
Design Optimization by Fine-grained Interleaving of Local
Netlist Transformations in Lagrangian Relaxation

Apostolos Stefanidis†, Dimitrios Mangiras†, Chrysostomos Nicopoulos‡,
David Chinnery∗, Giorgos Dimitrakopoulos†

†Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
‡Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

∗Mentor, a Siemens Business, Fremont, USA

ABSTRACT
Design optimization modifies a netlist with the goal of satisfying
the timing constraints at the minimum area and leakage power,
without violating any slew or load capacitance constraints. Lagra-
ngian relaxation (LR) based optimization has been established as a
viable approach for this. We extend LR-based optimization by in-
terleaving in each iteration techniques such as: gate and flip-flop
sizing; buffering to fix late and early timing violations; pin swap-
ping; and useful clock skew. Locally optimal decisions are made
using LR-based cost functions, without the need for incremental
timing updates. Sub-steps are applied in a balanced manner, ac-
counting for the expected savings and any conflicting timing vio-
lations, maximizing the final quality of results under multiple pro-
cess/operating corners with a reasonable runtime. Experimental
results show that our approach achieves better timing, and both
lower area and leakage power than the winner of the TAU 2019
contest, on those benchmarks.

CCS CONCEPTS
• Hardware→ Physical design (EDA); Physical synthesis.

KEYWORDS
Optimization; Lagrangian relaxation; sizing; buffering; useful skew
ACM Reference Format:
Apostolos Stefanidis, DimitriosMangiras, ChrysostomosNicopoulos, David
Chinnery, Giorgos Dimitrakopoulos. 2020. Design Optimization by Fine-
grained Interleaving of Local Netlist Transformations in Lagrangian Relax-
ation. In Proceedings of the 2020 International Symposium on Physical Design
(ISPD ’20), March 29-April 1, 2020, Taipei, Taiwan.ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3372780.3375566

1 INTRODUCTION
Gate-level optimization is needed through the design flow, to fix
early and late timing violations, while reducing the area and the
leakage power of the design[14][18]. To achieve this, there are var-
ious netlist transformations, such as: cell resizing and threshold
voltage selection; buffer insertion for reducing delay when driving
large capacitances, or for additional delay to slow down fast paths

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISPD ’20, March 29-April 1, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7091-2/20/03…$15.00
https://doi.org/10.1145/3372780.3375566

that violate early timing constraints; pin swapping; logic restruc-
turing; and useful clock skew. Such netlist transformations are ac-
companied by several other steps that place and route the design.
Gate-level optimization must be usable incrementally in various
parts of the flow to achieve significant performance, power, and
area improvements with a reasonable runtime.

Though the independent application of netlist transformations
has offered improvements to the performance of designs, the trans-
formations’ combined application in the same LR optimization loop
has not been explored. For the first time (to the best of our knowl-
edge), we enclose all relevant netlist transformations inside the
same LR-based timing-driven optimization.

We extend the well-known LR-based optimization formulation
used for gate sizing [1], by interleaving in each iteration additional
netlist transformations, including also register resizing. Each netlist
transformation is smoothly integrated, without being disruptive to
the overall optimization process. For instance, each resizing deci-
sion drives buffering additions in the same or following iterations,
and each buffering addition guides the next sizing choices. In this
way, buffers are added gradually and cell sizes adapt smoothly to it.
The LR-based optimization orchestrates these heuristics with the
goal of achieving global convergence.

In all cases, locally optimal decisions are taken using just the LR-
based cost functions, without the need for incremental timing up-
dates [8]. This increases the modularity of the proposed approach:
any local netlist transformation that can be applied incrementally
could be included in the set of available transformations.

To speed up the optimization, each transformation is applied to
a critical subset of the design’s cells. In each LR iteration, the cells
are selected based on sensitivity criteria that identify the cells that
are more promising to improve timing or reduce area/power.

This approach has been successfully applied to the TAU 2019
multi-corner design optimization contest benchmarks [2]. In all
cases, our approach successfully optimizes the designs in all given
corners and achieves (a) lower clock period, or (b) reduced area and
leakage power at the same clock period as the contest’s winner,
without violating any slew or maximum capacitance constraints.

The contributions of this work are summarized as follows:
• The LR-based formulation is enhanced to handle the sizing
of both registers and gates using the same cost function.
• Timing conflicts, where late and early timing violations lead
to contradictory sizing decisions using LR-based cost func-
tion, are identified and handled appropriately.
• To reduce runtime, sizing is applied only to a subset of cells
selected by sensitivity metrics. This is the first time that sen-
sitivity based selection is combined with LR gate sizing.
• In each local iteration, we integrate LR-based buffering, use-
ful skew, and logic restructuring, without the need for incre-
mental timing updates per iteration.

https://doi.org/10.1145/3372780.3375566
https://doi.org/10.1145/3372780.3375566

The rest of the paper is organized as follows: Section 2 reviews
state-of-the-art design optimization techniques. Section 3 presents
the Lagrangian Relaxation formulation and the overall optimiza-
tion flow. The proposed netlist transformations, the treatment of
timing conflicts, and the sensitivity-based selection of themost crit-
ical cells are analyzed in Section 4. The experimental results are
presented in Section 5, while conclusions are drawn in Section 6.

2 RELATEDWORK
Early work on gate sizing focused on continuous transistor sizing
[6]. To handle discrete gate sizes, Nguyen et al. [20] used posyn-
omial models for timing-driven resizing and then used linear pro-
gramming to assign delays to gates that would lead to maximum
power savings. Chinnery et al. [3] improved this by accounting for
the delay changes on the neighboring gates due to a resize, with
accurate timing analysis using standard-cell library lookup tables.
Held et al. [10] assigned slew targets, instead of delay targets. The
above methods resize gates to the discrete version that achieves
the closest slack-slew values to those optimally calculated. Fatemi
et al. [5] presented sensitivities that can be used for timing, power,
area, and slew optimization across multiple corners.

LR has been widely used for gate sizing. It was first used by
Chen et al. [1] for continuous wire and gate sizing. Hu et al. [11]
used LR to define optimal continuous gate sizes that they cluster
to discrete sizes based on proximity to the optimal size, and try so-
lutions from different clusters. Ozdal et al. [21] formulated the LR
sub-problem to trade-off leakage power and fix timing violations,
choosing gate sizes with dynamic programming (DP). Flach et al.
[8] sized each gate to locally minimize the LR cost. This provided
great leakage-power savings, with faster runtime than other ap-
proaches, achieving the best results on the ISPD 2012 and 2013
benchmarks. Sharma et al. [25] extended this work with multi-
threading and a new LM update method to reduce the number
of iterations to converge, achieving a 15× speedup. Reimann et al.
[22] applied LR gate-sizing on industrial designs. Roy et al. [23] ex-
tended the LR formulation to handle multiple modes and corners.
Daboul et al. [4] used a resource sharing formulation, which is a
specialization of LR. Shklover et al. [26] added clock skew to the
LR formulation and resized both gates and clock buffers. Sharma
et al. [24] combined LR gate sizing and slack-based clock skew as-
signment, achieving significant power savings on the ISPD 2012
contest benchmarks. Mangiras et al. [19] extended the LR formu-
lation for timing-driven placement to include flip-flops, gates, and
local clock buffers.

Buffer insertion can help fix early timing violations by increas-
ing the path delay. The main concerns are to avoid increasing late
timing violations, and to minimize the added area and power for
the hold buffers. Huang et al. [13] used an LP formulation to mini-
mize the number of added hold buffers. Tu et al. [28] tackled hold
violations across different power modes in ultra-low voltage de-
signs. Wu et al. [31] presented an LP approach to model setup and
hold constraints and assign delays that should be inserted on each
node to solve hold violations. They then used DP to perform buffer
insertion. Han et al. [9] proposed an integer linear programming
hold-buffer insertion approach that achieves hold timing closure
across multiple corners.

Buffers can also be used to reduce delay and drive large nets. Van
Ginneken [29] found the optimal buffer positions given a set of ar-
rival timing constraints. Lillis et al. [16] extended Van Ginneken’s
algorithm to account for multiple buffer types, while Wang et al.
[30] presented a lower complexity buffering algorithm. Jiang et al.

[33] formulated simultaneous transistor sizing and buffer insertion
on the output of setup critical gates, driving all or part of their
fanout, to isolate critical paths. The buffer position choices were
enhanced by sensitivity functions that modeled the expected leak-
age power and area gain from transistor sizing. Liu et al. [17] used
an LR-based cost function for buffer insertion on each net, and to
decide how many buffers to add to each net, but they only used
one buffer size from the library. Ho et al. [32] utilized LR for buffer
insertion, accounting for multiple buffer options and integrating
density in the cost function. Finally, Hu et al. [12] proposed an
approximation method that guarantees polynomial runtime com-
plexity with minimum impact on the result.

3 LR DESIGN OPTIMIZATION
The proposed optimization engine aims to minimize the design’s
leakage power and area, while respecting timing and design con-
straints. The overall optimization problem can be written as:

min :
∑

𝑐∈𝑐𝑒𝑙𝑙𝑠
𝑃 (𝑐)+ 𝐴(𝑐) −

∑
𝑗 ∈𝑃𝑂𝑠

𝑠𝑙𝑘𝐿𝑗 −
∑
𝑗 ∈𝑃𝑂𝑠

𝑠𝑙𝑘𝐸𝑗

s.t.: 𝑠𝑙𝑘𝐿𝑗 ≤ 0 and 𝑠𝑙𝑘𝐸𝑗 ≤ 0,∀𝑗 ∈ 𝑃𝑂𝑠

𝑠𝑙𝑘𝐿𝑗 ≤ 𝑟
𝐿
𝑗 − 𝑎

𝐿
𝑗 and 𝑠𝑙𝑘

𝐸
𝑗 ≤ 𝑎

𝐸
𝑗 − 𝑟

𝐸
𝑗 ,∀𝑗 ∈ 𝑃𝑂𝑠

𝑎𝐿𝑖 + 𝑑
𝐿
𝑖→𝑗 ≤ 𝑎

𝐿
𝑗 and𝑎

𝐸
𝑖 + 𝑑

𝐸
𝑖→𝑗 ≥ 𝑎

𝐸
𝑗 ,∀𝑐𝑒𝑙𝑙𝑠

where𝑃 (𝑐), 𝐴(𝑐) are the leakage power and area of cell 𝑐; 𝑠𝑙𝑘 𝑗 is
endpoint 𝑗 ’s negative slack; 𝑎 𝑗 and 𝑟 𝑗 are pin 𝑗 ’s arrival and re-
quired times; and𝑑𝑖→𝑗 is the arc delay from pin 𝑖 to pin 𝑗 , including
the wire delay. The indices 𝐸 and 𝐿 represent early and late timing.

Lagrangian relaxation incorporates the constraints into the cost
function,multiplied byweights called LagrangianMultipliers (LMs),
as shown in (1). The higher the LM value, the more critical the re-
spective constraint is.

min :∑
𝑐∈𝑐𝑒𝑙𝑙𝑠

𝑃 (𝑐) + 𝐴(𝑐) −
∑

𝑗∈𝑃𝑂𝑠

𝑠𝑙𝑘𝐿𝑗 −
∑

𝑗∈𝑃𝑂𝑠

𝑠𝑙𝑘𝐸𝑗 +∑
𝑗∈𝑃𝑂𝑠

(
𝜆𝐿𝑗0𝑠𝑙𝑘

𝐿
𝑗 + 𝜆𝐸𝑗0𝑠𝑙𝑘𝐸𝑗

)
+∑

𝑗∈𝑃𝑂𝑠

(
𝜆𝐿𝑗1 (𝑠𝑙𝑘𝐿𝑗 − 𝑟𝐿𝑗 + 𝑎𝐿𝑗) + 𝜆𝐸𝑗1 (𝑠𝑙𝑘𝐸𝑗 − 𝑎𝐸𝑗 + 𝑟𝐸𝑗)

)
+

∑
𝑐∈𝑐𝑒𝑙𝑙𝑠

©­«
∑

𝑖∈𝑓 𝑎𝑛𝑖𝑛 𝑗

𝜆𝐿𝑖→𝑗 (𝑎𝐿𝑖 + 𝑑𝐿𝑖→𝑗 − 𝑎𝐿𝑗) + 𝜆𝐸𝑖→𝑗 (𝑎𝐸𝑗 − 𝑎𝐸𝑖 − 𝑑𝐸𝑖→𝑗)
ª®¬ (1)

By differentiating (1) with respect to the arrival times, according
to the Karush-Kuhn-Tucker optimality conditions, we end up with
the following LM flow-conservation rules:∑

𝑖∈𝑓 𝑎𝑛𝑖𝑛 (𝑗)
𝜆𝐿𝑖→𝑗 =

∑
𝑘∈𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑗)

𝜆𝐿𝑗→𝑘 and
∑

𝑖∈𝑓 𝑎𝑛𝑖𝑛 (𝑗)
𝜆𝐸𝑖→𝑗 =

∑
𝑘∈𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑗)

𝜆𝐸𝑗→𝑘 (2)

The LMs for the output pin of a cell are proportionally distributed
to the LMs of the cell’s input-output arcs. For example for gate G
in Figure 1, net 6’s outgoing LM is propagated to the LMs into net
6, preserving the equalities: 𝜆𝐿4→6 +𝜆

𝐿
5→6 = 𝜆𝐿6→7, 𝜆

𝐸
4→6 +𝜆

𝐸
5→6 =

𝜆𝐸6→7. For flip-flops, the LMs added at their𝑄 pin are distributed to
the LM of the𝐶𝐾 → 𝑄 arc. For the example shown in Figure 1, this
translates to 𝜆𝐿13→9 = 𝜆𝐿9→11 + 𝜆

𝐿
9→12, 𝜆

𝐸
13→9 = 𝜆𝐸9→11 + 𝜆

𝐸
9→12.

Substituting (2) into (1), we simplify the objective to (3).

min
∑
𝑔𝑎𝑡𝑒𝑠

𝑃 (𝑐) +𝐴(𝑐) +
∑
𝑖→𝑗

𝜆𝐿𝑖→𝑗𝑑
𝐿
𝑖→𝑗 − 𝜆

𝐸
𝑖→𝑗𝑑

𝐸
𝑖→𝑗 (3)

1

2

3

4

5

6 7
G

D Q
8 9

10

12

11

FF

13

Figure 1: Example of a small circuit, used to demonstrate LM
propagation and local cost calculation

From (3), it can be observed that each LM highlights the criti-
cality of its associated timing arc. A large late LM means that the
delay of the arc should be decreased to minimize the cost function,
while a large early LM means that the delay of the arc should be
increased. Whereas, a low value for an LMmeans that the delay of
the arc is not critical to the optimization.

3.1 Overall optimization Flow
The proposed optimization flow is presented in Figure 2. Initially,
all cells are sized to the smallest size that does not violate any max-
imum load or slew constraints [15]. The LMs for every arc are ini-
tialized to 1, and the iterative optimization process begins.

Figure 2: The proposed optimization flow.

At the start of each iteration, an incremental timing update for
all corners is performed. Then, we use timing information for only
two corners: the most critical early and late corner.The critical late
corner is that with the highest total negative slack (TNS), or the
corner with the lowest late total slack, if no corner has late viola-
tions. The same applies for the most critical early corner. Where a
timing variable is used for a mode (early, late), it is implied that its
value is calculated from the respective critical corner. The critical
corners are redetermined after every timing update.

Each LR optimization step begins by updating the LMs accord-
ing to the process detailed in Section 3.2. Then, the selected netlist
transformations are executed one after the other. Clock-skew as-
signment inserts or removes a fixed delay from the clock pins of the
registers, in order to help LR cost minimization. Register and gate
resizing choose an appropriate version for the most critical cells
in the circuit. Pin swapping attempts to swap the sink pin of the

most timing critical net of the gate with another equivalent pin, in
order to help the timing critical net with its violations. Hold-buffer
insertion finds the positions and number of buffers that need to be
inserted to reduce early violations. Late buffer insertion chooses if
a buffer should be inserted on the sink of cells with high fanout-
loads-to-input capacitance ratios, and the size of the buffer if inser-
tion proves beneficial. All of the above methods are driven by the
LM values and try to optimize the LR cost using slack information
only to ensure that they are not degrading the timing violations. So,
accurate slack information is not necessary, which allows for the
whole series of transformations within an iteration to take place
without the need for any new incremental timing update.

Firstly, we apply the transformations that affect the timing start-
points and endpoints of the design, which are clock-skew optimiza-
tion and register resizing. Then, gate sizing and pin swapping, that
traverse the netlist in topological order, are applied. This also al-
lows them to propagate the updated timing information from the
startpoints to the endpoints with local timing updates. The trans-
formations that are applied on intermediate topological levels of
the circuit are executed last. This order ensures that the local tim-
ing updates will propagate timing information rather accurately,
thus removing the necessity of an incremental timing update after
the application of each transformation.

Optimization stops when the maximum number of iterations is
reached, or if the solution quality doesn’t improve for 2 consec-
utive iterations. If timing constraints are satisfied, the quality of
the solution is equal to the area/power improvement, whereas, if
timing violations are present, termination is judged by TNS im-
provement. In the end, a final brute-force timing recovery step is
executed.

3.2 LM update
Τhe LMs for each primary output and flip-flop D pins are updated
using the modified sub-gradient optimization proposal in [27]:

𝜆𝐿𝑗0 = 𝜆𝐿𝑗0

(
𝑎𝐿𝑗

𝑟𝐿𝑗

)
, 𝜆𝐸𝑗0 = 𝜆𝐸𝑗0

(
𝑟𝐸𝑗

𝑎𝐸𝑗

)
∀𝑖 ∈ 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠

𝜆𝐿𝑖→𝑗 = 𝜆
𝐿
𝑖→𝑗

(
𝑎𝐿𝑖 + 𝑑

𝐿
𝑖→𝑗

𝑎𝐿𝑗

)
, 𝜆𝐸𝑖→𝑗 = 𝜆

𝐸
𝑖→𝑗

(
𝑎𝐸𝑗

𝑎𝐸𝑖 + 𝑑
𝐸
𝑖→𝑗

)
∀𝑎𝑟𝑐𝑖→𝑗

The delays for early and late timing analysis are calculated from
the corresponding critical corner, as mentioned in Section 3.1.

After updating the output LMs, their values must be distributed
to all nets satisfying the flow conservation conditions (2). The dis-
tribution is performed by traversing the circuit in reverse topo-
logical order. At each visited cell, the sum of LMs at the output
pins is distributed to the LMs of the input pins. When an LM value
needs to be distributed to multiple incoming arcs, this distribution
is done based on the ratio of the LMs of the corresponding tim-
ing arcs. Such distribution increases the LMs on critical paths, and,
therefore, the WNS is also expected to be minimized. Also, since
LMs are accumulated at each branching point, the higher the num-
ber of violating endpoints affected by an arc, the higher the value
of the corresponding LM.

4 NETLIST TRANSFORMATION
OPTIMIZATIONS

4.1 Cell Resizing
The cell resizing algorithm (Algorithm 1) examines different ver-
sions for each cell and selects the one that minimizes the local cost

Algorithm 1: Cell resizing algorithm
1 foreach cell 𝑐 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑒𝑙𝑙𝑠 in topological order do
2 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← localCost(𝑐) ;
3 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← cellVersion(𝑐) ;
4 𝑛𝑒𝑔_𝑠𝑙𝑎𝑐𝑘 ← localNegativeSlack(𝑐) ;
5 foreach version 𝑣 ∈ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 do
6 resize cell 𝑐 to 𝑣 ;
7 if (violates_load_constraints(𝑐) then
8 skip version;
9 end

10 update timing locally;
11 𝑛𝑒𝑤_𝑛𝑒𝑔_𝑠𝑙𝑎𝑐𝑘 ← localNegativeSlack(𝑐) ;
12 if 𝑛𝑒𝑤_𝑛𝑒𝑔_𝑠𝑙𝑎𝑐𝑘 < 𝛾 · 𝑛𝑒𝑔_𝑠𝑙𝑎𝑐𝑘 then
13 skip version;
14 end
15 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ← localCost(𝑐);
16 if 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 < 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 then
17 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ;
18 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑛𝑒𝑤_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ;
19 end
20 end
21 resize cell 𝑐 to 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ;
22 update timing locally ;
23 end

function. Every cell is visited in topological order. If a cell is a can-
didate for resizing (resizing candidate choice is analyzed in subsec-
tion 4.1.2), then every size of the cell is explored. After trying all
sizes, the cell is resized to the version that minimizes the local cost
function without introducing load violations and without degrad-
ing the slack of its nets over a threshold 𝛾 [8]. Similar to [8] and
[25], the cost function (4) used for the selection is a localized ver-
sion of the global cost function (3) that includes only local timing
arcs:

𝐿𝐶 (𝑣) = 𝑃 (𝑣) +𝐴(𝑣) +
∑

𝑖→𝑗 ∈𝑙𝑜𝑐𝑎𝑙_𝑎𝑟𝑐𝑠
𝜆𝐿𝑖→𝑗𝑑

𝐿
𝑖→𝑗 − 𝜆

𝐸
𝑖→𝑗𝑑

𝐸
𝑖→𝑗 (4)

with 𝑃 (𝑣) and𝐴(𝑣) being the leakage power and area, respectively,
of size 𝑣 of the examined cell.

The local timing arcs for each cell include the arcs of the resized
cell, its immediate fanin and fanouts, and the arcs that share a com-
mon faninwith the resized cell. For gate G in Figure 1, the local arcs
include: arcs of G (4→ 6, 5→ 6), the fanin arcs (1→ 4, 2→ 5),
the fanout arcs (6 → 7), and the common fanin arcs (4 → 8).
Flip-flops are handled similarly to gates. For flip-flop FF in Figure
1, the local arcs include arcs (13 → 9), (3 → 8, 4 → 8) and
(9→ 11, 9→ 12).
4.1.1 Handling of conflicting constraints. Relying on the local cost
function (4) may lead to contradicting sizing decisions when a tim-
ing arc has early and late violations. Consider the case depicted in
Figure 3a. In this case, gate G has an early violating path passing
through pin 3, and a late violating path through pin 4, ending up
with conflicting violations on pin 5. No matter which decision the
sizer takes, there is no choice that will reduce both timing viola-
tions. More specifically, the LR algorithm would try to reduce the
violations on the side with the higher LM. For example, if the early
LMs are higher than the late ones, it would try to slow down the

1

2

3

4

5 6
G

early slack = -80

late slack = -40

(a) Example of conflicting violations.

1

2

3

4

5 6
G

early slack = -60

late slack = -60

(b) Result of normal resizing.

1

2

3

4

5 6
G

early slack = -100

late slack = -20

(c) Promoting late timing for conflicting arcs.

Figure 3: Example of resizing gate G with conflicting viola-
tions. It is seen that late slack is minimized in case (c) and,
if early slack is handled by buffer insertion, case (c) will end
up with the least amount of negative slack.

arc. This is shown in Figure 3b, where the sizer downsized gate G
to increase its delay. However, this choice worsens late slack. So,
eventually, the algorithm balances the slacks on both (early-late)
sides, without truly solving any violations.

In order to tackle this, we decided to focus on one side of the
violations only when an arc has conflicting violations. Since early
violations can always be fixed by other means, such as hold-buffer
insertion, we decided to focus on late violations only. This can be
done by omitting the terms 𝜆𝐸𝑖→𝑗𝑑

𝐸
𝑖→𝑗 from the cost function (4).

So, in case of conflicts, the LR optimization focuses on speed-
ing up arcs with conflicting violations. Based on this strategy, in
our example shown in Fig. 3c, the sizer would upsize gate G to re-
duce late violations, hoping that a hold-buffer insertion algorithm
would later insert buffers on the fast path.

4.1.2 Filtering candidate cells. Attempting to resize every cell in
the circuit can be very computationally expensive, especially for
large circuits. Identifying which cells are critical for improving cir-
cuit performance is an important step for reducing the runtime
without compromising the final quality of results.

Therefore, before resizing any cell, we make a list of the cells
that participate on the top 𝑘 late and early critical paths, of the
cells placed on the fanouts of late critical paths, and cells with sig-
nificant positive slack and large power and area savings potential.
From this list of cells, we need to find the ones that are the most
sensitive to resizing. In other words, their resizing greatly affects
the cost function. This can be done by calculating a sensitivity for
each cell of the list and examine the resizing of only the 𝑁 cells
with the largest sensitivities. Depending on the type of each cell,
we employ a different sensitivity factor:
• Cells on the late critical path: Cells on the late critical path
will usually be upsized to speed up the path, while trading

off power and area. So, the cells that will be resized should
be the cells that have the best cost-power-area tradeoff. To
calculate the sensitivity for those cells, we compare the lo-
cal cost difference, as well as the power and area difference
between the current and the next bigger size.
• Cells on the early critical path: Cells on the early critical path
will try to slow down the path, usually by downsizing. Since
this does not create a trade-off (downsizing on an early criti-
cal path will save power, area, and slack), we do not involve
power and area in the sensitivity function. For this set of
cells, only early slack minimization matters. In this case, we
compare the value of the local cost function (4) between the
current size and the next smaller one, after neglecting the
power and area of this choice.
• Cells on the fanout of late critical paths: Those cells should
be downsized to reduce the output load of the cells on the
critical path, and thus area and power are certainly reduced.
Therefore, we compare the value of the local cost function
(4) between the current size and the next smaller one, after
neglecting the power and area of each choice.
• Cells with positive slack: When a cell has both positive early
and late slacks, it will be downsized to save leakage power
and area, providing this does not create new slack violations.
In this step, we want cells that have both a large margin for
leakage and areaminimization, and enough positive slack to
allow a downsize. To achieve this, we calculate the power-
area difference of the current size and the next smaller size
for cells that have enough positive slack.

Please note that, even though we assume that a cell should be up-
sized or downsized for its sensitivity calculation, during true resiz-
ing all possible sizes for the selected cells are tried with the full
local cost function, including area and leakage.

1

2

3

4 5

7

6

9

8

11

15

13

10

12 14

16

Most critical early path

through pin 15

Figure 4: Hold buffer insertion example. Pin 10, which is
part of the early critical path, has the highest 𝜆𝐸 − 𝜆𝐿 dif-
ference and receives extra buffers for alleviating hold-time
violations.

4.2 Buffer insertion
Buffering is a versatile design optimization that can be efficiently
applied for various design targets. In this work, we employ two
forms of buffering that target early and late timing violations.

4.2.1 Early timing violations. Solving early/hold timing violations
requires slowing down the signal propagation on violating paths.
This can be achieved by appropriate buffer insertion. Hold buffers
should be inserted in positions where they will affect many hold
paths, minimizing the number of buffers that need to be added (and,
consequently, the power and area overhead). On the other hand,
inserting a buffer on a pin that affects a late critical path will intro-
duce late slack overhead. So, hold buffer insertion should be broken

down to two sub-problems: choosing the position where we want
to insert buffers, and choosing how many buffers to insert.

The proposed method for inserting hold buffers is based on the
LM values. A high early LM value on an arc means that this arc is
either very critical for early, or that it drives a large number of hold
critical arcs (or both). A low late LM on an arc means that this arc
is not critical for late. Thus, intuitively, pins with a high early/late
LM difference would be the best candidates for buffer insertion.

The delay added should be sufficient to fix hold violations, but
should not worsen late timing. If there is positive late slack avail-
able, it can be used to reduce hold violations. Using all of the late
slack in one iteration is suboptimal, as LM values change after each
iteration, so the pin indicated as candidate by the early-late LM
difference might change. Thus, it is best to avoid inserting many
buffers at once, as this would not allow further optimization.

For every hold violation endpoint , we store the worst early path
through it. The paths’ pin with the highest early-late LM value is
stored in a list of candidates. For example, in Fig. 4, the candidate
pin for the worst early path through endpoint pin 15 could be pin
10. For every candidate pin, the following steps are executed:

Step 1: Finding a buffer with an appropriate input capacitance. A
buffer size with an input capacitance similar to the output load its
fanin cell is driving is identified. If the pin where the buffer will be
inserted is an input pin, the buffer chosen has an input capacitance
similar to the input capacitance of the pin (for example, in Fig. 4, a
buffer inserted on pin 8 should have a𝐶𝑖𝑛

𝑏𝑢𝑓
= 𝐶𝑖𝑛8). If the pin where

the buffer insertion will take place is an output pin, the chosen
buffer should have an input capacitance similar to the load driven
by the pin (for example, in Fig. 4, a buffer inserted on pin 10 should
have a 𝐶𝑖𝑛

𝑏𝑢𝑓
= 𝐶𝑛𝑒𝑡 +𝐶𝑖𝑛11 +𝐶

𝑖𝑛
12). This is done to avoid big timing

changes on the rest of the timing arcs, which would be expensive
to calculate accurately, and to prevent speeding up the fanin cell,
which would worsen early timing.

Step 2: Finding how many buffers are required. After selecting a
buffer size, we can calculate its delay, as the input slew and output
capacitance are known. Because the buffer chain consists of the
same buffer sizes, every added buffer will be driving the same load,
so we assume that they will also have the same delay (small differ-
ences in delay might occur due to different input slew). So, for a
known buffer delay and a known early negative slack, the number
of buffers required to be added by early mode on pin p is equal to
𝑁𝐸
𝑏𝑢𝑓

= −𝑠𝑙𝑘𝐸𝑝 /𝑑𝐸𝑏 , where 𝑠𝑙𝑘
𝐸
𝑝 is the slack on the pin where the

buffers will be inserted, and 𝑑𝐸
𝑏
is the delay of the buffer.

Step 3: Finding how many buffers late slack allows. Similar to the
previous step, we calculate how many buffers can be added on the
pin before making its late slack negative. The number of buffers al-
lowed to be added by late mode is equal to 𝑁𝐿

𝑏𝑢𝑓
= 𝑠𝑙𝑘𝐿𝑝 /𝑑𝐿𝑏 , where

𝑠𝑙𝑘𝐿𝑝 is the negative slack on the pin where the buffers will be in-
serted, and 𝑑𝐿

𝑏
is the delay of the buffer.

Step 4: Insert the appropriate number of buffers. After calculating
how many buffers early mode requires and late mode allows, the
number of buffers added is equal tomin(𝑁𝐸

𝑏𝑢𝑓
, 𝑁𝐿
𝑏𝑢𝑓
/2). This way,

the immediate consumption of all late slack is avoided, while still
allowing the insertion of an appropriate number of buffers that
would reduce hold violations.

4.2.2 Late timing violations. Buffering helps reduce the output load
of cells with a large fanout, by decreasing their delay and helping
reduce late slack violations.

1 2

3

5

4 1

3

5

42
6

(a) Candidate for buffer insertion pin 2 (b) After buffer insertion
Figure 5: Example of late buffer insertion on pin 2.The local
cost without a buffer is 𝜆𝑑 sum (Eq. (4)) over the arcs for pin
2: 1 → 2, 2 → 3, 2 → 4, 2 → 5. The local cost with a buffer
inserted is the cost of the arcs around the buffer: 1→ 6, 6→
2, 2 → 3, 2 → 4, 2 → 5, and the buffer’s power and area. If
the new cost is lower than the original, the buffer is kept.

Firstly, the cells with negative late slack are sorted by their𝐶𝑜𝑢𝑡 /𝐶𝑖𝑛
ratio.Then, buffer insertion is attempted on the source of the fanout
net of the top 100 cells. The local cost of net 𝑛 (eq. (4)), where
the buffer will be inserted, is stored (without including the leak-
age power and area, since there will be no resizing). The arcs used
for calculating the local cost are the arcs connected to net 𝑛. These
will be the local arcs around the new buffer after its insertion. For
example, in Fig. 5, the arcs included in the local cost of net 2 will
be 1→ 2, 2→ 3, 2→ 4 and 2→ 5.

Then, buffer insertion for every buffer size in the library is at-
tempted at the source of net 𝑛. For instance, in the example shown
in Fig. 5, the buffer would be inserted at a source of net 2. Subse-
quently, the local cost around the buffer is calculated in the same
way that the local cost of cells is calculated during resizing, using
equation (4). After trying all the buffer sizes, the best score from
all sizes is kept. If the best buffer score is smaller than the score
without the buffer, a buffer of that type is inserted.

4.3 Pin Swapping
When logic functionality allows, the nets connected to the inputs
of a gate can be swapped, in order for the most critical net to take
advantage of the lower input-output delay of the gate.

The pin swapping algorithm visits combinational gates in topo-
logical order. For each gate, the most critical pin is identified, with
the most negative early or late slack. For all pins on the gate that
are equivalent to the critical pin, a swap is attempted. After each
swap, the timing is updated locally and the local cost function of
the gate is recalculated. After every swap is done, the swap with
the best local cost is kept and the next gate is processed.

4.4 Clock Skew Assignment
Clock skew assignment is an important step for reducing timing
violations in a design. By speeding up or slowing down a clock pin
arrival time, slack on one side of a register is traded off for slack
on the other side. For a register with an input D pin and an output
Q pin, the slacks are calculated by the following equations:

𝑠𝑙𝑘𝐿
′
𝐷 = 𝑠𝑙𝑘𝐿𝐷 + 𝑑𝐶𝐿𝐾 , 𝑠𝑙𝑘𝐿

′
𝑄 = 𝑠𝑙𝑘𝐿𝑄 − 𝑑𝐶𝐿𝐾

𝑠𝑙𝑘𝐸
′
𝐷 = 𝑠𝑙𝑘𝐸𝐷 − 𝑑𝐶𝐿𝐾 , 𝑠𝑙𝑘𝐸

′
𝑄 = 𝑠𝑙𝑘𝐸𝑄 + 𝑑𝐶𝐿𝐾

where 𝑑𝐶𝐿𝐾 is the delay added on the clock pin. Slowing down
the clock pin favors 𝑠𝑙𝑘𝐿𝐷 and 𝑠𝑙𝑘𝐸𝑄 and degrades 𝑠𝑙𝑘𝐿𝑄 and 𝑠𝑙𝑘𝐸𝐷 ,
respectively. Speeding up the clock pin has the opposite effect.

The added clock pin delays should be scaled across corners. Since
the clock pin offsets would be implemented using the available
clock buffers of the library, we compute a scaling factor for each
corner by approximating the ratio of the clock buffer delay of that

corner compared to the buffer delay of the typical corner, for mul-
tiple input slew and output load values. So, when a delay 𝑑𝐶𝐿𝐾 is
added on a clock pin for the typical corner, a delay 𝑑𝐶𝐿𝐾 ¤𝑟𝑎𝑡𝑖𝑜𝑐 will
be added for corner 𝑐 , where 𝑟𝑎𝑡𝑖𝑜𝑐 is the average buffer delay ratio
for corner 𝑐 and the typical corner.

The clock skew assignment algorithm visits every register in
the design. For each register, the worst early and late slacks on
the D pin and the most critical on the Q pin are computed. Then
the LM propagated towards the clock pin are calculated. Based on
the KKT conditions, they are equal to 𝜆𝐿𝐶𝐿𝐾 = 𝜆𝐿𝑄 + 𝜆

𝐸
𝐷 , 𝜆

𝐸
𝐶𝐿𝐾 =

𝜆𝐸𝑄 + 𝜆
𝐿
𝐷 . We can decide if the clock pin requires a speedup or a

slowdown from the sign of 𝜆𝐿𝐶𝐿𝐾 − 𝜆
𝐸
𝐶𝐿𝐾 . If it is positive, a delay

should be added on the clock pin, whereas, if it is negative, a delay
should be subtracted from the clock pin. After deciding if a delay
will be added or subtracted based on LM values, a slack check is
performed. We calculate the worst out of all 4 slacks (early-late, D-
Q side) and ensure that the decision made based on LM values does
not degrade the worst slack. If the worst slack is not degraded, a
delay𝑑𝐶𝐿𝐾 is added, or subtracted, and scaled for all corners. 𝑑𝐶𝐿𝐾
should not be too small, as it will lead to a very slow convergence,
nor too large as it will dramatically change the timing profile of
the circuit and lead the LR method to divergence.

4.5 Timing Recovery Heuristics
The timing recovery steps resizes the driver cell affecting the most
violating endpoints [8].The sizes tested are the immediately smaller
and bigger size. After either move, we perform local timing update
on the critical corner and calculate the new local negative slack
on the cell’s output. If it is improved compared to the initial slack,
we perform an incremental timing update and ensure that the TNS
has improved too. If it has, this cell version is kept and the process
is repeated. If the timing has not improved we revert the change
and move on to the next most critical cell. Timing recovery stops if
all timing violations are solved, if the TNS stops improving, or if a
certain number of incremental timing updates is reached. This re-
covery step is performed twice: once for the remaining late timing
violations, and once for the early timing violations. For the last re-
maining early timing violations, a buffer chain is inserted in front
of every hold violating endpoint, until the violations are fixed.This
is the last optimization step performed, ensuring that the final de-
sign is hold-violation free.

5 EXPERIMENTAL RESULTS
The proposed method was implemented in C++ inside the open-
source RSyn framework [7] after extending it for multi-corner tim-
ing analysis.The results of this work were validated using the TAU
2019 contest benchmarks and compared against the winner of the
contest [2]. We extracted the presented results by running the exe-
cutable the TAU 2019 winner sent to us, which was the one submit-
ted to the contest. The 6 benchmarks of the contest include SPEF
and SDC files for each netlist, and 5 different standard-cell library
files, one for each corner.The designs only have timing constraints
on register-to-register paths, leaving primary inputs and outputs
unconstrained. All benchmarks also include clock trees that are
mostly unrealistic, since they do not have RC parasitics, and the
clock arrival times are highly unbalanced. For this reason, the TAU
2019 contest winner removed the clock buffers from the clock tree
and rebuilt it without including any RC parasitics of the nets con-
necting the clock-tree buffers. Note that this feature of assuming
ideal wires on the clock tree was, indeed, permitted by the contest.

Therefore, in order to allow for a more realistic comparison (as-
suming that designs are compared in a pre-CTS stage), we removed
all clock buffers from both the initial set of benchmarks fed to
our algorithm, and from the final netlist of the TAU 2019 winner.
Nevertheless, for the latter, we kept the assigned clock pin arrival
times (acting as useful clock skew values), so that the timing perfor-
mance of the TAU 2019 winner remained unaffected. Even though
we removed the unrealistic – due to the lack of RC parasitics –
clock trees, we retained their useful effect on timing.

Table 1:The leakage and area under the best period reported
by the contest for typical corner.

Design #Cells Period
(𝑝𝑠)

Leakage (𝑢𝑊) Area (𝑢𝑚2)
Ours Winner Ours Winner

s1196 584 334 12 13 545 565
systemcdes 2825 696 68 82 3190 3565
usb_funct 10535 828 352 402 17058 17831
vga_lcd 87958 684 2826 3125 143168 146802

leon2_iccad 793286 1483 24925 30249 1232760 1311985
leon3mp_iccad 649191 1661 19589 23806 961941 1028117

In Table 1, we show the results of running both flows for only
the typical corner, and for the clock period specified by the contest
as the one where the contest winner achieves timing closure for
the typical corner. Our flow also achieves timing closure for these
clock periods, saving 17% more leakage power and 6% more area.

Table 2: The best clock period achieved for all corners

Design Period (𝑝𝑠) Leakage (𝑢𝑊) Area (𝑢𝑚2)
Ours Winner Ours Winner Ours Winner

s1196 1040 918 12.1 12.6 550 569
systemcdes 1777 1788 87 96 3665 3975
usb_funct 2166 2306 419 402 18579 17812
vga_lcd 1871 2826 3215 3106 149033 146257

leon2_iccad 4532 4677 25170 30354 1237510 1312960
leon3mp_iccad 3878 5246 20045 23816 971773 1030860

Secondly, in Table 2, we present the best clock period for which
each flow achieves closure for all corners. On average, our flow
achieves 14% better clock period, while, simultaneously, saving 15%
in leakage and 5% in area. More specifically, our flow results in
a better clock period for all designs except one, with the benefits
reaching up to 35%.The exception is s1196, where our clock period
is 5% worse. In every other design, our flow achieves a better clock
period with minimal, or no power and area overhead.

Furthermore, Table 3 depicts the results after running both flows
on the same clock period for which both achieve timing closure,
i.e., the clock period of the slower. Our flow achieves on average
16% lower leakage power and 6% lower area, and results in smaller
leakage and area for every benchmark.

These improvements are the result of the smooth cooperation
between the transformation optimizations. Sizing identifies themost
critical cells and resizes them to the size that locally reduces the
LR score. Resizing targets the 2000 highest sensitivity cells for the
1000 most critical paths. Early slack is allowed to degrade when
resizing cells with conflicting violations, in favor of late slack op-
timization, and it is then reduced by cell sizing on early violat-
ing paths, hold-buffer insertion, and clock-tree optimization. Thus,
hold violations stay under control, while late violations are con-
stantly reduced. This is highlighted in Fig. 6 for vga_lcd. The late

TNS starts off as very negative and slowly converges to 0 as itera-
tions progress. Early TNS is always 0 at first for all designs, since
removing the clock tree solves all hold violations. Early violations
appear during optimization as paths become faster and clock skew
assignment trades off early for late slack. Appropriate cell sizing
and hold-buffer insertion keep early slack under control, usually
reducing it back to 0 at the end of the iterative optimization.

0 2 4 6 8 10

LR Iteration

0

400

800

1200

1600

2000

0

80

160

240

320

400

T
N

S
 l
a
te

 (
n

s
)

T
N

S
 e

a
rl

y
 (

p
s
)TNS early

TNS late

Figure 6: Early and late TNS optimization for vga_lcd.

The runtime of the compared methods are presented in Table 3
on columns 13 and 14. They were run on a 3.6GHz Intel Core i7-
4790 Linuxworkstationwith four cores and 32GB of RAM.The iter-
ations that the proposed LR-based optimization needed per bench-
mark are shown on column 7 of Table 3. In the smaller benchmarks,
the runtime of the two methods is almost the same. However for
the larger benchmarks, the winner of the contest is significantly
faster. We cannot tell if the latter experiences a runtime-vs-quality-
of-results tradeoff, i.e., if the results could improve with more run-
time. Our future goal is to adopt a multi-threaded approach for
each transformation method to reduce runtime. The runtime con-
tribution of each method is detailed in columns 8 to 12 of Table 3.
The lion’s share belongs to cell sizing and clock skew assignment.
Early and late buffer insertion heuristics are applied on a small
number of pins, so they are fast.

To quantify the effectiveness of each transformation, we reran
the flow excluding one of the available transformations in each run.
Due to space limitations, Table 4 presents the results just for the
indicative design vga_lcd. It shows the TNS,WNS, power, and area
for the best clock period achieved by our flow (the clock period
reported in Table 2) for the initial netlist and the optimized netlist.
Since hold timing constraints are satisfied in every case, TNS and
WNS refer to late violations only.

It is observed that every method is required in the flow in order
to achieve the best clock period reported. Cell sizing is required
for leakage power and area minimization, since the leakage and
area results for the run without cell sizing is significantly larger.
Clock skew assignment has the most significant contribution to
timing violation minimization, and the rest of the methods further
improve the final results without a significant runtime overhead.

Regarding hold buffer insertion, it is observed that early timing
achieves closure even when it is not applied in the optimization
loop, due to the early timing recovery that runs in the end of the
optimization. Nevertheless, omitting it results in a worse late tim-
ing, since the iterative LR based method picks better positions for
hold buffer insertion.

6 CONCLUSIONS
This work introduces two novel aspects with respect to timing-
driven design optimization.The traditional LR-based gate sizing al-
gorithm is enhanced to include flip-flops and to handle cases where

Table 3: Comparison of the leakage and area at the clock period where both flows achieve closure for all corners.

Design Period
(𝑝𝑠)

Leakage (𝑢𝑊) Area (𝑢𝑚2) LR
iters

Runtime (𝑠)
Ours Winner Ours Winner CS PS LB HB ClkS Total Winner

s1196 1040 12 13 550 569 4 1 0.02 0.01 0 0.01 2 2
systemcdes 1788 85 96 3603 3975 8 13 0.92 0.10 0.12 0.03 17 21
usb_funct 2306 397 402 18002 17812 10 43 1.14 0.21 0.88 0.41 50 52
vga_lcd 2826 3075 3106 145752 146257 8 312 9.02 2.92 5.47 21.81 455 24

leon2_iccad 4677 24996 30354 1234180 1312960 10 2341 23.58 10.48 19.91 1291.11 4471 452
leon3mp_iccad 5246 19632 23816 962764 1030860 9 2046 13.12 8.11 22.04 812.95 3862 362

Table 4: Methods’ contributions to the results for vga_lcd.

Netlist TNS
(𝑛𝑠)

WNS
(𝑛𝑠)

Leakage
(𝑢𝑊)

Area
(𝑢𝑚2)

Initial -19731.00 -12.60 4841 192551
Initial downsizing -18945.00 -11.80 3078 145692

Full flow 0 0 3215 149033

Opt removed

CS -50.26 -0.34 3599 161287
PS -0.02 -0.01 3205 148836
LB -0.11 -0.11 3128 147369
HB -2.63 -0.17 2927 145558
ClkS -1598.54 -0.44 3174 147832

pure LR-based gate sizing leads to conflicting decisions. Moreover,
for the first time, interleaved inside the LR optimisation loop are
multiple netlist transformation algorithms that operate on similar
local cost functions based on the LM weights. The results show
that this approach is a scalable alternative for smoothly integrat-
ing multiple transformations that, in the past, have been applied
independently to the design. Most importantly, this allows for a
modular customization of the optimization flow, whereby trans-
formations are added or removed, based on their effectiveness for
a design, without altering the global optimization framework that
guides the entire process. The adaptive selection of the order of
application of each transformation is left for future work.

ACKNOWLEDGMENTS
DimitriosMangiras is supported by theOnassis Foundation - Schol-
arship ID: G ZO 014-1/2018-2019.This research has been supported
by a research grant from Mentor, a Siemens Business to DUTH.

REFERENCES
[1] C.-P. Chen, C. C. N. Chu, and D. F. Wong. 1999. Fast and exact simultaneous

gate and wire sizing by Lagrangian relaxation. IEEE TCAD 18, 7 (Jul 1999), 1014–
1025.

[2] H-H Cheng, T-W Lin, Y-C Lin, Iris H-R Jiang, and P-Yu Lee. 2019. Design Opti-
mization Contest, Team iTimer, TAU workshop 2019. https://sites.google.com/
view/tau-contest-2019/home

[3] D. G. Chinnery and K. Keutzer. 2005. Linear Programming for Sizing, Vth and
Vdd Assignment. In Int. Symp. Low Power Electronics and Design. 149–154.

[4] S. Daboul, N. Hähnle, S. Held, and U. Schorr. 2018. Provably Fast and Near-
Optimum Gate Sizing. IEEE Trans. on CAD 37, 12 (Dec 2018), 3163–3176.

[5] H. Fatemi, A. Kahng, H. Lee, J. Li, and J. Pineda de Gyvez. 2019. Enhancing
sensitivity-based power reduction for an industry IC design context. Integration
66 (Feb 2019).

[6] J. P. Fishburn and A. E. Dunlop. 1985. Tilos: A Posynomial Programming Ap-
proach to Transistor Sizing. In Int. Conf. Computer-Aided Design. 326–328.

[7] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis. 2017. Rsyn: An Exten-
sible Physical Synthesis Framework. In Int. Symp. On Physical Design. 33–40.

[8] G. Flach, T. Reimann, G. Posser, M. Johann, and R. Reis. 2014. Effective Method
for Simultaneous Gate Sizing and𝑉 th Assignment Using Lagrangian Relaxation.
IEEE Trans. on CAD 33 (April 2014), 546–557.

[9] I. Han, D. Hyun, and Y. Shin. 2016. Buffer insertion to remove hold violations
at multiple process corners. In Asia and South Pacific Design Automation Conf.
232–237.

[10] S. Held. 2009. Gate Sizing for Large Cell-based Designs. In Design, Automation
and Test in Europe. 827–832.

[11] S. Hu, M. Ketkar, and J. Hu. 2007. Gate Sizing For Cell Library-Based Designs.
In Design Automation Conf. 847–852.

[12] S. Hu, Z. Li, and C. J. Alpert. 2009. A fully polynomial time approximation
scheme for timing driven minimum cost buffer insertion. In Design Automation
Conf. 424–429.

[13] S. Huang, G. Jhuo, and W. Huang. 2010. Minimum buffer insertions for clock
period minimization. In Int. Symp. Computer, Communication, Control and Au-
tomation. 426–429.

[14] L. Lavagno, I. Markov, G. Martin, and L. Scheffer. 2016. Electronic Design Au-
tomation for IC Implementation, Circuit Design, and Process Technology. Taylor
and Francis group.

[15] L. Li, P. Kang, Y. Lu, and H. Zhou. 2012. An efficient algorithm for library-based
cell-type selection in high-performance. In ICCAD. 226–232.

[16] J. Lillis, C.-K. Cheng, and T. Y. Lin. 1996. Optimal wire sizing and buffer insertion
for low power and a generalized delay model. IEEE J. of Solid-State Circuits 31
(March 1996), 437–447.

[17] I.-M. Liu, A. Aziz, D. F. Wong, and H. Zhou. 1999. An efficient buffer insertion
algorithm for large networks based on Lagrangian relaxation. In Int. Conf. Com-
puter Design. 210–215.

[18] N. D. MacDonald. 2010. Timing Closure in Deep Submicron Designs. In Design
Automation Conference.

[19] D. Mangiras, A. Stefanidis, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopou-
los. 2019. Timing-Driven Placement Optimization Facilitated by Timing-
Compatibility Flip-Flop Clustering. IEEE Trans. on CAD (2019).

[20] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B.Thompson, and K. Keutzer.
2003. Minimization of Dynamic and Static Power Through Joint Assignment of
Threshold Voltages and Sizing Optimization. In Int. Symp. Low Power Electronics
and Design. 158–163.

[21] M. M. Ozdal, S. Burns, and J. Hu. 2012. Algorithms for Gate Sizing and Device Pa-
rameter Selection for High-Performance Designs. IEEE Trans. on CAD 31 (2012),
1558–1571.

[22] T. J. Reimann, C. N. C. Sze, and R. Reis. 2016. Cell Selection for High-Performance
Designs in an Industrial Design Flow. In Int. Symp. Physical Design. 65–72.

[23] S. Roy, D. Liu, J. Singh, J. Um, and D. Z. Pan. 2016. OSFA: A New Paradigm of
Aging Aware Gate-Sizing for Power/Performance Optimizations UnderMultiple
Operating Conditions. IEEE Trans. on CAD 35 (Oct 2016), 1618–1629.

[24] A. Sharma, D. Chinnery, and C. Chu. 2019. Lagrangian Relaxation Based Gate
SizingWith Clock Skew Scheduling - A Fast and EffectiveApproach. In Int. Symp.
Physical Design. 129–137.

[25] A. Sharma, D. Chinnery, T. Reimann, S. Bhardwaj, and C. Chu. 2019. Fast La-
grangian Relaxation Based Multi-Threaded Gate Sizing Using Simple Timing
Calibrations. IEEE Trans. on CAD (2019).

[26] G. Shklover and B. Emanuel. 2012. Simultaneous Clock and Data Gate Sizing
Algorithm with Common Global Objective. In Int. Symp. Physical Design. 145–
152.

[27] H. Tennakoon and C. Sechen. 2008. Nonconvex Gate Delay Modeling and Delay
Optimization. IEEE TCAD 27 (Sept 2008), 1583–1594.

[28] W. Tu, C. Chou, S. Huang, S. Chang, Y. Nieh, and C. Chou. 2013. Low-power tim-
ing closure methodology for ultra-low voltage designs. In Int. Conf. Computer-
Aided Design. 697–704.

[29] L. P. P. P. van Ginneken. 1990. Buffer placement in distributed RC-tree networks
for minimal Elmore delay. In Int. Symp. Circuits and Systems, Vol. 2. 865–868.

[30] X.Wang,W. Liu, andM. Yu. 2015. A distinctive O(mn) time algorithm for optimal
buffer insertions. (04 2015), 293–297.

[31] P. Wu, M. D. F. Wong, I. Nedelchev, S. Bhardwaj, and V. Parkhe. 2014. On timing
closure: Buffer insertion for hold-violation removal. In Design Automation Conf.
1–6.

[32] Y.-J. Ho and W.-K. Mak. 2008. Power and density-aware buffer insertion. In Int.
Symp. On VLSI Design, Automation and Test. 287–290.

[33] Y. Jiang, S. S. Sapatnekar, C. Bamji, and J. Kim. 1998. Interleaving buffer insertion
and transistor sizing into a single optimization. IEEE Trans. VLSI Systems 6, 4
(Dec 1998), 625–633.

https://sites.google.com/view/tau-contest-2019/home
https://sites.google.com/view/tau-contest-2019/home

	Abstract
	1 Introduction
	2 Related work
	3 LR design optimization
	3.1 Overall optimization Flow
	3.2 LM update

	4 Netlist transformation optimizations
	4.1 Cell Resizing
	4.2 Buffer insertion
	4.3 Pin Swapping
	4.4 Clock Skew Assignment
	4.5 Timing Recovery Heuristics

	5 Experimental Results
	6 Conclusions
	Acknowledgments
	References

