the current iteration is relo-
cated to (xnewsi ,y

new
si). The new location should be closer to the

clusters preferred by si , i.e., its membership grade for them is high.
For this reason, si is relocated to the weighted mean of the location
of the centers of all nearby clusters using (6). The contribution of
each cluster center to the new location is proportional to the mem-
bership grade of si to each cluster.

xnewsi =

∑K
j=1m(si , c j)xc j∑K
j=1m(si , c j)

, ynewsi =

∑K
j=1m(si , c j)yc j∑K
j=1m(si , c j)

(6)

As long as we completely avoid any hard cell-to-cluster assign-
ment, we allow cell relocation to evolve more smoothly across it-
erations. If instead we employed hard assignments, the cell would
move closer only to the center of its assigned cluster, thus possibly
leading to ping-pongmovements when cell-to-cluster assignments
changed across iterations. Also, since the relocation of each cell is
biased by the relocation of its timing neighbors, it means that, after
several iterations, a better global solution is reached.

A cell is allowed to move and approach its new location when
it has positive slack to spend and has not reached its displace-
ment limit yet. Our goal is to utilize some of the positive slack
of certain clock cells to form large common branches in the clock
tree in other parts of the design that are more timing critical. In
any case, we avoid creating a tradeoff between improving clock-
induced OCV and degrading data-path timing. A flip-flop is con-
sidered safe to move to improve the common clock branches of
its timing neighborhood, as long as the input-D and output-Q pin
slacks are both positive. Similarly, a clock gater is safe to move
when its input-enable pin slack is positive and there is no critical
flip-flop at the subtree rooted on this clock gater.

Fig. 3 illustrates graphically the overall cell relocation process.
The new location is the weighted mean of the centers of all nearby
clusters and cell movement is bounded by its timing feasible re-
gion [4], i.e., the common region formed by the transformation to
equivalent distance of the positive slacks of the fanin and fanout
nets. Each flip-flop’s input and output positive slack define a dia-
mond centered by the fanin and fanout gates of the clock cell, while
its half diagonal corresponds to the equivalent distance computed
using Elmore delay. In the case of nets with multiple endpoints,
each endpoint is considered individually and the intersection of
the diamonds of all endpoints is kept.

Cluster centers locations

New location co-ordinates

Flop-to-Cluster
membership grades

D Q

Fanin
slack

Fanout
slack

Timing

Feasible
Region

Figure 3: A flip-flop approaching its new location computed
as the weighted mean of the three cluster centers. Its reloca-
tion is limited by the current timing feasible region.

The cell is legalized instantly to the new suggested position, or
to a close-by available position chosen by the legalizer (within 5
rows). Also, when we relocate a cell, the routing congestion and/or
row utilization may be degraded due to this movement. To avoid
such deteriorations, we do not perform relocations to areas where
the routing congestion and/or row utilization is already high, since
such movements would affect these metrics even more negatively.

When a cell is relocated it alters its own timing profile as well as
the timing profile of all connected cells. Thus, timing and routing
needs to be updated to have an accurate view of the timing slacks
of each cell. However, performing such incremental updates per
cell movement is prohibitive in terms of runtime. As depicted in
Algorithm 1, timing and routing are updated once every iteration,
after moving many cells. In the meantime, the slacks per cell re-
main inaccurate. However, respecting the maximum displacement
limit and the fact that no cell moves beyond its timing feasible re-
gion partially alleviates the problem.

Finally, after each cell relocation two metrics should be updated:
its own membership and influence grades relative to every clus-
ter, and the membership grade of every timing neighbor, even if
neighbors were not actually moved. After that, the position of the
centers of all clusters should be updated, too. Therefore, the re-
execution of soft clustering after partial cell relocation needs fewer
iterations to converge. At some point, cells and their clusters have
been stabilized with no cell being able to move. Please note that
once a cell moves closer to the centers of its preferred clusters, it
directly impacts the grade of membership of all other connected
cells, and all together affect the new position of the centers of all
clusters.This orchestrated movement gradually makes the clusters
more distinct.

3.5 Algorithm complexity
The proposed cell clustering and relocation is executed indepen-
dently per clock net in a bottom upmanner. Let’s assume that each
clock net consists of N endpoints (clock cells). In the worst case,
the N cells can be split to N /K clusters while each cell can have N
timing neighbors. Therefore, letting each one of the N cells of the
clock net examine all possible cluster centers and all possible tim-
ing neighbors leads to a complexity of O(N 3) per clock net. For C
clock nets in the functional clock tree hierarchy, the overall com-
plexity is O(C N 3). In practice, the runtime complexity is lower

since the designs consist of many small clock nets (i.e, small N per
net, large number of netsC) due to the deep functional clock-gating
hierarchy seen in modern designs.

In all cases we consider all clock nets. Thus, we cannot reduce
the contribution of C in the runtime complexity. To limit the run-
time complexity of the proposed method, we restrict the compu-
tation involved per clock net. In our experiments, each cell of a
clock net cannot examine more than 50 timing neighbors of the
same clock net (the ones placed far away are avoided), while it
considers at most 20 nearby cluster centers.

4 EXPERIMENTAL RESULTS
The proposed flip-flop and clock gater placement methodology has
been implemented in C++ and integrated in the Nitro-SoC place-
and-route tool. It is executed after global placement and data-path
optimization.The former provides valid cell locations, whereas the
latter fuels the cells with positive slack allowing them to cover
bigger distances. Once the proposed algorithm has concluded, cell
group placement constraints are generated for all clustered cells.
The cell groups act as fences prohibiting the clustered cells to move
away from their initial position. The rest of the implementation
flow remains unchanged and runs to completion.

To judge the overall effectiveness of the proposed method, in
terms of timing, OCV robustness, and clock tree complexity, we
compare it with two versions of the reference flow: The first one
“Base” represents the industrial quality flow which was originally
used to implement the designs. The second one, denoted as “Clus-
ter”, activates physical register clustering at the same point in the
flow as the proposed method, and implements the algorithm pre-
sented in [27]. In particular, this physical clustering [27] utilizes a
modified version of k-means algorithm, driven by placement and
physical distance criteria, to create physical groups of flip-flops
with the goal to simplify the clock tree and reduce clock power.
However, we included this technique in our comparisons to high-
light that flop grouping techniques that rely on hard flop-to-cluster
assignments and use only physical distances for clustering, while
ignoring timing criticalities and flip-flop communication, cannot
reduce succesfuly the impact of clock-induced OCV. Our imple-
mentation of “Cluster” creates groups of tightly placed flip-flops
without necessarily forming banks of regularly-placed flip-flops as
done in [27]. “Cluster” and the proposed approach cannot move
clock cells more than the maximum allowed displacement of 20
rows.

The effectiveness of the proposed method is evaluated on real
industrial designs that cover different complexities spanning from
82K up to 1.54M cells and implemented in different technologies
between 28 and 14nm. All designs but D2 are constrained with
Advanced OCV (AOCV) derates [7]. D2 has simple OCV derates.

4.1 Timing comparisons
The results obtained by the three methods under comparison with
respect to timing for setup and hold constraints are shown in Ta-
ble 1. The first noticeable result is that in all cases, when applying
the proposed flip-flop relocation, the worst-negative slack (WNS)
and total negative slack (TNS), for both setup and hold analysis, is
reduced; an indication that the criticality of certain paths due to
OCV is reduced.

Table 1:The timing and row utilization of all designs for the
reference implementation flow (Base), the modified flow in-
cluding the physical register clustering (Cluster) of [27] and
the proposed OCV-aware clock cell relocation (New).

Design
Setup Hold Util

(%)WNS
(ps)

TNS
(ns)

WHS
(ps)

THS
(ns)

D1 - 14nm
82K cells
4.5K regs

Base -337.2 -29.7 0.0 0.0 70.9
Cluster -320.0 -28.8 0.0 0.0 70.5
New -297.0 -25.2 0.0 0.0 70.9

D2 - 28nm
199K cells
16K regs

Base -396.0 -885.0 -134.0 -0.6 65.1
Cluster -409.0 -1148.1 -104.0 -7.5 63.6
New -368.0 -768.2 -1.0 -0.1 62.9

D3 - 16nm
542K cells
35K regs

Base -43.0 -0.6 -15.0 -0.6 55.5
Cluster -137.0 -0.9 -17.0 -0.1 55.8
New -24.0 -0.3 -14.0 -0.1 55.7

D4 - 22nm
557K cells
47K regs

Base -232.0 -564.2 0.0 0.0 80.3
Cluster -288.0 -677.0 0.0 0.0 80.8
New -223.0 -392.5 0.0 0.0 80.6

D5 - 16nm
611K cells
45K regs

Base -802.0 -442.9 -35.0 -1.4 56.5
Cluster -668.0 -487.0 -49.0 -0.9 55.6
New -379.0 -100.6 -30.0 -0.6 56.7

D6 - 14nm
1545K cells
71K regs

Base -103.0 -41.1 -93.0 -6.0 64.7
Cluster -68.0 -20.6 -170.0 -20.2 63.8
New -59.0 -16.4 -68.0 -1.9 65.1

Contribution (%) of “New” to the runtime of the full flow
D1 D2 D3 D4 D5 D6

0.83% 0.38% 8.18% 1.23% 6.20% 1.69%

Flip-Flops and clock-gaters have exchanged some of their posi-
tive slack to help critical cells reduce the OCV effect on their tim-
ing paths. Setup TNS has reduced by 42% on average, while setup
WNS is better by 28% on average. Worst Hold Slack (WHS) and To-
tal Hold Slack (THS) have been improved by 45% and 73% respec-
tively. The average savings include the savings of the proposed
design relative to both “Base” and “Cluster” method used for com-
parison. TNS and THS reductions are more distinct since the crit-
icality of the timing neighbors of each cell (see eq. (3)) takes into
account the sum of the negative slacks of the related timing paths.

At the rightmost column of Table 1 we report the utilization
for each design. The maximum local utilization does not increase
since we employ safeguards to avoid relocating cells to areas with
already high utilization or routing congestion. The average utiliza-
tion change is negligible although D2 exhibited a significant uti-
lization improvement with the proposed methodology.

It should be noted that the reported timing violations were col-
lected after the post-CTS optimizations of an industrial quality
flow. It is very common in physical design that improvements ob-
tained at specific points in the flow to be partially lost by the opti-
mizations performed later on. However, the proposed cell reloca-
tion integrated smoothly with the rest of the flow providing by far
the best overall timingQuality-of-Results (QoR).

At the bottom of Table 1, the runtime of the proposed work is
reported as the contribution (%) of “New” to the runtime of the full
flow. The percentages reported correspond to the single-threaded
execution of the proposed cell relocation algorithm on a machine
with four Intel Xeon CPUs at 2.60 GHz and with 250GB mem-
ory.The runtime complexity is heavily dependent of the functional

0

12k

10k

8k

6k

4k

2k

14k

16k

18k

N
u

m
b

e
r

o
f

p
a

th
s

10 110 160 210 26060
Absolute slack impact due to OCV (ps)

Base
Cluster
New

(a)

10 110 160 210 26060
Absolute slack impact due to OCV (ps)

0

12k

10k

8k

6k

4k

2k

14k

16k

18k

N
u

m
b

e
r

o
f

p
a

th
s

Base
Cluster
New

(b)
Figure 4:The histogram of the impact of clock-induced OCV
on late slack on designs (a) D3 and (b) D6.

clock tree hierarchy, i.e., on the number of clock nets and the end-
points per clock net. Since the proposed method is executed inde-
pendently on the cells of each clock net, in our future work, we
plan to assign the soft-clustering and cell relocation on each clock
net to different threads.

4.2 Clock-induced OCV redistribution
To observe more clearly how the proposed method guided the CTS
engine to produce clock trees with increased common clock tree
paths for the communicating sequential elements, we computed
the histogram of the impact of clock-induced OCV on late slack on
a large set of timing paths.

For the 30K most critical paths of each design, we measured the
difference of the path’s late slack with and without OCV derates.
Then, to produce the required histograms, we split the paths to
bins according to the derived slack value. For instance, a bin of
60ps containing a certain number of paths means that those paths
are derated in overall by 60ps due to clock-induced OCV relative
to the case that OCV is neglected. The histograms of the impact of
OCV on late slack for two representative designs and for the three
methods under comparison are shown in Fig. 4. Similar results are
obtained for other designs.

Both diagrams of Fig. 4 reveal that the proposedmethod (“New”)
correctly identified the paths most heavily affected by OCV and re-
structured them to increase their common clock path. For example,
for “New” themajority of the paths in the case of D3 in Fig. 4(a), are
affected by 60–110 ps due to OCV. On the contrary, for the baseline
design, the impact of OCV is more pronounced since the majority
of the paths in this case experience a slack impact of 160ps due
to OCV. Similarly, for design D6 in Fig. 4(b), the proposed method
achieved to shift the OCV impact of 210 ps and above to 160 ps.
On the other hand, the restructuring of the clock tree triggered by

Table 2: Clock tree characteristics for all three methods un-
der comparison.

Design Clock tree
Buffers WL (mm) Cap (pF) Lat (ps) Skew (ps)

D1
Base 64 18.7 8.4 352 88

Cluster 65 19.0 8.5 320 88
New 64 18.1 8.2 341 108

D2
Base 342 103.6 33.6 635 162

Cluster 300 102.6 33.3 604 134
New 303 99.5 32.4 535 124

D3
Base 1285 211.9 85.5 690 164

Cluster 1201 210.8 84.7 740 140
New 1216 211.2 84.2 677 166

D4
Base 6650 326.1 150.0 661 98

Cluster 6688 338.2 151.5 599 110
New 6637 327.2 149.8 679 123

D5
Base 5719 250.4 238.3 1642 143

Cluster 6009 267.1 250.9 1749 142
New 5611 253.5 239.9 1646 112

D6
Base 9463 569.6 774.0 1911 197

Cluster 9540 580.7 778.5 1808 236
New 9650 571.1 776.0 1540 173

“Cluster” [27] distributes the slack across critical paths in a non-
favorable manner. This behavior highlights that simple physical
clustering of clock cells is not enough for tackling the effect of
clock-induced OCV.

4.3 Clock tree complexity
The reduction of slack degradation due to OCV and the overall
improvement of timing achieved by the proposed method, as ob-
served at the end of the flow, does not incur any significant over-
head to the complexity of the clock tree. This conclusion is sup-
ported by the results in Table 2 which shows the number of clock
buffers, the clock wirelength, and the total clock capacitance in-
cluding bothwire and pin capacitances, aswell as the average clock
latency and the clock skew. In most of the cases, the clock tree QoR
metrics exhibited insignificant differences. However, there were
cases where noticeable changes were observed. For instance, the
clock latency of “New” for D6 improved compared to the “Base”
at the cost of more clock repeaters. Our work did not intend to
exercise this trade-off. This was a decision made by the CTS imple-
mentation engine.

5 CONCLUSIONS
Applying iteratively soft clustering and clock-cell relocation im-
proves the physical proximity of timing-neighbor and reduces the
clock-induced OCV by increasing the common clock tree paths.
To achieve this result at the end of the flow requires a balanced
approach that would take into account the spatial proximity and
the timing criticality of the cells and their timing neighbors in the
functional clock-tree hierarchy. Such metrics have been gracefully
combined in the soft clustering algorithm that drives clock cell re-
location.The results across six industrial benchmarks demonstrate
the effectiveness of the proposed approach in producing robust
clock trees with significantly improved timing.

ACKNOWLEDGMENTS
Wewould like to thank J. Shinnerl, D. Chinnery and J. de San Pedro,
Mentor, a Siemens Business for their valuable comments. Dimitrios

Mangiras is supported by the Onassis Foundation - Scholarship
ID: G ZO 014-1/2018-2019. This research has been supported by a
research grant from Mentor, a Siemens Business to DUTH.

REFERENCES
[1] C. J. Alpert, Miloš Hrkić, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T. Quay, S. S.

Sapatnekar, A. J. Sullivan, and P. Villarrubia. 2001. Buffered Steiner Trees for
Difficult Instances. In Proc. of the Intern. Symp. on Physical Design (ISPD). 4–9.

[2] J. Bhasker and Rakesh Chadha. 2009. Static Timing Analysis for Nanometer De-
signs: A Practical Approach. Springer.

[3] Tuck-Boon Chan, Kwangsoo Han, Andrew B. Kahng, Jae-Gon Lee, and Sid-
dhartha Nath. 2014. OCV-aware Top-level Clock Tree Optimization. In Proc. of
the Great Lakes Symposium on VLSI (GLSVLSI). 33–38.

[4] Zhi-Wei Chen and Jin-Tai Yan. 2013. Routability-constrained Multi-bit Flip-flop
Construction for Clock Power Reduction. Integration VLSI J. 46, 3 (June 2013).

[5] Yongseok Cheon, Pei-Hsin Ho, A. B. Kahng, S. Reda, and Qinke Wang. 2005.
Power-aware placement. In in Design Automation Conference (DAC). 795–800.

[6] Chao Deng, Yi-Ci Cai, and Qiang Zhou. 2015. Register Clustering Methodology
for LowPower Clock Tree Synthesis. Journal of Computer Science and Technology
30, 2 (Mar 2015), 391–403.

[7] Ahran Dunsmoor and Dr. João Geada. May 21, 2012. Applications and Use of
Stage-based OCV. in EDA Designline (May 21, 2012). https://www.edn.com/
design/eda-design/4373361/Applications-and-Use-of-Stage-based-OCV

[8] Rickard Ewetz. 2017. A Clock Tree Optimization Framework with Predictable
TimingQuality. In Proc. of the Design Automation Conference (DAC). 72:1–72:6.

[9] R. Ewetz and C. Koh. 2015. Cost-Effective Robustness in Clock Networks Using
Near-Tree Structures. IEEE Trans. on CAD 34, 4 (April 2015), 515–528.

[10] Matthew R. Guthaus, Gustavo Wilke, and Ricardo Reis. 2013. Revisiting Auto-
mated Physical Synthesis of High-performance Clock Networks. ACM Trans.
Des. Autom. Electron. Syst. 18, 2 (April 2013), 31:1–31:27.

[11] Greg Hamerly and Charles Elkan. 2002. Alternatives to the K-means Algorithm
That Find Better Clusterings. In Proc. of the Intern. Conference on Information and
Knowledge Management (CIKM). 600–607.

[12] K. Han, J. Li, A. B. Kahng, S. Nath, and J. Lee. 2015. A Global-local Optimization
Framework for Simultaneous Multi-mode Multi-corner Clock Skew Variation
Reduction. In Proc. of the Design Automation Conference (DAC). 26:1–26:6.

[13] W. Hou, D. Liu, and P-H. Ho. 2009. Automatic Register Banking for Low-power
Clock Trees. In Proc. of the Int. Symp. on Quality of Electronic Design (ISQED).
647–652.

[14] Anil K. Jain. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters 31, 8 (2010), 651 – 666.

[15] Andrew B. Kahng, Jiajia Li, and Lutong Wang. 2016. Improved Flop Tray-based
Design Implementation for Power Reduction. In Proc. International Conference
on Computer-Aided Design (ICCAD).

[16] T. Lee, D. Z. Pan, and J. Yang. 2018. Clock Network Optimization With Multibit
Flip-Flop Generation Considering Multicorner Multimode Timing Constraint.
IEEE Trans. on CAD 37, 1 (Jan 2018), 245–256.

[17] J. Lu and B. Taskin. 2009. Post-CTS clock skew scheduling with limited delay
buffering. In IEEE Intern. Midwest Symp. on Circ. and Syst. 224–227.

[18] U. Padmanabhan, J. M. Wang, and J. Hu. 2008. Robust Clock Tree Routing in the
Presence of Process Variations. IEEE Trans. on CAD 27, 8 (Aug 2008), 1385–1397.

[19] D. Papa, C. Alpert, C. Sze, Z. Li, N. Viswanathan, G-J. Nam, and I. Markov.
2011. Physical Synthesis with Clock-Network Optimization for Large Systems
on Chips. IEEE Micro 31, 4 (July 2011), 51–62.

[20] A. Rajaram and D. Z. Pan. 2006. Variation Tolerant Buffered Clock Network
Synthesis with Cross Links. In Proc. of the Intern. Symp. on Physical Design (ISPD).
157–164.

[21] Anand Rajaram and David Z. Pan. 2008. Robust Chip-level Clock Tree Synthesis
for SOC Designs. In Proc. of the Design Automation Conference (DAC). 720–723.

[22] V. Ramachandran. 2012. Construction of minimal functional skew clock trees.
In Proc. of the Intern. Symp. on Physical Design (ISPD). 119–120.

[23] S. Roy, P. Mattheakis, L. Masse-Navette, and D. Z. Pan. 2015. Clock Tree Resyn-
thesis for Multi-Corner Multi-Mode Timing Closure. IEEE Trans. on CAD 34, 4
(2015), 589–602.

[24] I. Seitanidis, G. Dimitrakopoulos, P. Mattheakis, L. Masse-Navette, and D. Chin-
nery. 2019. Timing-Driven and Placement-Aware Multi-Bit Register Composi-
tion. IEEE Trans. on CAD 38, 8 (Aug 2019), 1501–1514.

[25] Rupesh S. Shelar. 2007. An Efficent Clustering Algorithm for Low Power Clock
Tree Synthesis. In Proc. of the Intern. Symp. on Physical Design (ISPD). 181–188.

[26] Necati Uysal and Rickard Ewetz. 2018. OCV Guided Clock Tree Topology Recon-
struction. In Proc. of the ASP-Design Automation Conference (ASPDAC). 494–499.

[27] Gang Wu, Yue Xu, Dean Wu, Manoj Ragupathy, Yu-yen Mo, and Chris Chu.
2016. Flip-flop Clustering byWeighted K-means Algorithm. In Proc. of the Design
Automation Conference (DAC). 82:1–82:6.

[28] B. Zhang. 2000. Generalized k-harmonic means – boosting in unsupervised learn-
ing. Technical Report. Technical Report HPL-2000-137, Hewlett-Packard Labs.

https://www.edn.com/design/eda-design/4373361/Applications-and-Use-of-Stage-based-OCV
https://www.edn.com/design/eda-design/4373361/Applications-and-Use-of-Stage-based-OCV

	Abstract
	1 Introduction
	2 Motivation–Problem formulation
	3 Soft Clustering-based Placement
	3.1 Initialize cluster centers
	3.2 Compute membership function
	3.3 Update cluster center
	3.4 Relocate Cells
	3.5 Algorithm complexity

	4 Experimental results
	4.1 Timing comparisons
	4.2 Clock-induced OCV redistribution
	4.3 Clock tree complexity

	5 Conclusions
	Acknowledgments
	References

