
A SYSTEMATIC METHODOLOGY FOR DESIGNING AREA-TIME EFFICIENT
PARALLEL-PREFIX MODULO 2

n
− 1 ADDERS

G. Dimitrakopoulos† , H. T. Vergos†‡, D. Nikolos†‡, and C. Efstathiou§

†Computer Engineering and Informatics Dept., University of Patras, 26500 Patras, Greece
‡Computer Technology Institute, 3 Kolokotroni Str., 26221 Patras, Greece

§Informatics Dept., TEI of Athens, Ag. Spyridonos St., 12210 Egaleo, Athens, Greece.

ABSTRACT
In this paper a systematic methodology for designing parallel-
prefix modulo 2n − 1 adders, for every n, is introduced. The
resulting modulo 2n − 1 adders feature minimum logical depth
and bounded fan-out loading. Additionally, an optimization
technique is proposed, which aims to the reduction of redundant
operators that appear on the parallel-prefix carry computation
trees. Performance data reveal that the reduced structures achieve
area×time complexity reduction of up to 46% when compared to
previously reported designs.

1. INTRODUCTION
Modulo 2n − 1 arithmetic is used in a variety of applications,
ranging from the Residue Number System [1], up to fault-tolerant
computer systems [2], and checksum computations in high-speed
networks [3]. Therefore, high-speed low-cost modulo 2n − 1
adders are essential building blocks for all these applications.

Several proposals have already appeared to the modulo 2n−1
adder design problem. To cut down the addition delay, single and
two level CLA modulo 2n − 1 adders have been proposed in [4].
Even faster designs, based on the parallel-prefix carry computation
approach have appeared recently in [5] and [6]. In [5] the most-
significant carry of a parallel-prefix integer addition is fed back
to all the bits from 0 to n − 1 through an extra prefix level,
thus increasing the delay, and leading to a maximum wire fan-out
n. On the contrary, in [6] a new theory for the design of high-
speed modulo 2n − 1 adders was introduced based on the idea
of recirculating the carry generate and carry propagate signals,
instead of the traditional end-around carry approach. Although
the fundamental theory and a general architecture were presented
in [6], no straightforward design method was given, when n 6= 2k.
This task was left to the intuition of the designer. When n is of the
form 2k, it was shown that the adders proposed in [6] outperform
those proposed in [5].

The contribution of the current paper is twofold. First,
a formal framework for the design of parallel-prefix modulo
2n − 1 adders, for every n, is introduced. The resulting adders
feature minimum logical depth and bounded fan-out. Second,
an optimization technique for reducing the number of operators
required by the carry computation unit of the designed parallel-
prefix adders, is proposed. The technique is based on identifying
and removing redundant operators; therefore neither the logical
depth nor the fan-out is increased by its application. The
reduction in the number of operators can be of up to 20%,
while experimental results based on static CMOS implementations
reveal that area×time complexity reductions from 4% to 46% can
be achieved.

Parallel-Prefix Carry Computation

. . .

. . .

cn-2 cn-3 cn-4
c-1

cn-1

hn-1 hn-2 hn-3 h0

sn-1 sn-2
sn-3 s0

an-1bn-1 an-2bn-2an-3bn-3
a0b0

Figure 1: The structure of a parallel-prefix modulo 2n − 1 adder.

The rest of the paper is organized as follows. Section 2
revisits the basics of parallel-prefix formulation of modulo 2n − 1
addition. In Section 3 the proposed design methodology is
introduced, while Section 4 presents the novel area-reduction
technique. Performance data are provided in Section 5. Finally,
conclusions are drawn in Section 6.

2. PARALLEL-PREFIX MODULO 2n − 1 ADDITION
In this section, we revisit the basics of the modulo 2n− 1 addition
when it is treated as a parallel-prefix problem [6]. Let A =
{an−1an−2 . . . a0} and B = {bn−1bn−2 . . . b0} represent the two
operands to be added, and S = {sn−1sn−2 . . . s0} denote their
sum. The addition can be performed by a three-stage circuit,
as shown in Fig. 1. The preprocessing stage produces the carry
generate gk, the carry propagate pk, and the half-sum hk, bits,
according to the relations gk = ak · bk, pk = ak + bk, and hk =
ak⊕bk, for 0 ≤ k ≤ n−1, where · , + , and ⊕ denote the logical
AND, OR, and exclusive-OR operations, respectively. Using
the carry generate/propagate pairs (gk, pk), the carry-computation
stage computes the carries ck using the associative prefix operator
◦, which is defined in [7] as (g, p) ◦ (g′, p′) = (g + p · g′, p · p′).
According to [6], each carry ck is produced by combining the
carry generate and propagate pairs from 0 through k and the carry
generate and propagate pairs from k+1 to n−1, using the formula,

(Gk, Pk) =(gk, pk) ◦ (gk−1, pk−1) ◦ . . . ◦ (g0, p0)◦

(gn−1, pn−1) ◦ . . . ◦ (gk+1, pk+1), (1)

where, ck = Gk. The carries generated by the carry-computation
unit, along with the half-sum bits produced by the preprocessing
stage, are used in the final stage to compute the sum bits sk,
according to sk = hk ⊕ ck−1, for 0 ≤ k ≤ n − 1, while
c−1 = cn−1. It should be noted that in contrast to integer addition,
the number of the carry generate/propagate pairs (gk, pk) that have
to be associated for the generation of each carry is equal to n.

The parallel-prefix carry computation structures are often
represented as Directed Acyclic Graphs (DAGs). In these graphs

V-225

0-7803-7762-1/03/$17.00 ©2003 IEEE

the prefix operators are represented by nodes which are placed on
a grid of rows (prefix levels) and bit columns.

3. THE PROPOSED DESIGN METHODOLOGY

In this section, based on the theory presented in [6], a systematic
methodology for the design of parallel-prefix modulo 2n − 1
adders, for every n, is introduced. The goals of the proposed
design methodology are at first to generate regular structures of
minimum logic depth, that is structures composed of m prefix
levels, with m = dlog2 ne, and secondly to maintain the fan-out
bounded to 2.

On the prefix levels of the carry computation unit, group
carry generate/propagate terms are produced.The number of carry
generate/propagate pairs (gk, pk) that are associated in the ith
prefix level, to form a group generate/propagate term, is called the
length of the group generate/propagate term and is denoted here
as Vi. For example the term { (g1, p1) ◦ (g0, p0) } has length 2,
while the term { (g2, p2) ◦ (g1, p1) ◦ (g0, p0) } has length 3. We
are interested in the generation of valid group generate/propagate
terms, that is, group terms that preserve the order of the carry
generate/propagate pairs (gk, pk), as dictated by (2).

The connections between the operators of successive prefix
levels can generate valid group carry generate/propagate terms of
different lengths.
Example 1: Assume that on the 1st prefix level of a
modulo 25 − 1 adder, all the valid group generate/propagate
terms of length 2, {(g4, p4) ◦ (g3, p3)}, {(g3, p3) ◦ (g2, p2) },
{ (g2, p2) ◦ (g1, p1) }, { (g1, p1)◦(g0, p0) }, { (g0, p0)◦(g4, p4) },
have been implemented. Depending on the connections between
the 1st and the 2nd prefix level, valid group generate/propagate
terms of length 3 or 4 can be produced:

1. Carry generate/propagate terms of length 2 with one bit-
position difference are combined to generate valid triplets,
by sharing a common term and using the well-known
idempodency property [8], i.e., { (g4, p4) ◦ (g3, p3) } ◦
{ (g3, p3) ◦ (g2, p2) } ⇔ { (g4, p4) ◦ (g3, p3) ◦ (g2, p2) }.

2. Two terms with of length 2 with two bit-positions difference
are combined to generate a valid quadruple, such as
{

{ (g4, p4) ◦ (g3, p3) } ◦ { (g2, p2) ◦ (g1, p1) }
}

. ¤

In our design we assume that on each prefix level, group
generate/propagate terms of the equal length are produced. Then,
in order to maintain the bounded fan-out 2 loading, a method
similar to recursive-doubling [9] is followed. In particular, the
length of the group terms of the ith level is selected to be
equal to Vi =

⌈

Vi+1

2

⌉

, which when unrolled gives, Vm = n,

Vm−1 =
⌈

Vm

2

⌉

=
⌈

n
2

⌉

, Vm−2 =
⌈

Vm−1

2

⌉

=

⌈

dn

2 e
2

⌉

=
⌈

n
4

⌉

, . . .

Therefore it can be derived that the length of the terms
implemented on the ith prefix level, 1 ≤ i ≤ m, equals to

Vi =
⌈ n

2m−i

⌉

, (2)

and V0 is assumed to be equal to one (V0 = 1).
Among the various connections between the nodes (operators)

of the ith prefix level, the connections that guarantee the
generation of valid group terms in the (i + 1)st prefix level
should be identified. Therefore, the rotate distance between the
ith and (i + 1)st levels is introduced, which is denoted as Di

i+1.
The rotate distance Di

i+1 between the ith and the (i + 1)st

prefix level is equal to Vi+1 − Vi, irrespective of the number of
carry generate/propagate pairs (gk, pk) that are shared through
idempodency [8], as proven by Proposition 1.

Proposition 1. The rotate distance Di
i+1 between any two

successive prefix levels i and (i + 1) equals to Vi+1 − Vi, with
0 ≤ i ≤ m.

Proof. Two cases are distinguished according to the way the
group generate/propagate terms of the (i+ 1)st prefix level are
produced.

• The group carry generate/propagate terms of the (i+ 1)st
prefix level are generated without sharing any carry
generate/propagate pairs (gk, pk) of the group terms of the
ith level. Thus, it follows that the bit-position difference
between the operators of the ith level that are combined in
the (i+1)st prefix level, equals to Vi, or elseDi

i+1 =Vi, and
the length of the terms on the (i+ 1)st level is Vi+1 =2Vi,
which implies that Vi+1−Vi =Vi. Therefore it follows that
Di

i+1 =Vi+1 − Vi.

• The group carry generate/propagate terms of the (i+ 1)st
prefix level are generated after sharing r carry generate/
propagate pairs (gk, pk) of the group terms of the ith level.
Then, since all the terms that appear on the ith level are
of equal length, a group carry generate/propagate term is
produced in the (i + 1)st prefix level by combining two
terms with Vi − r bit-positions difference. The length of
the resulting term is equal to Vi+1 =2Vi−r⇒Vi+1−Vi =
Vi−r, which implies that the rotate distance (bit-positions
difference) is equal to Di

i+1 = Vi+1 − Vi.

From both cases it is derived that Di
i+1 = Vi+1 − Vi.

The rotate distance determines the connection between the
operators of two successive prefix levels, and the proposed
connection topology is shown in Fig. 2. The notation |x|q is used
to denote the operation x modulo q, and the coordinate pair (i, j)
denotes the placement of an operator on the jth bit column of the
ith prefix level, with 0 ≤ j ≤ n− 1 and 1 ≤ i ≤ m.

(i , j)

. . .(i-1 , j) (i-1 , j - D n)i

i-1

Figure 2: The connection of the operators between two successive
prefix levels.

The coordinates of the operators connected via the lateral wires
include the modulo operation

∣

∣j −Di−1

i

∣

∣

n
since, according to

Eq. (2), the generation of each carry ck, with 0 ≤ k ≤ n − 1
imposes the association of both carry generate/propagate pairs
(gk1

, pk1
) with k1 ≤ k and carry generate/propagate pairs

(gk2
, pk2

) with k2 > k. In case that the operation
∣

∣j −Di−1

i

∣

∣

n
produces a negative value, then, based on the properties of the
modulo arithmetic, the value n−

∣

∣j −Di−1

i

∣

∣

n
is used. The

rotate distance is selected to be equal for all operators since this
is sufficient to maintain the wire fan-out bounded to 2. This
assumption is proven by the following proposition.

V-226

Proposition 2. If all the operators of each prefix level have the
same rotate distance then the maximum wire fan-out between
successive prefix levels is two.

Proof. Assume that there is at least one operator of the (i + 1)st
prefix level placed on the jth column that has rotate distance
D∗ > Di

i+1, where Di
i+1 is the rotate distance of the rest

n − 1 operators. Thus, the operator with rotate distance D∗

connects to the operators of the ith level with coordinates, (i, j)
and (i, |j −D∗|

n
). Since D∗ > Di

i+1 there exist an operator
placed on (i + 1, j −D∗ + Di

i+1) that connects to the operators
(i, j − D∗ + Di

i+1) and (i,
∣

∣(j − D∗ + Di
i+1) − Di

i+1

∣

∣

n
), or

equivalently (i,
∣

∣j − D∗
∣

∣

n
). Therefore the operator placed on

(i,
∣

∣j −D∗
∣

∣

n
) connects to (i+ 1, j) and (i+ 1, j −D∗ +Di

i+1)
through two lateral connections and to (i+ 1, |j −D∗|

n
) through

a vertical connection, implying a wire fan-out equal to 3.
In a similar manner it can be proven that if there is at least

one operator of the (i+ 1)st prefix level placed on the jth column
that has rotate distance D∗ < Di

i+1, then there is one wire with
fan-out 3. Hence, when the operators of each prefix level share the
same rotate distance, the maximum wire fan-out is equal to 2.

Design Procedure : Given the word length n of the modulo
2n − 1 adder, the proposed design methodology is described by
the following steps:

1. Using Eq. (1) calculate the length of the terms on the ith
level, for 1 ≤ i ≤ m.

2. Calculate the rotate distance between any two successive
prefix levels, according to Proposition 1.

3. Connect the operators between the (i − 1)st and the ith
level using the connection topology of Fig. 2. According to
Proposition 2, in order to maintain fan-out 2 the same rotate
distance should be used for each connection.

Example 2: In order the proposed methodology to be clarified
a modulo 25 − 1 adder is designed. The minimum prefix levels
required by a modulo 25 − 1 adder are m = dlog2 5e = 3.
Following the proposed design methodology the length of the carry
generate/propagate terms of each level are:

{V0, V1, V2, V3} =

{

1,

⌈

5

23−1

⌉

,

⌈

5

23−2

⌉

,

⌈

5

23−3

⌉}

={1, 2, 3, 5}

After computing the lengths Vi, the rotate distance between
successive levels has to be determined. It follows that,
{

D
0

1, D
1

2, D
2

3

}

= {V1 − V0, V2 − V1, V3 − V2} = {1, 1, 2},

which leads to the parallel-prefix computation unit of Fig. 3. ¤

01234

C0C1C2C3C4

Figure 3: The carry-computation unit of a parallel-prefix modulo
25 − 1 adder designed according to the proposed methodology.

4. GENERATION OF REDUCED-AREA CARRY
COMPUTATION UNITS

In the previous section a methodology for the implementation of
the carry-computation unit of parallel-prefix modulo 2n−1 adders,
which assumed that n operators are present on each prefix-level,
was presented. We will refer to these carry computation units
as full carry trees in the rest of the paper. In this section we
give an optimization procedure that removes redundant operators
and produces reduced-area computation units, hereafter denoted
as reduced carry trees. Note that the proposed optimization
procedure does not increase either the prefix levels or the fan-out
loading of the carry computation unit.

Fig. 4a presents a prefix operator with two inputs XA and XB

that implements the relation Y = XA◦XB . Since the wire fan-out
is bounded to 2, then its output is propagated in two buses, namely
YA and YB , where YA = YB = Y , as shown in Fig. 4a.

XA XB

YB
YA

XA XB

YA

YB

(a) (b)

Figure 4: Operator Replacement

Our optimization procedure is based on the following
observation: An operator placed on the ith prefix level can be
removed if it does not affect the functionality of the next prefix
levels. Therefore, starting from the first level of the full carry tree,
the operators are conditionally examined for removal one-by-one.
If the removal does not affect the group carry generate/propagate
terms of the next level then the operator is removed. In case that
the removal leads to non-valid terms in the following prefix level
then the operator can not be removed.

The removal of a black-dot operator involves the elimination
of its boolean-logic function while it fully maintains the wire
connections. The removal is therefore performed according to the
following rule: The vertical wire input directly connects to the
vertical wire output, and the lateral wire input directly connects
to the lateral wire output. Following Fig. 4b, and the introduced
connection rule, it holds that YA = XA and YB = XB . It should
be noted that, when the removal of an operator leads to a valid
prefix modulo 2n−1 carry tree, the bounded wire fan-out property
is also preserved, since no wire is either added or removed.

Example 3: A full-prefix tree of a modulo 25 − 1 adder,
generated according to the methodology presented in Section 3,
is shown in Fig. 5a. The group carry generate/propagate
terms that are implemented on the nodes R1 and R2 are
given by: R1 =

{

{(g4, p4) ◦ (g3, p3)}◦{(g3, p3) ◦ (g2, p2)}
}

=
{

(g4, p4)◦(g3, p3)◦(g2, p2)
}

, andR2 =
{

{(g0, p0)◦(g4, p4)}◦

{(g4, p4) ◦ (g3, p3)}
}

=
{

(g0, p0) ◦ (g4, p4) ◦ (g3, p3)
}

In
Fig. 5b the (1, 4) operator has been removed, while its vertical and
lateral connections have been preserved. In this case the group
generate/propagate terms that are implemented on the nodes R∗

1

and R∗

2 , are equal to, R∗

1 =
{

{(g4, p4)} ◦ {(g3, p3) ◦ (g2, p2)}
}

and R∗

2 =
{

{(g0, p0) ◦ (g4, p4)} ◦ {(g3, p3)}
}

, which are equal
to terms of the nodes R1 and R2 in the full-prefix tree. No
other node needs to be checked since they are not affected by the
removal of the specific operator. Therefore, the removal of node
(1, 4) leads to a valid parallel-prefix modulo 25 − 1 tree carry

V-227

Table I: Area(µm2) and Time(ns) results achieved by the reduced and full-carry trees, and the adders presented in [5]. The AT(%) columns
present the Area×Time Savings achieved by the reduced-carry tree versus the other designs.

n Reduced Full Tree [5] Ladner–Fisher [5] Kogge-Stone
Area Time Area Time AT(%) Area Time AT(%) Area Time AT(%)

5 2094 1.46 2363 1.46 11% 1860 1.76 7% 2219 1.82 24%
6 2566 1.46 2835 1.46 9% 2333 1.84 13% 2781 1.85 27%
9 4612 1.75 5060 1.75 9% 3751 2.25 4% 4827 2.27 26%

12 6209 1.75 6747 1.75 8% 5463 2.69 26% 6693 2.37 31%
20 12142 2.03 13039 2.03 7% 9465 3.45 25% 12928 3.23 41%
24 14570 2.03 15646 2.03 7% 11714 3.82 34% 15626 3.48 46%

01234

C0C1C2C3C4

R1 R2

(a)

01234

C0C1C2C3C4

R*1 R*2

(b)

01234

C0C1C2C3C4
(c)

Figure 5: The reduction process for the modulo 25 − 1 adder of Example 3.

generator. Following the same procedure for all remaining nodes,
the resulting reduced prefix-tree is shown in Fig. 5c. ¤

Different reductions can be achieved, depending on the value
of n. In case that n is in the range 2m−1 + 1≤n≤2m−1 + 2m−2,
for a certain logic depth m = dlog2 ne, then the number of
operators removed from the full-carry tree is approximately equal
to
⌈

n

2

⌉

. In the rest of the cases no reduction is possible.

5. EXPERIMENTAL RESULTS
The proposed full and reduced carry-tree adders were compared
against the prefix adders proposed in [5], for several values of n,
when either a Ladner-Fischer [10] or a Kogge-Stone [9] carry-
computation unit is used for the adders of [5]. All adders were
described in Verilog HDL and mapped in the UMC-VST 25
implementation technology (0.25µm, up to 5-metal layers, 1.8 /
3.3V), using the Design Compiler tool set of Synopsysr.

Table I summarizes the results. Since the proposed structures
require one less prefix level than those of [5], both full and reduced
carry tree adders offer smaller execution latency. Moreover, since
their fan-out is kept constant at 2, their delay highly depends on
the number of prefix levels required. Therefore adders with the
same number of prefix levels (for example the modulo 29−1 and
212−1 adders) have the same execution latency. This is not the case
for the adders proposed in [5] because the feedback carry of the
last-stage prefix operators has a fan-out loading equal to n. We
have also included in Table I the area×time savings achieved by
the proposed reduced-carry trees compared to the full-carry trees
and the adders of [5]. As Table I indicates, in all examined cases,
the proposed reduced-carry adders exhibit the best performance,
achieving area×time savings ranging from 4% to 46%.

6. CONCLUSIONS
High-speed parallel-prefix modulo 2n− 1 adders can be useful
in a variety of computer applications. In [6] the fundamental
theory was given, along with a method to design them, when
n=2k. In the rest cases, the designer had either to use his intuition
or to rely on the structures proposed in [5] that have degraded
performance. In this paper we have presented a systematic way

to design parallel-prefix modulo 2n − 1 adders, for every n,
with the minimum logic depth and a constant fan-out loading
of 2. We have further introduced an optimization procedure
to eliminate redundant prefix operators in the carry computation
logic. Experimental results indicate that the proposed adders,
besides being faster than all known structures, they also offer the
best performance under the area×time metric.

7. REFERENCES
[1] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and

Fred J. Taylor, Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing, IEEE Press, 1986.

[2] B. J. Johnson, Design and Analysis of Fault-Tolerant Digital
Systems, AddisonWesley Publishing Company, 1989.

[3] F. Halsall, Data Communications, Computer Networks and
Open Systems, Addison Wesley, 1996.

[4] C. Efstathiou, D. Nikolos, and J. Kalamatianos, “Area-Time
Efficient Modulo 2n − 1 Adder Design,” IEEE Trans. Circ.
Syst. II, vol. 41, no. 7, pp. 463–467, Jul. 1994.

[5] R. Zimmerman, “Efficient VLSI Implementation of Modulo
(2n±1) Addition and Multiplication,” in Proc. of 14th IEEE
Symposium Computer Arithmetic, April 1999, pp. 158–167.

[6] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos,
and J. Kalamatianos, “High-Speed Parallel-Prefix Modulo
2n − 1 Adders,” IEEE Trans. Comp., vol. 49, no. 7, pp.
673–680, Jul. 2000.

[7] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel
Adders,” IEEE Trans. Comp., vol. 31, no. 3, pp. 260–264,
Mar. 1982.

[8] T. Lynch and E. E. Swartzlander, “The Redundant Cell
Adder,” in Proc. of 10th IEEE Symposium Computer
Arithmetic, Jun. 1991, pp. 165–170.

[9] P. M. Kogge and H. S. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,”
IEEE Trans. Comp., vol. C-22, pp. 786–792, Aug. 1973.

[10] R. E. Ladner and M. J. Fischer, “Parallel prefix
computation,” JACM, vol. 27, no. 4, pp. 831–838, Oct. 1980.

V-228

	MAIN PAGE
	SEARCH

	VLSI Systems and Applications

	V_69
	V_73
	V_77
	V_81
	V_85
	V_89
	V_93
	V_97
	V_101
	V_105
	V_109
	V_113
	V_117
	V_121
	V_125
	V_129
	V_133
	V_137
	V_141
	V_145
	V_149
	V_153
	V_157
	V_161
	V_165
	V_169
	V_173
	V_177
	V_181
	V_185
	V_189
	V_193
	V_197
	V_201
	V_205
	V_209
	V_213
	V_217
	V_221
	V_225
	V_229
	V_233
	V_237
	V_241
	V_245
	V_249
	V_253
	V_257
	V_261

