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Abstract—Multicast on-chip communication is encountered in
various cache-coherence protocols targeting multi-core proces-
sors, and its pervasiveness is increasing due to the proliferation of
machine learning accelerators. In-network handling of multicast
traffic imposes additional switching-level restrictions to guarantee
deadlock freedom, while it stresses the allocation efficiency of
Network-on-Chip (NoC) routers. In this work, we propose a novel
NoC router microarchitecture, called SmartFork, which employs
a versatile and cost-efficient multicast packet replication scheme
that allows the design of high-throughput and low-cost NoCs.
The design is adapted to the average branch splitting observed
in real-world multicast routing algorithms. Compared to state-of-
the-art NoC multicast approaches, SmartFork is demonstrated
to yield higher performance in terms of latency and throughput,
while still offering a cost-effective implementation.

I. INTRODUCTION

The increase in the number of processing elements in
modern microprocessors and Systems-on-Chip (SoC) has ac-
centuated the criticality of the on-cip interconnect, in terms
of both performance and functional correctness. Networks-on-
Chip (NoC) have been established as the enabling communica-
tion fabrics that can sustain the many-core era. Multicast (and
often broadcast) communication is widespread in some of the
most popular cache-coherence protocols targeting multi-core
processors. The multicast intensity has been shown to increase
with the number of on-chip cores, thereby underscoring its
performance impact on system scalability. Furthermore, mul-
ticast traffic is also widespread in the increasingly prevalent
hardware accelerators targeting artificial intelligence [1].

A. Mulicast-enabled NoCs: The current state-of-the-art

In-network multicast support can take various forms. A
naive and low-performing approach is to inject multiple uni-
cast clones of the packet, with each one sent to a distinct
recipient (i.e., unicast-based). To increasing performance –
while keeping a minimal multicast-packet footprint – one
may employ path-based multicast routing [2], [3], [4]. Only
one multicast packet is injected, which sequentially visits all
recipients. The packet is delivered to a single recipient at a
time, allowing for at most two multicast branches, with one
of them always sinking into the local ejection port.

To further improve performance, tree-based multicasting
relaxes the replication degree, allowing for branching to an
arbitrary number of output ports within each router [5], [6],
[7], [8], [9]. This extra flexibility enables each recipient to be
served independently, and, thus, more quickly, as opposed to
creating sequential dependencies among recipients.

Nevertheless, the increased branching flexibility in tree-
based multicast algorithms is precisely the reason why dead-
locks may, in fact, arise at the multicast-replication level,
i.e., as a result of dependencies among the various multicast
branches. Note that such switching-level deadlocks arise even
if the routing algorithm is deadlock-free. To tackle this issue,
Virtual Cut-Through (VCT) switching [10], [11], [12] is em-
ployed. Alternatively, low-performance circuit-switching ap-
proaches [13], [14], or costly deadlock recovery schemes [15],
have also been presented.

Multicast packets in NoCs are generally short, as they
typically carry only control information [16], or single-word
data; e.g., a cacheline invalidation message. Hence, multicast
messages in NoCs could most likely fit within a single-flit
packet. Single-flit packets make the routing of each multicast
branch independent, and their switching in each router is, by
construction, deadlock-free. This attribute has been exploited
in [6], [9] to build multicast NoCs. In a similar vein, the
work in [17] transforms all multicast packets into independent
single-flit multicast packets.

Single-flit multicast allocation and switching inside each
router can be performed in two ways. One approach is to
treat multicast branch replication as a set of serially-executed
unicast transmissions; i.e., sending a flit to multiple output
ports in the same cycle is prohibited [11]. This branch serial-
ization yields a low-cost multicast solution, but limits the flit
replication rate to one output port per cycle. Alternatively,
each multicast packet can be replicated in parallel to all
required output branches in each router [9]. This parallel
replication is readily supported by the crossbar of each NoC
router. However, the increase of requests from multiple input
virtual channels to multiple output virtual channels stresses the
separable allocators used in state-of-the-art NoC routers [18],
thereby increasing Head-of-Line (HoL) blocking.

To address the inefficiency of separable allocation when
dealing with mixed multicast and unicast traffic, the use of
input buffers with as many independent read ports as the
number of output ports in the router (aka buffer speedup) has
been proposed [10], [12]. This approach increases throughput,
but with prohibitive hardware cost – especially with respect
to local wiring congestion.

B. How much parallel replication is adequate?
The analysis above indicates that an ideal multicast-enabled

NoC design would reap all the benefits of parallel branch
replication (as used by state-of-the-art NoC routers), without
resorting to full-fledged buffer speedup. Before embarking on
any micro-architectural optimizations targeting such goal, it
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Fig. 1. The average number of branch splits per router required by the XY
and Whirl [9] multicast routing algorithms for different number of multicast
destinations in (a) an 8×8 2D mesh, and (b) a 64-node 2D mesh with high-
radix routers (8-port routers with a concentration factor of 4).

is important to investigate how multicast routing algorithms
behave, in terms of the degree of observed multicast branch
splitting per router.

Parallel branch replication per router – with or without
buffer speedup – assumes that each input port can be connected
in parallel to all output ports. For example, in a typical 5-
port router employed in 2D mesh NoCs, each input would
be connected to 5 outputs. Nevertheless, the key question is
whether real-world multicast routing algorithms exhibit such
high levels (5-way) of branch splitting in each router. In
fact, the amount of multicast branch splitting observed in
2D meshes (either low-radix, or high-radix) under the most
established and widely used multicast routing algorithms is
much lower than 5. This argument is experimentally verified
in Fig. 1(a) for an 8×8 2D mesh under two different state-
of-the-art multicast routing algorithms (XY and Whirl [9]),
and under different multicast intensities. Note that Whirl’s
branch trees constitute a superset of the trees produced by
several other multicast routing algorithms [9]. A similar con-
clusion regarding branch splitting can be drawn for higher-
radix topologies, as shown in Fig. 1(b), which assumes a
router concentration degree of 4 in a 64-node NoC, i.e., each
router has 8 output ports. These low levels of intra-router
multicast branch splitting are orthogonal to the NoC traffic
characteristics and the application workloads running on the
multicore system. The degree of multicast branch splitting is
inherently an attribute of the routing algorithm itself.

C. Contributions
Driven by the observation that the degree of branch replica-

tion per router, as dictated by the multicast routing algorithm,
is much lower than the number of input/output ports in a
router, we hereby propose SmartFork, a scalable NoC micro-
architecture that supports multicasting and is characterized by
the following novel features:

(1) The output ports are partitioned into groups; intra-group
ports are serviced serially, while inter-group ports are serviced
in parallel. Therefore, SmartFork can be used to target any
desired point on the multicast performance spectrum.

(2) Each output partition is driven by a separate input-buffer
read port, thus mitigating allocation inefficiencies without
introducing prohibitive hardware cost.

(3) Virtual Channels (VC) are inherently supported without
any restrictions on which VCs can support multicasting; any
VC within the router can support multicast transfers.

The efficacy and efficiency of SmartFork are corroborated
through extensive cycle-accurate network simulations and de-
tailed hardware analysis of synthesized and placed-and-routed
designs using commercial 45 nm standard-cell libraries.
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Fig. 2. The micro-architecture of a typical virtual-channel-based NoC router.

II. SMARTFORK: PARTITIONED MULTICASTING

The NoC routers facilitate the transfer of packets between
communicating (source/destination) nodes. Packets are typi-
cally split into smaller flow-control units, aka flits. The flits
traverse the network in a hop-by-hop fashion through all
the routers encountered on the path from the source to the
destination. The micro-architecture of a typical VC-based NoC
router [18] is depicted in Fig. 2.

Each router has N input and N output ports. In a 2D mesh
NoC topology, N = 5; one input/output port for each cardinal
direction, and a local injection/ejection port. Each input port
has V virtual channels, with each channel being served by a
different FIFO input buffer. All incoming packets are written
into these input buffers, and they pass through a series of
operational stages before they can exit the router. Routing
Computation (RC) logic determines the output port of each
packet. The Virtual-channel Allocation (VA) stage maps input
VCs to output VCs. The Switch Allocation (SA) stage – that
is typically split in two stages, SA1 and SA2 – arbitrates
amongst all input VCs requesting access to the crossbar, and
declares one winning flit for each input and output port. The
SA winners are then able to traverse the crossbar (Switch
Traversal, ST), and are placed on their respective output links.

The basic organization shown in Fig. 2 can, in fact, be
used to also support multicast transmissions, as explained
in [9]. This is achieved by allowing the flits of each input
VC to simultaneously send requests to multiple output ports.
For instance, if a multicast packet must branch out to three
output ports of the router (as decided by the employed
multicast routing algorithm), then the packet is allowed to
send concurrent requests to all three output ports. While said
approach is effective in handling multicast communication and
is cost-efficient, it suffers from an often-debilitating affliction:
increased susceptibility to HoL blocking. Specifically, if any
of the multiple requested output ports is/are unavailable, the
flit at the head of the input buffer must remain there until all
required output ports are, eventually, served. Only then can
the flit be popped from the input buffer. Consequently, all the
other flits occupying the same input buffer are HoL-blocked.

A. Router organization
SmartFork is founded on two basic properties that enable

high multicasting efficiency with minimal changes to the
baseline VC-based NoC router microarchitecture. The first
property places an upper limit P on the number of multicast
branches that can be served in parallel in any given cycle. The
value of P aims to reflect the average branching degree per
router observed in established multicast routing algorithms. To
achieve this in a cost-efficient manner, the N output ports in a
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Fig. 3. The organization of a SmartFork router. Assuming the NoC router
has N output ports, SmartFork employs P read ports (with 1 ≤ P ≤ N ) to
serve a maximum of P multicast branches in parallel, per cycle.

SmartFork router are partitioned into P groups. Since P is an
architectural parameter, the whole design space is covered: the
serial approach corresponds to P = 1, while the fully parallel
one corresponds to P = N . The proposed multicast-enabled
design generalizes the degree of parallel branch replication to
any value in the range 1 ≤ P ≤ N .

To reduce allocation inefficiencies and HoL blocking when
serving both multicast and unicast traffic, at a reasonable cost,
the router connects each partition of output ports with a distinct
and independent read port per input VC, as shown in Fig. 3.
Each one of the P read ports per input VC serves a different
and statically allocated partition of the router’s output ports.
For example, in the case of a 2D mesh (N = 5), and assuming
P = 2, the first read port of each input buffer can serve 3
output ports (East, West, and the Ejection Port), while the
second read port of each input buffer can serve the remaining
2 output ports (North and South). The P read ports per
input buffer allow for independent (i.e., non-synchronized) and
parallel branch replication across the output-port partitions.

B. Switch and VC allocation
Input-to-output allocation and switching in a SmartFork

router involves several steps. Initially, each input VC prepares
at most P flits. Each one of those flits need to win locally in
the SA1 stage, which arbitrates among the requests from all
the VCs of the same input port. In other words, the flits in
each input port only contend with the flits of all other VCs
belonging to the same input port. Therefore, the complexity
of arbitration in the SA1 stage remains identical to the one
encountered in efficient VC-based routers [19], [20].

The P winners of the SA1 stage will move in parallel
to their corresponding output partition. To keep complexity
under control, each read port serves its respective output ports
in a serial manner within its own output-port partition. If a
multicast packet must be split into two multicast branches in
a SmartFork router, and both branches must exit from output
ports that belong to the same output partition, then those
branches will be served serially. For example, and using the
aforementioned partitioning of output ports in a 2D mesh, if
an incoming multicast packet must branch out to the North
and South output ports of the router, those branches will
be served serially (one after the other), since the North and
South output ports are both served by the same read port. The
packet will first be forwarded to one output port, and then
to the other output port. The decision of which output port is
served first from each input read port is determined by the port

selection logic, which selects one active output port from those
computed by the multicast routing unit. On the other hand, if
a packet must branch out to the North and West output ports,
then both branches can be served in parallel, since the North
and West output ports belong to different output-port partitions
and are, thus, served by different read ports.

Inside each output partition, SA2 arbiters [21] are employed,
which only see unicast requests. Essentially, multicasting is
achieved by replicating the same flit to different partitions.
Alternatively merged arbiter-multiplexers can be used [22].

Before each flit can leave the NoC router, it should have al-
ready guaranteed access to an output VC in the selected output
port. SmartFork adopts a combined allocation approach [19],
[18]. Each winning head flit (single-flit packets are also head
flits) receives an output VC from the available ones. If no
output VC is available, no forward progress is made by
the affected head flit. Once again, the addition of multicast
support does not affect the complexity of this feature, because
multicast packets behave just like unicast packets within their
respective output partition. Recall that, within each output
partition, multicasting is performed serially, i.e., one branch at
a time. This serial replication is identical to a unicast packet
being sent to a particular output port.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance and hardware
cost of SmartFork, as compared to the current state-of-the-
art in multicast-enabled NoC architectures [9] that allows
input VCs to concurrently send switch allocation requests to
multiple output ports.

Two variants of each architecture under investigation are
compared: one with 2 VCs per input port of the NoC router,
and one with 4 VCs. All four designs were implemented in
SystemVerilog. Latency and throughput measurements were
derived from cycle-accurate network simulations, assuming
an 8×8 2D mesh network using 5-port VC-based routers.
Each input port employs a 3-flit deep FIFO buffer. Without
loss of generality, all NoC routers have single-cycle operation
(even though all techniques could also be fitted to router
pipelines of arbitrary length). Dimension-ordered XY routing
is used for both unicast and multicast traffic. The network
performance evaluation involves: (a) synthetic traffic patterns,
and (b) patterns from a cache-coherence traffic model that
synthesizes traffic closely resembling the traffic behavior of
two well-known broadcast-based cache-coherence protocols.

In terms of synthetic traffic patterns, we evaluate uniform-
random traffic. Other traffic patterns have also been tested and
exhibited equivalent behavior. The injected traffic consists of
two types of packets to mimic realistic system scenarios: 1-flit
short packets (just like request packets in a CMP), and longer
3-flit packets (just like response packets carrying a cache
line). We assume a bimodal distribution of packets with 50%
of the packets being short, 1-flit packets, and the rest being
long, 3-flit packets, in accordance to recent studies [16]. Both
unicast and multicast packets are injected into the network.
Guided by prior research that reported real-world multicast
percentages [5], [23], we investigate two different scenarios:
(a) 5% multicast traffic (low multicast intensity), and (b) 30%
multicast traffic (heavy multicast intensity). For both scenarios,
we assume that each multicast packet is sent to 25% of the
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Fig. 4. Network performance results for routers with 2 and 4 VCs under
synthetic uniform-random traffic with (a) 5%, and (b) 30% multicast traffic
intensity in an 8×8 2D mesh NoC.
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network nodes, which is in line with what has been observed
in real applications [23].

The results pertaining to the synthetic uniform-random
traffic are depicted in Figs. 4(a) and (b), for 5% and 30%
multicast traffic intensities, respectively. Compared to the
state-of-the-art [9], SmartFork with 2 VCs per input port
yields a throughput increase of 11% and 13% when 5%
and 30% multicast traffic intensity is applied, respectively.
When 4 VCs are used, the reaped gains are amplified to
15% and 18%, respectively. To further investigate the designs’
scalability, Fig. 5 depicts the saturation throughput achieved
as the VCs per input port increase. The saturation throughput
improves with increasing VC numbers, albeit with diminishing
returns. Nevertheless, SmartFork achieves up to 20% through-
put improvement over the state-of-the-art [9] when 8 VCs are
used. The results of Figs. 4 and 5 highlight the scalability of
SmartFork with the number of VCs: as the VCs increase, the
design in [9] experiences increasing HoL blocking. On the
contrary, SmartFork effectively mitigates HoL blocking and
reaps substantial throughput improvements.

For the experiments with cache-coherence traffic, the model
developed in-house generates traffic that mimics the behavior
of (1) HyperTransport [24] (a directory protocol), and (2)
Token Coherence [25] (a snoopy protocol), in a 64-node
CMP. A significant portion of the injected traffic under the
HyperTransport and Token Coherence protocols is broadcast
traffic: 6% and 15%, respectively. Under cache-coherence
traffic, the SmartFork design with 2 VCs achieves throughput
improvements of 11% and 12%, while with 4 VCs the im-
provements are 15% and 19% for HyperTransport and Token
Coherence traffic, respectively, as shown in Figs. 6(a) and (b).

The four 5-port NoC routers under comparison were syn-
thesized using a commercial low-power 45 nm standard-
cell library under worst-case conditions (0.8 V, 125 ◦C), and
placed-and-routed using the Cadence digital implementation
flow. In all NoC configurations, the flit width was set to
128 bits. The obtained results are summarized in Table I.

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25

La
te

n
cy

 (
cy

cl
e

s)

Injection Load (Flits/node/cycle)

Design in [9]-V2

SmartFork-P2V2

Design in [9]-V4

SmartFork-P2V4

a)

10

20

30

40

50

60

70

80

90

100

0 0.03 0.06 0.09 0.12 0.15 0.18

La
te

n
cy

 (
cy

cl
e

s)

Injection Load (Flits/node/cycle)

Design in [9]-V2

SmartFork-P2V2

Design in [9]-V4

SmartFork-P2V4

b)

Fig. 6. Network performance results for routers with 2 and 4 VCs under traffic
closely resembling (a) HyperTransport, and (b) Token Coherence traffic in an
8×8 2D mesh NoC.

To enable fair and meaningful comparisons with respect to
area/power/energy, all four designs operate at 1 GHz, which
is close to their maximum achievable clock frequency.

TABLE I
HARDWARE IMPLEMENTATION RESULTS OF THE ARCHITECTURES UNDER

INVESTIGATION AT 45 NM TECHNOLOGY AND 0.8 V.
Design VCs Area Power Thru-put%Gain Thru-put%Gain

@1 GHz (µm2) (mW) / Area%Incr. / Power%Incr.
Design in [9] 2 57223 5.36 1.39 3.09SmartFork 62370 5.58
Design in [9] 4 118393 10.10 1.73 12.37SmartFork 130442 10.25

As shown in Table I, SmartFork occupies slightly more area
(around 9-10%), as compared to the state-of-the-art [9]. How-
ever, SmartFork achieves much higher throughput, and, due
to its efficient micro-architecture, it incurs a near-negligible
power consumption overhead. In fact, SmartFork’s power
consumption is very similar to that of the architecture in [9].

To evaluate the proposed SmartFork design’s area and power
efficiency, we utilize two metrics that are derivatives of the
Kill Rule [26]. Said rule states that the percentage gain in
performance (in our case, throughput) should outweigh the
percentage increase in hardware cost (i.e., in area and power).
Based on this reasoning, the two metrics employed are: (a)
Throughput percentage gain over area percentage increase,
and (b) Throughput percentage gain over power percentage
increase. The obtained values for these metrics are shown in
the last two columns in Table I, and they refer to the two
SmartFork variants. Obviously, all four values are larger than
1, thereby indicating higher throughput gain than the hardware
cost paid. For example, in the case of SmartFork with 4 VCs,
every 1% increase in power consumption results in a 12.37%
increase in reaped throughput. Overall, the two efficiency
metrics clearly indicate that SmartFork is incredibly area- and
power-efficient in increasing the achieved throughput.

IV. CONCLUSIONS

The increasing prevalence of multicast traffic in NoCs
highlights the imperative need to provide scalable multicast
support in future systems. In this work, we present the
novel VC-based and multicast-enabled SmartFork NoC router
architecture. SmartFork relies on a flexible and cost-efficient
packet replication mechanism that can yield implementations
targeting any desired point on the multicast performance spec-
trum. A specific variant of SmartFork – adapted to the average
branch splitting observed under well-known multicast routing
algorithms – is demonstrated to yield higher throughput than
the current state-of-the-art architecture, while also achieving
very high area and power efficiency.
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