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Abstract—Machine learning adoption has seen a widespread
bloom in recent years, with neural network implementations
being at the forefront. In light of these developments, vector
processors are currently experiencing a resurgence of interest,
due to their inherent amenability to accelerate data-parallel
algorithms required in machine learning environments. In this
paper, we propose a scalable and high-performance RISC-
V vector processor core. The presented processor employs a
triptych of novel mechanisms that work synergistically to achieve
the desired goals. An enhanced vector-specific incarnation of
register renaming is proposed to facilitate dynamic hardware
loop unrolling and alleviate instruction dependencies. Moreover,
a cost-efficient decoupled execution scheme splits instructions into
execution and memory-access streams, while hardware support
for reductions accelerates the execution of key instructions in the
RISC-V ISA. Extensive performance evaluation and hardware
synthesis analysis validate the efficiency of the new architecture.

I. INTRODUCTION

The last few years have witnessed the widespread pro-
liferation and massive adoption of machine learning as a
fundamental thrust in a multitude of application domains.
Increasingly, more aspects of everyday life are being disrupted
by new capabilities enabled by machine learning. Neural
Networks (NN) have emerged as the most popular approach
to implementing machine learning, and they are considered
state-of-the-art in such applications as pattern [1], image [2],
and speech recognition. The rapid and vast increase in the use
of NNs has accentuated the demand for hardware architec-
tures that can accelerate the processing of various operations
encountered in machine learning applications.

Traditional general-purpose processors have focused on
Instruction-Level Parallelism (ILP) for decades. Consequently,
they are not tuned to effectively handle the massively data-
parallel workloads that machine learning algorithms and NNs
have brought to the forefront [3]. While the addition of SIMD
instructions to the ISA of general-purpose machines partially
exploits Data-Level Parallelism (DLP), the obtained through-
put is somewhat limited [4]. On the other hand, Graphics
Processing Units (GPU) provide very high data parallelism, so
they have been extensively used to accelerate NN workloads.
Nevertheless, GPUs tend to be power-hungry and the energy
efficiency they can achieve is not adequate for many imple-
mentations, e.g., those requiring computation on the edge,
where battery life is of paramount importance [5] [6]. To
address energy efficiency, researchers have turned to custom
architectures targeting specific NN implementations [7], [8],
[9]. Even though such application-specific designs are very
efficient, they typically offer limited programmability and
small flexibility in adapting to the evolving and emerging
needs of NN workloads.

The search for high performance and energy efficiency in
highly data-parallel workloads has brought vector processors
– a concept heavily explored in the 1970s [10] – back into the

spotlight. Vector architectures are almost unique in their ability
to effectively combine high programmability attributes, high
computational throughput, and high energy efficiency [11],
[12]. The inception of modern vector processors was triggered
by NN applications, which copiously rely on operations that
can be readily vectorized [11]. The extensive proliferation of
NNs in the last few years is precisely why vector processing
is regaining notable traction in the community [13].

Building on this momentum, this paper presents a vector
processor architecture that leverages the upcoming RISC-
V [14], [15] vector extension [16], which allows RISC-V-based
processors to be augmented with a vector processing core.
While the proposed architecture is founded on the traditional
tenets of vector processing [17], [18], [19], it introduces some
novel techniques that reap high performance benefits in a
very scalable and cost-effective implementation. Specifically,
the new design is spearheaded by three mechanisms that
collectively constitute the main contributions of this work:

• A new register remapping technique reimagines the no-
tion of register renaming in a vector processing con-
text. Coupled with a dynamically allocated register file,
the new register remapping mechanism enables dynamic
hardware-based loop unrolling and optimized instruction
scheduling at run-time.

• The design’s decoupled execution scheme employs re-
source acquire-and-release semantics to disambiguate be-
tween parallel computation and memory-access instruc-
tion streams, thereby allowing for independent execu-
tion/memory flow rates.

• A dynamically generated hardware reduction tree enables
significant acceleration of reduction intstructions, which
are prevalent in most NN and DSP algorithms.

The efficacy and efficiency of the presented vector processor
are corroborated through extensive performance simulations
using real benchmark applications, and detailed hardware
analysis of synthesized and placed-and-routed designs using
commercial 45 nm standard-cell libraries.

II. THE PROPOSED VECTOR PROCESSOR ARCHITECTURE

The proposed processor design uses a superscalar core as the
main control processor, with all the instructions being fetched
and decoded in the superscalar pipeline, similar to [20],
[21], [22]. A high-level overview of the micro-architecture is
depicted in Figure 1. During the superscalar issue stage (sIS),
the instructions are diverted to the correct path (i.e., scalar,
or vector), based on their type. A vector instruction queue
decouples the execution rates of the two datapaths. The vector
processor core itself is implemented in a diversified pipelined
organization, whereby the actual pipeline depth experienced
by each instruction depends on the instruction type, as will be
shortly explained. The vector pipeline includes the following
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Fig. 1. A high-level overview of the micro-architecture of the proposed vector
processor. All vector instructions are diverted to the vector execution path
upon completion of the scalar Issue Stage (sIS).

stages: (a) Register Remap (vRRM), (b) Instruction Issue
(vIS), (c) Execution (vEX), and (d) Memory Access (vMA).
Computation instructions are decoupled from memory-access
instructions, and the two instruction types follow different
pipeline paths, as illustrated in Figure 1 and explained in
Section II-B.

During the first vector pipeline stage (vRRM), the instruc-
tion operands are remapped to point to their new allocated
locations. This process is facilitated by a dynamic register file
allocation mechanism, as will be described in Section II-A.
The remapped instructions then propagate to the issue stage
(vIS), where they access the vector register file (RF), and/or the
forwarding paths (as vector chaining [17]), to get their source
data, before proceeding for execution. The vector RF is sliced
into v lanes, with each one corresponding to a separate parallel
execution lane. Vectors of arbitrary length are stripmined to
the maximum number of lanes supported.

Hazarding is also implemented in this stage through the use
of a scoreboard. If all the operands of an instruction are ready,
they can be read directly from the register file. If any operand
is pending (i.e., an earlier instruction that is currently in execu-
tion is the producer of the operand value), the instruction will
be stalled – by the scoreboard – until the pending value appears
on the forwarding path. Once all operands are available, the
instruction can proceed to the execution stage (vEX). Since
vector instructions operate on multiple elements (i.e., entire
vectors), the vIS stage “transforms” vector instructions into
multiple micro-operations (µops), with each µop operating
on different register groups.Scheduling in the vIS stage is,
therefore, performed at the granularity of individual µops.

The execution stage contains the pipelined parallel execu-
tion lanes. Similar to [17], each execution lane sees a portion
of the vector RF. The duration, in cycles, of the vEX stage

TABLE I
THE EXECUTION LATENCIES OF THE VARIOUS INSTRUCTION TYPES.

Instruction Type Latency (cycles)
Simple arithmetic & logical 1

Multiplication 3
Division 4

Reductions Variable: log2(vector length)
Load/Store Variable

is variable, and it depends on the operation being executed.
Table I lists the latencies for the various classes of instructions.
When a result is generated, it becomes available to the issue
stage through the forwarding paths. Since the execution latency
is variable, the orchestration of instruction progress is per-
formed by the scoreboard, which notifies stalled instructions
in the issue stage whenever their pending operand values are
ready. The stalled instructions “wake up” and proceed to the
next pipeline stage. During execution, vector µops may trigger
the same operation in multiple execution lanes, based on the
vector length.

Memory instructions do not access the execution lanes;
instead, they are routed after the vRRM pipeline stage directly
to the memory unit, as depicted in Figure 1. The memory unit
features two parallel engines that allow for the simultaneous
processing and disambiguating of one load and one store
instruction. All instructions in the vMA and vEX stages are
always issued and retired in order, writing their results directly
into the register file upon retirement.

A. Register remapping and dynamic register file allocation

The first key micro-architectural novelty of the proposed
processor design is a brand new approach to register renam-
ing within the context of vector processing. The mechanism
is aptly called register remapping, and it operates within
the vRRM pipeline stage shown in Figure 1. The register
remapping mechanism enables vector loops to be unrolled
dynamically in hardware, thereby (a) minimizing the overhead
of control instructions executed in the superscalar pipeline, and
(b) maximizing the utilization of the available fetch bandwidth.
The operation of the register remap scheme comprises three
distinct phases, as abstractly depicted in Figure 2.

In the first phase, the mechanism generates groups of vector
registers, based on the number of logical registers requested
by the software. In the RISC-V ISA vector extension, the
software communicates to the processor – through specialized
system registers – the desired amount of logical registers for
the upcoming computations. This information is leveraged
to generate the desired register-group numbers and sizes, as
shown in Figure 2.

Upon completion of group generation, the proposed mech-
anism proceeds to the second phase of its operation; it uses
a remapping table (similar to a register alias table) to remap
the logical registers to the corresponding base address of their
assigned register group. Since these assignments are static for
the duration of each computational kernel, the remap table
is only written once per logical register, during the first time
each new destination operand is encountered in the instruction
stream. Contrary to traditional register renaming [23], the
presented register remapping process does not perform one-
to-one register mappings; it performs one-to-group register
mappings, whereby a single logical register is mapped to a



group of registers to enable loop unrolling. Subsequently, the
remapping table dynamically allocates the generated register
groups into the register file, as illustrated in Figure 2.

Finally, in phase three of the scheme, the remapped in-
structions are “expanded”’ to operate on the full size of
their groups. In the vIS pipeline stage, each instruction gen-
erates and dispatches multiple micro-operations (µops) to
the execution stage (vEX). In the example of Figure 2, the
original instruction generates two µops. Each dispatched µop
executes the parent instruction’s operation, but with adjusted
operands, so that the computation is applied to a different set
of inputs within the assigned group space. Once the µops have
covered the full group size, the parent instruction is retired.
This expansion scheme also exists inside the memory unit,
since memory instructions also need to undergo the same
transformation.

In summary, the new register remapping mechanism fa-
cilitates dynamic loop unrolling in hardware. The unrolling
mitigates the stalls incurred by data dependencies, since the
direct consumer of a result is now separated from its producer
by multiple µops. Consequently, resource utilization increases
substantially.

B. Decoupled execution: computation and memory accesses
To further increase the utilization of the vector pipeline,

we also introduce a novel memory decoupling scheme that
effectively hides the latency of memory accesses. The compu-
tation (execution) and memory instructions are separated into
two independent streams, which are appropriately diverted into
different execution paths after the vRRM pipeline stage.

Traditionally, synchronization in decoupled processor
schemes is achieved by employing so called synchronization
queues and special move operations [24]. However, such
schemes are not amenable to vector processors, where hun-
dreds of elements have to be moved from/to the memory. The
synchronization queues incur a significant hardware overhead,
while the inserted move instructions block the computation
stream until all the data has been transfered.
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To alleviate these shortcomings of the traditional approach,
the proposed scheme uses a resource-locking mechanism
to effectively safeguard the correct program execution flow
without hindering the flow of the computation stream. During
the vRRM pipe stage, the memory instructions are diverted
to the memory unit, while a ghost copy of the instruction
is dispatched into the vIS stage. The ghost instruction only
updates the scoreboard, by locking the source operands of
the memory instructions. It then disappears from the pipeline
without triggering any computation. This way, data to be
stored, or address offsets, are safeguarded against tampering
from future computation instructions. At the same time, the
computational flow remains completely unblocked to continue
dispatching instructions, as long as no instruction tries to
modify the locked registers. When the memory instruction
finally retires, the data is written directly into the register file,
and the corresponding registers are unlocked, thereby allowing
for their subsequent reuse.

C. Hardware support for reduction operations

Reduction operations have historically been handled using
specialized hardware that iteratively shifts and computes on
pairs of elements. However, such approaches tend to have
long execution latencies and are unfit for contemporary NN
(and convolutional NN) applications that rely heavily on such
computational patterns. To effectively accelerate reduction
operations, we employ a scalable tree scheme, which calcu-
lates multiple partial results in parallel, in order to achieve
significant speedups.

The reduction tree is automatically generated and dis-
tributed, based on the design’s number of configured vector
execution lanes. The generated tree includes all necessary
interconnections between the execution lanes. During each
pipeline stage, the tree operates on pairs of neighbors, reducing
the input vector’s dimensionality in half. The partial results are
then registered and used in the next stage’s computations. The
organization of the reduction tree is depicted in Figure 3 for
four execution lanes. The vector length being operated on at
any given time determines the required reduction depth, which,
in turn, triggers the reduction tree control logic to dynamically
activate the appropriate interconnects of the tree. Since the tree
is automatically generated and the interconnects dynamically
activated at runtime, the scalability of the overall design is
maintained, without requiring any manual effort in adjusting
the design’s RTL code. The proposed reduction scheme yields
significant latency improvements; the execution latency of the
unit is calculated as log2(vector length).



III. EVALUATION RESULTS

A. Performance evaluation
In this sub-section, we perform a detailed performance

evaluation of the proposed vector design and its key features. A
total of 10 benchmark applications are employed, consisting of
7 well-known linear algebra kernels and basic DSP algorithms,
and 3 NNs of varying complexity: a simple perceptron, a 4-
stage convolutional NN, and an 8-stage deep convolutional
NN. The examined NNs execute inference tasks on digit
recognition using the MNIST database [25]. The compared
designs were implemented in fully-functional and synthesiz-
able RTL code that will be open-sourced on GitHub [26]. All
benchmarks were cycle-accurately executed at the RTL level,
with various statistics retrieved from hardware counters and
speciliazed trackers facilitating processor profiling.

We first examine the impact of the novel register remapping
scheme discussed in Section II-A. We compare the proposed
design with a simpler baseline vector processor [22] that does
not have the register remapping mechanism and operates with
a shorter pipeline (i.e., one without the vRRM stage). Figure 4
depicts the results, normalized to the throughput of the base-
line design. The average throughput – calculated as Elements
Per Cycle (EPC), the ratio of total elements over the execution
time – increases by 2.1×. This significant improvement is
primarily attributed to the enhanced instruction scheduling
resulting from the synergistic effect of register remapping,
instruction expansion, and the dynamically allocated register
file.
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Fig. 4. The performance improvement obtained when using the novel register
remapping mechanism and the dynamic allocation of the register file. Both
vector cores feature 8 execution lanes.

The next feature we evaluate is the hardware support for re-
duction operations, as presented in Section II-C. The presence
of a reconfigurable reduction tree improves the performance of
NN algorithms. Consequently, our experiment focuses on the
three NN benchmarks, since they make heavy use of reduction
operations. Table II shows the obtained throughput results,
normalized to the throughput of a design with no reduction
tree. As can be seen, the hardware acceleration of reduction
operations yields massive throughput improvements in the
inference operations of the NN benchmarks.

TABLE II
IMPACT OF THE HARDWARE-BASED REDUCTION TREE ON THE

THROUGHPUT (EPC) OF NN ALGORITHMS IN VARIOUS CONFIGURATIONS.

Design Perceptron CNN Deep CNN Average
No Red. Tree 1 1 1 1

With Red. Tree 2.57 1.89 1.87 2.11

Finally, we evaluate the scalability of the overall vector
processor design. We compare three different vector config-
urations using 4, 8, and 16 execution lanes and a baseline
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Fig. 5. Performance scaling for 3 different vector configurations, as compared
to a baseline dual-issue superscalar core.

dual-issue superscalar processor. All three vector cores have
all the features presented in Section II. Figure 5 shows the
obtained throughput results. An almost linear scaling (with
the number of lanes) is achieved in the 7 linear algebra and
DSP algorithms, but smaller gains are observed in the 3 NN
algorithms. This is due to the complex memory access patterns
that NN kernels exhibit (primarily using indexed accesses),
leading to limited scaling.

B. Hardware cost analysis
The proposed vector processor is also assessed in terms of

its hardware cost and power efficiency. The RTL code of the
design was synthesized using a commercial 45 nm standard-
cell library under worst-case conditions (0.8 V, 125 ◦C), using
the Cadence digital implementation flow. All designs under
investigation were optimized for 1 GHz operation. The derived
area/power results are summarized in Table III. Similar to
Section III-A, the results also include the baseline dual-issue
superscalar core. Recall that the proposed vector processor
uses said superscalar core as the main control processor.

TABLE III
HARDWARE IMPLEMENTATION RESULTS OF FOUR INVESTIGATED DESIGNS

(CACHES ARE EXCLUDED) AT 45 NM / 0.8 V AT 1 GHZ.

Design Area (mm2) Avg. Power (mW) Power Efficiency
Superscalar 0.24 13.1 1

Vector - 4-Lane 0.61 43.9 1.54
Vector - 8-Lane 0.97 75.3 1.62
Vector - 16-Lane 1.67 124 1.70

As expected, the area increases significantly when augment-
ing the superscalar processor with a vector core. The area
overhead of the vector core scales almost linearly with the
increase in the number of execution lanes. The same trends
are also followed by the power consumption. Nevertheless,
modern systems (and especially resource-constrained ones)
demand increasingly higher computational power implemented
in a cost-effective manner. Therefore, a key metric is that of
power efficiency (EPC/Watt). Clearly, the proposed architec-
ture achieves a markedly better overall power efficiency that
scales well with bigger vector configurations.

IV. CONCLUSION

This work presented a RISC-V-based high-performance
and power-efficient vector processor architecture. The new
design employs three novel mechanisms that collectively yield
impressive performance gains: (a) a register remapping scheme
facilitated by dynamic register file allocation; (b) a decoupled
execution scheme that separates execution and memory-access
instructions; and (c) hardware support for vector reduction
operations. A detailed evaluation of the new architecture high-
lighted both its performance prowess and its power efficiency.



REFERENCES

[1] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for lvcsr using rectified linear units and dropout,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
May 2013, pp. 8609–8613.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. of IEEE International Conference on Computer Vision (ICCV),
2015, pp. 1026–1034.

[3] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, Dec 2017.

[4] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
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