Fast Bit Permutation Unit for Media Enhanced Microprocessors

Giorgos Dimitrakopoulos, Christos Mavrokefalidis, Kostas Galanopoulos and Dimitris Nikolos
Technology and Computer Architecture Lab
Computer Engineering and Informatics Dept.
University of Patras, 26500 Patras, Greece
E-mail: {dimitrak, maurokef, galanopu, nikolosd}@ceid.upatras.gr

Abstract— Bit and subword permutations are useful in many
multimedia and cryptographic applications. New shift and per-
mute instructions have been added to the instruction set of
general-purpose microprocessors to efficiently implement the
required data permutations. In this paper, the design of a
high speed bit permutation unit is examined. The proposed
architecture has been derived by mapping the functionality of one
of the most powerful bit permutation instructions (GRP) to a new
enhanced bitonic sorting network. The proposed design achieves
delay reductions more than 20% when compared with previously
presented solutions, while its regularity enables efficient VLSI
implementations.

I. INTRODUCTION

Multimedia processing deals with low precision data that
exhibit high levels of data parallelism. Multimedia data are
packed into subwords that are processed in parallel, according
to the SIMD paradigm [1]. Several new instructions have
been introduced in order to efficiently handle subword parallel
operations. Besides parallel arithmetic operations, in many
cases, the subwords need to be rearranged inside the registers
to enhance the required computation. Therefore new shift
and permute instructions have been proposed that handle all
required data permutations in the subword level [2].

Besides multimedia processing, efficient bit permutation in-
structions are needed for the software implementation of block
ciphers in order to achieve the required throughput [3]. Since
cryptographic algorithms consume an increasing percentage of
processor’s workload, the selection of efficient bit permutation
instructions, and the design of fast bit permutation units has
recently attracted a lot of interest [4]-[7]. Bit permutations is
the most difficult form of subword permutations. The difficulty
lies in the large number of distinct possible results (n! per-
mutations of a n-bit value are possible). Several instructions
and their hardware implementations have been proposed to
efficiently perform arbitrary bit permutations [3]. Among them
CROSS, OMFLIP, IBFLY, and GRP need the smallest number
of instructions, i.e., logy n, to generate an arbitrary permu-
tation of n bits. Besides GRP, the functionality of the rest
instructions is a direct mapping to a known interconnection
network. Although this approach leads to efficient hardware
implementations it has one major drawback. These instructions
do not have any easily described functionality. In order to
determine the outcome of the execution of the instruction, the
behavior of the corresponding interconnection network has to

We thank the European Social Fund (ESF), Operational Program for
Educational and Vocational Training II (EPEAEK II), and particularly the
Program PYTHAGORAS, for funding the above work.

0-7803-9390-2/06/$20.00 ©2006 |EEE

49

be simulated. Therefore their adoption by a general purpose
instruction set is limited.

The GRP instruction does not have the above mentioned
limitations and achieves greater speedup when used in crypto-
graphic applications [7]. GRP has a more general functionality
and its use is versatile. The benefits of using GRP in other
applications has been examined in [8]. The GRP R4, Rs, R¢
instruction takes two n-bit source operands, the data and the
control bits stored in Rg and R, respectively, and generates one
result that is put in the destination register Rq. The instruction
divides the bits of the source register in two groups according
to the values of the control bits. If a control bit is 1, then
the corresponding data bit of Rg is put into the first group.
Otherwise, the bit of R. is put into the second group. The
final relative position of the bits within each group remains
unchanged. An example of the function of the GRP instruction
is shown in Fig. 1.

Rq ‘ a7] asl asl a4] a3] a2] a1] ao‘

R, |1|O0f1|0f0O|O0|1[0

Rd |a7| asl a1| asl a4la3l aZI ao‘

Fig. 1. Example of the GRP functionality.

The above discussion shows that GRP is the most interesting
candidate instruction to be incorporated in the instruction set
of a general-purpose microprocessor. In this paper a new
hardware implementation for the GRP instruction is proposed.
The proposed permutation unit is fast and scalable and it’s
design resembles the functionality of bitonic sorting networks.
Also, due to its regular structure allows efficient VLSI imple-
mentation. The proposed bit permutation unit is compared to
previously published designs using static CMOS implementa-
tions. The proposed design is faster achieving delay reductions
more than 20%.

The rest of the paper is organized as follows. Section II gives
a brief review of the previous GRP hardware implementations.
Section III describes in detail the proposed architecture, while
its execution latency is analyzed in Section IV. Finally con-
clusions are drawn in Section V.

II. PREVIOUS WORK

Two circuits have been proposed for the implementation of
the GRP instruction [9], [10]. In both cases, the two datapath
architecture, shown in Fig. 2, is followed. The left datapath
is responsible for concentrating the data bits with control bits

ISCAS 2006

equal to one to the left side of the result register. In the same
manner, the right datapath that assumes complemented control
bits, concentrates the rest data bits to the right side of the
result register. The partial results of the two extraction units
are unified with a logical OR operation. In order to allow
the OR-unification at the output, the input data bits are first
masked with the corresponding control bits. The two extraction
units have almost identical structure, since the direction of the
concentration of the data bits slightly alters their design.

(2] 2s[a[2 2] 2 2 []

[o [o o[oH o]

Complement Control bits

R ENEN ENENEN EN R Y EN EMENENENEN EY

[1[o]1[ofofo[r]o] [of1]of1]*[1]o]1]
ANDmask > ANDmask >

el o &l o | o [&]

SRl o [o [o[]

[0 2] o [as]as[2] o [ao]

Extraction Unit

[o] oo Tas]ai[as[2[2]

LEFT RIGHT

RN EN AT

Fig. 2. The general architecture of the bit permutation unit.

The first implementation of the extraction unit [9] tries
to combine consecutive groups of bits into larger groups
recursively. The resulting groups contain data bits on one end
and zeros on the other. At each stage the merging of two
groups is performed with shift operations, and the shifting
amount is determined by accumulating the number of shifting
positions used in previous stages. The required shifts are
encoded in one-hot code and a circuit for performing one-hot
additions has been proposed. The resulting shifting amount
configures a set of shifters so as to produce a larger group of
properly aligned bits.

The second implementation, instead of using cascaded
shifters, performs the same operation using an inverse butterfly
network and a special decoder [10]. The decoder takes as input
the control bits of the GRP and produces the bits that configure
the inverse butterfly network. In the first decoding stage the
number of ones in specific parts of the control bits are counted,
using a tree of carry-save one’s counters. The derived values
are given to a set of special rotation circuits that produce the
appropriate select signals for the multiplexers of the network.

The general architecture, shown in Fig. 2 is also followed
by the proposed approach. However the implementation of the
extraction unit is more efficient and relies on the introduced
in this paper enhanced bitonic sorting networks.

III. HIGH SPEED EXTRACTION UNIT

According to the definition of the GRP instruction, the
data bits, that have a corresponding control bit equal to one,
are concentrated to the left side of the output. This action
resembles a sorting operation for the control bits, where the
largest bits, i.e. bits equal to one, are gathered to the left.

A general sorting network is composed of appropri-
ately connected subnetworks, called bitonic sorters, that

50

sort a special form of bit sequences, called bitonic se-
quences [11]. A string of bits is bitonic when it is of
the form 11...100...011...1 or 00...011...100...0. A
bitonic sorter is effectively a butterfly network. Each cell of
the butterfly selects either the maximum or the minimum of the
two input bits. When two bits are compared, their maximum
is given by the boolean OR function, while the corresponding
minimum is given by the boolean AND function. Fig. 3 shows
a bitonic sorter of 8 bits. In order to construct a general sorting
network log, n stages of bitonic sorters are used. At each
stage, two bitonic sequences are merged and a new double
size bitonic sequence is produced [11].

Fig. 3. An 8-bit bitonic sequence sorting network.

The basic building block of the proposed extraction unit is
the Enhanced Bitonic Sorter (EBS). This circuit can sort any
data bits preserving also their relative significance assuming
that the corresponding control bits are in bitonic form.

A. Enhanced Bitonic Sorter

The enhanced bitonic sorter has two n-bit inputs. The
data bits that need to be sorted to the left end of the
result, and the corresponding control bits that denote which
data bits should be selected. According to the construction
of the extraction unit, the control bits of a n-bit EBS are
bitonic sequences of the form 0...01...1 : 1...10...0,
where : denotes the middle of the two halves. For exam-
ple, for a 4-bit EBS, if the data and the control bits are
[a b c d],and [0 1 1 0], respectively, the result
will be [b ¢ x x] and [1 1 0 0]. The x values
point out the fact that the EBS unit does not necessarily
preserve the relative positions of the data bits with zero control
bits.

The EBS is composed of two datapaths. One is responsible
for sorting the control bits using a bitonic sorter as the one
in Fig. 3. The other is responsible for sorting the data bits

(d;e;) (dgr 2g) (A5 ¢) (0, ¢,) (d, ©)) (0, C,) (d, ¢,) (d,)

Fig. 4. The architecture of an EBS unit.

having control bits equal to one without changing their relative
position. Fig. 4 shows the butterfly structure of the EBS unit
that is used to sort the desired data bits. In the following
we will describe the proposed algorithm and the circuit level
implementation of the H and L blocks.

The butterfly network works recursively. The first stage
divides the data bits into two independent halves. The inter-
connections guarantee that the data bits will be in the correct
half at the output of the first stage (they should reside in this
half at the final output). However, their relative positions might
be wrong. At the second stage, data are again divided to the
correct half and their relative position is partially corrected.
This procedure continues, recursively, until the last stage
where the final correction of the relative positions is made.

Without control bit extension i With control bit extension :
iabcdefghiiabcdefghi
Control {0 0] [T 1 _1][0 0 0]{i[0 o] 1 1A 1 1]!

Data

Final
Result

i[c d e|][x x x x x]ji[c d e|[f 9 hl[x x]}

Fig. 5. Control bits extension.

In order to simplify the hardware complexity of the pro-
posed EBS we assume that the n/2 least significant control
bits (right half) are always equal to 1. This consideration does
not alter the functionality of the EBS unit. As shown in Fig. 5,
since we are only interested in sorting correctly the bits c, d,
and e, even if we change the control bits of the last three data
to 1 the final result remains in both cases the same. Recall that
the bits in positions £, g, and h have already been nullified
because of the AND masking operation in the first stage of
the bit permutation unit (see Fig. 2).

Figure 6(a) gives an example of the functionality of the
first stage. The bits that are equal to zero at the left-end of the
control word, represent empty positions that can be filled by
the most significant data bits of the right half. The data bits
e and £ should be exchanged with the bits a and b that have
control bits equal to zero, in order to fill up the left half of the
data word. At the output of the stage, a new control bit, called
swap bit, is generated for each data bit. Each swap bit indicates
if the corresponding data bit has changed its position at the
previous stage. Hence, swap bits equal to one are assigned to
the data bits e, £, a and d. The swap bits of ¢, d, g and h
are set to zero, since they are already in the correct half of
the result and hence they should not move. In general, at this
stage a swap between data bits d; and d;_,, /> takes place only
when the corresponding control bits ¢; and ¢;_,/» are equal
to (0, 1). Therefore the newly generated swap bit s; equals to
the complement of bit ¢;, i.e., ¢;, since each ¢;_,, /2 is assumed
to be equal to one.

Each stage k use the swap bits generated at stage k — 1 to
correct the relative position of the data bits at each half. When
the swap bits of two data bits are different it means that their
relative position is not correct and they should be swapped. For
instance, at the second stage (Fig. 6(b)) the data bits e-c and
f-d have different swap bits. Data bits e and £ came from the
right half of the previous stage and passed over ¢ and d that are

51

Data
Control

Data

Data

! Swap Bits

Fig. 6. Example of the proposed sorting algorithm.

more significant, i.e they should be on the left hand of data bits
e and £ at the final result. However they did not changed their
position at the previous stage. Hence, an exchange should take
place in order to correct their relative position. At the right half
of the second stage, data bits a-g and b-h also have different
swap bits. The data bits a and b came from the left half of
the previous stage and they were placed to more significant
positions compared to the data bits g and h. Because data bits
g and h originally had control bits equal to one an exchange
with a and b, respectively, should take place in order to correct
their relative position. At the output of the second stage, swap
bits equal to one are assigned to the data bits that changed
position at this stage. The remaining stages work in the same
way because of the recursive nature of the butterfly network.
Fig. 6(c) shows the last stage of the example. Hence, when
the swap bits of two data bits are different, a swap between
them takes place and their new swap bits are equal to one.
The datapaths for sorting the data and the control bits both

First Stage Stage k, k> 1
d ¢ in2 Cinz s, d ¢ Sine Ginek Cppypr
cl | CI | \\ [\ \‘
L S s A el S S s S A
s d ¢ Stz Gina Gz s d ¢ Sin2 Aok Cin2
Fig. 7. The logic-level implementation of the H and L cells.

rely on the same butterfly network. This means that the two
butterflies can be merged, as shown in Fig. 7.

B. Sorting in the opposite direction

In order to configure the proposed EBS to gather the
corresponding data bits in the opposite direction, i.e., right
end of the result, just two simple changes are only required.
In the first stage of the EBS unit the control signals of
the multiplexers should be changed from ¢; to ¢;_, /3. This
also changes the generation of the corresponding swap bits.
Also, the OR gates of the H blocks should be replaced by
AND gates, while the AND gates of the L blocks should be
transformed to OR gates.

k—o =

Fig. 8. The structure of a complete 8-bit extraction unit.

C. Complete Extraction Unit

A general extraction unit can sort data bits with arbitrary
control bits and is implemented in log, n stages. At each
stage i there are n/2° EBS units of size 2°. In every stage,
two neighbor EBS sort their data and control bits in opposite
directions in order the resulting control bits to form a bitonic
sequence. Fig. 8 illustrates an 8-bit extraction module. The
number in each EBS determines its size and the arrows denote
the direction of the sorting procedure. For the extraction unit
of the right datapath of Fig. 2 the sorting direction of the last
EBS unit should change from left to right. Also the H and L
cells of the last 8-bit EBS do not require the OR/AND gates
that sort the control bits since no new control bits are generated
by the extraction unit. Fig. 8 also shows an example of the
functionality of the circuit.

IV. RESULTS

The proposed circuit has been evaluated using the method
of Logical Effort [12]. The delay results have been obtained in
a standard performance 130nm technology [13]. Characteriza-
tion of the technology was performed for the typical process
corner at a temperature of 70°C, assuming a nominal supply
voltage of 1.2V. In order to get accurate estimates of the delay
of the circuit, each gate’s parameters, i.e. logical effort and
parasitic delay, have been derived using HSpice (see Table I).

Fig. 9 shows the delay of a 64-bit GRP unit for various
input capacitances assuming that the outputs of the circuit are
loaded with a capacitance of 300fF that roughly corresponds
to a Imm metal-2 wire. Interstage lateral wiring loads have
also been taken into account, assuming a 7um bit slice, i.e., 18
metal-1 tracks. Minimum delay gate sizing has been performed
according to the method of Logical Effort. The worst input of
each gate has been considered. The control bits arrive earlier
than the data inputs of the multiplexers. Therefore, the critical
path of the circuit goes through the multiplexers network that
rearranges the data bits. Since fixed wiring loads are taken
into account several iterations are required in order to perform
minimum delay gate sizing.

For the cases of fast designs (Cyyt/Cin < 10) the delay of
the proposed design is below 30.5 FO4 (1FO4 ~ 62ps, for
the technology used). According to the logical effort analysis
presented in [10] the previous implementations of GRP had
a minimum delay greater than 38.1 FO4 assuming only the
case of path electrical effort of 1, which is not so realistic.
Therefore it is derived that the proposed bit permutation unit

52

TABLE I
DELAY CHARACTERIZATION OF VARIOUS LOGIC GATES. MUX AND XOR
GATES HAVE BEEN IMPLEMENTED USING TRANSMISSION GATES.

130nm Static || INV [NAND || NOR || MUXZI | XOR
CMOS A TB A TB | In]TS]JTATJTB
Logical Effort I 1.21 1.22 1.60 T 153 1.73 1.74 1.73 136
Parasitic 1.02 1,92 | 1.48 || 248 | 1.79 || 2.76 | 3.80 || 3.82 | 5.13
325
32
<
Q 315
g
[
2 3
£
=1
E
é 30.5 / Fast Designs
30

10 15 20 25
Electrical EffortC_ /C.

out ~in

5 30

Fig. 9. The delay of the proposed 64-bit GRP unit for various ratios of input
to output loading capacitance.

is expected to be faster by at least 20%. In real case the delay
savings are expected to be greater. Finally we can say that the
proposed bit permutation unit can fit in two pipeline stages of
a high-speed microprocessor.

V. CONCLUSIONS

A new fast bit permutation unit has been proposed in
this paper. New enhanced bitonic sorting networks have been
introduced that allow the efficient realization of the GRP
instruction. Taking into account the versatility and scalability
of GRP, we conclude that media enhanced microprocessors
can trully benefit by the proposed bit permutation unit.

REFERENCES
[1]

[2]
[3]

[4]

T. Conte et al., “Challenges to Combining General-Purpose and Multi-
media Processors,” Computer, vol. 12, no. 30, pp. 33-37, Dec. 1997.
Intel, Intel Itanium Architecture Software Developers Manual, 2002.
R. B. Lee, Z. Shi, and X. Yang, “Efficient permutation instructions for
fast software cryptography,” IEEE Micro, no. 6, pp. 56-69, Dec 2001.
X. Yang and R. B. Lee, “Fast subword permutation instructions using
omega and flip network stages,” in Proc. of IEEE International Confer-
ence on Computer Design, Sept 2000, pp. 15-22.

J. P. McGregor and R. B. Lee, “Architectural enhancements for fast
subword permutations with repetitions in cryptographic applications,”
in Proc. of IEEE ICCD, Sept 2001, pp. 453-461.

Z. Shi and R. B. Lee, “Bit permutation instructions for accelerating
software cryptography,” in IEEE ASAP, July 2000, pp. 138-148.

Z.]. Shi, Bit Permutation Instructions: Architecture, Implementation and
Cryptographic Properties. PhD Thesis, Princeton University, 2004.
Z. Shi and R. B. Lee, “Subword sorting with versatile permutation
instructions,” in IEEE ICCD, Sept 2002, pp. 234-241.

Z.]J. Shi and R. B. Lee, “Implementation complexity of bit permutation
instructions,” in Proc. of IEEE Asilomar Conference on Signals, Systems
and Computers, Nov 2003, pp. 879-886.

Y. Hilewitz, Z. J. Shi, and R. B. Lee, “Comparing fast implementations
of bit permutation instructions,” in Proc. of IEEE Asilomar Conference
on Signals, Systems and Computers, Nov 2004, pp. 1856-1863.

K. E. Batcher, “Sorting networks and their applications,” in AFIPS proc.
Spring Joint Computer Conference, 1968, pp. 307-314.

D. H. 1. Sunderland, B. Sproul, Logical Effort: Designing Fast CMOS
Circuits. Morgan Kaufmann, 1999.
UMC 130nm CMOS FSG process.

[5]

[6]
[7]
[8]
[9]

[10]

[11]
[12]

[13] Europractice IC Service.

	Main
	Welcome Messages
	Committees
	Table of Contents
	Technical Program
	Tutorials
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

