
INTEGRATION, the VLSI journal 77 (2021) 104–112

Available online 7 November 2020
0167-9260/© 2020 Elsevier B.V. All rights reserved.

Multicast-enabled network-on-chip routers leveraging partitioned
allocation and switching

Dimitris Konstantinou a, Chrysostomos Nicopoulos b, Junghee Lee c, Giorgos Dimitrakopoulos a,*

a Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
b Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
c School of Cyber Security, Korea University, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Network-on-Chip
Multicast
Router
Micro-architecture

A B S T R A C T

Multicast on-chip communication is encountered in various cache-coherence protocols targeting multi-core
processors, and its pervasiveness is increasing due to the proliferation of machine learning accelerators. In-
network handling of multicast traffic imposes additional switching-level restrictions to guarantee deadlock
freedom, while it stresses the allocation efficiency of Network-on-Chip (NoC) routers. In this work, we propose a
novel partitioned NoC router microarchitecture, called SmartFork, which employs a versatile and cost-efficient
multicast packet replication scheme that allows the design of high-throughput and low-cost NoCs. The design
is adapted to the average branch splitting observed in real-world multicast routing algorithms. Compared to
state-of-the-art NoC multicast approaches, SmartFork is demonstrated to yield high performance in terms of
latency and throughput, while still offering a cost-effective implementation.

1. Introduction

Networks-on-Chip (NoC) have been universally established as the
enabling communication fabrics that can sustain the many-core era.
Modern NoCs need to support both unicast (point-to-point) and multi-
cast (one-to-many) traffic. Multicast (and often broadcast) communi-
cation is widespread in some of the most popular cache-coherence
protocols targeting multi-core processors, while the multicast intensity
has been shown to increase with the number of on-chip cores, thereby
underscoring its performance impact on system scalability. Further-
more, multicast traffic is also widespread in the increasingly prevalent
hardware accelerators targeting artificial intelligence [1].

In-network multicast support can take various forms. A naive and
low-performing approach is to inject multiple unicast clones of the
packet, with each one sent to a distinct recipient (i.e., unicast-based). To
increase performance – while keeping a minimal multicast-packet
footprint – one may employ path-based multicast routing [2–4]. Only
one multicast packet is injected, which sequentially visits all recipients.
The packet is delivered to a single recipient at a time, allowing for at
most two multicast branches, with one of them always sinking into the
local ejection port.

To further improve performance, tree-based multicasting relaxes the

replication degree, allowing for branching to an arbitrary number of
output ports within each router [5–9]. This extra flexibility enables each
recipient to be served independently, and, thus, more quickly, as
opposed to creating sequential dependencies among recipients.

Nevertheless, the increased branching flexibility in tree-based mul-
ticast algorithms is precisely the reason why deadlocks may, in fact,
arise at the multicast-replication level, i.e., as a result of dependencies
among the various multicast branches. Note that such switching-level
deadlocks arise even if the routing algorithm is deadlock-free. To
tackle this issue, Virtual Cut-Through (VCT) switching [10–12] is
employed. Alternatively, low-performance circuit-switching approaches
[13,14], or costly deadlock recovery schemes [15], have also been
presented.

Multicast packets in NoCs are generally short, as they typically carry
only control information [16], or single-word data; e.g., a cacheline
invalidation message. Hence, multicast messages in NoCs could most
likely fit within a single-flit packet. Single-flit packets make the routing
of each multicast branch independent, and their switching in each router
is, by construction, deadlock-free. This attribute has been exploited in
Ref. [6,9] to build multicast NoCs. In a similar vein, the work in Ref. [17]
transforms all multicast packets into independent single-flit multicast
packets.

* Corresponding author.
E-mail address: dimitrak@ee.duth.gr (G. Dimitrakopoulos).

Contents lists available at ScienceDirect

Integration

journal homepage: www.elsevier.com/locate/vlsi

https://doi.org/10.1016/j.vlsi.2020.10.008
Received 21 March 2020; Received in revised form 22 July 2020; Accepted 25 October 2020

mailto:dimitrak@ee.duth.gr
www.sciencedirect.com/science/journal/01679260
https://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2020.10.008
https://doi.org/10.1016/j.vlsi.2020.10.008
https://doi.org/10.1016/j.vlsi.2020.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2020.10.008&domain=pdf

Integration 77 (2021) 104–112

105

Single-flit multicast allocation and switching inside each router can
be performed in two ways. One approach is to treat multicast branch
replication as a set of serially-executed unicast transmissions; i.e.,
sending a flit to multiple output ports in the same cycle is prohibited
[11]. This branch serialization yields a low-cost multicast solution, but
limits the flit replication rate to one output port per cycle. Alternatively,
each multicast packet can be replicated in parallel to all required output
branches in each router [9,18]. This parallel replication is readily sup-
ported by the crossbar of each NoC router. However, the increase of
requests from multiple input virtual channels to multiple output virtual
channels stresses the separable allocators used in state-of-the-art NoC
routers [19], thereby increasing Head-of-Line (HoL) blocking.

To address the inefficiency of separable allocation when dealing with
mixed multicast and unicast traffic, the use of input buffers with as many
independent read ports as the number of output ports in the router (aka
buffer speedup) has been proposed originally [10] and applied in a NoC
environment in Refs. [12,20]. This approach increases throughput by
providing a separate path for each input-to-output connection, but with
prohibitive hardware cost – especially with respect to local wiring
congestion.

Nevertheless, the key question is whether real-world multicast
routing algorithms exhibit such high levels of parallel branch splitting in
each router that would justify parallel branch replication combined with
full-fledged buffer speedup.

Parallel branch replication per router – with or without buffer
speedup – assumes that each input port can be connected in parallel to
all output ports. However, measurements on traffic generated by real
applications show that the amount of observed multicast branch split-
ting is much lower than the number of output ports. For instance, Fig. 1
depicts the average branch splitting across all PARSEC applications [21]
observed in each router of an 8×8 2D Chip Multi-Processor (CMP) in a
full-system simulation setup (the details pertaining to the evaluation
platform are described in Section 4.2). The routing algorithm employed
was XY.

In all cases, the average splitting is below 5 (the number of output
ports of a 2D mesh router), while, in the periphery of the NoC, it barely
surpasses 1, as needed by unicast packets. These low levels of intra-
router multicast branch splitting are, in fact, orthogonal to the NoC
traffic characteristics and the application workloads running on the
multicore system. The degree of multicast branch splitting is inherently an
attribute of the routing algorithm itself. Similar conclusions are reached
when using other state-of-the-art multicast routing algorithms, such as
Whirl [9], which constitutes a superset of the trees produced by several
other multicast routing algorithms [9].

Motivated by the observation that the degree of branch replication
per router, as dictated by the multicast routing algorithm, is much lower

than the number of input/output ports in a router, we hereby propose
SmartFork, a scalable multicast-enabled NoC micro-architecture that is
characterized by the following novel features:

(1) The output ports are partitioned into groups; intra-group ports
are serviced serially, while inter-group ports are serviced in
parallel. Therefore, SmartFork can be used to target any desired
point on the multicast performance spectrum.

(2) Each output partition is driven by a separate input-buffer read
port, thus mitigating allocation inefficiencies without intro-
ducing prohibitive hardware cost.

(3) Virtual Channels (VC) are inherently supported without any re-
strictions on which VCs can support multicasting; any VC within
the router can support multicast transfers.

SmartFork is evaluated through multifaceted and extensive cycle-
accurate simulations, as presented in Section 4. The evaluation frame-
work employs both synthetic traffic patterns and execution-driven, full-
system simulations with real application workloads. Additionally,
detailed hardware analysis of synthesized and placed-and-routed de-
signs using commercial 45 nm standard-cell libraries corroborates the
design’s implementation efficiency.

2. SmartFork: partitioned multicasting

The NoC routers facilitate the transfer of packets between commu-
nicating (source/destination) nodes. Packets are typically split into
smaller flow-control units, aka flits. The flits traverse the network in a
hop-by-hop fashion through all the routers encountered on the path
from the source to the destination. The micro-architecture of a typical
VC-based NoC router [19] is depicted in Fig. 2.

Each router has N input and N output ports. In a 2D mesh NoC to-
pology, N = 5; one input/output port for each cardinal direction, and a
local injection/ejection port. Each input port has V virtual channels,
with each channel being served by a different FIFO input buffer. All
incoming packets are written into these input buffers, and they pass
through a series of operational stages before they can exit the router. The
Routing Computation (RC) logic determines the output port of each
packet. The Virtual-channel Allocation (VA) stage maps input VCs to
output VCs. The Switch Allocation (SA) stage – that is typically split in
two stages, SA1 and SA2 – arbitrates amongst all input VCs requesting
access to the crossbar, and declares one winning flit for each input and
output port. The SA winners are then able to traverse the crossbar
(Switch Traversal, ST), and are placed on their respective output links.

The basic organization shown in Fig. 2 can, in fact, be used to also
support multicast transmissions, as explained in Ref. [9]. This is achieved
by allowing the flits of each input VC to simultaneously send requests to
multiple output ports. For instance, if a multicast packet must branch out
to three output ports of the router (as decided by the employed multicast
routing algorithm), then the packet is allowed to send concurrent

Fig. 1. The average number of branch splits per router observed across all
PARSEC benchmark applications [21] when executed in a full-system simula-
tion of a 64-node x86 CMP organized as an 8×8 2D mesh of processor tiles. Fig. 2. The micro-architecture of a typical virtual-channel-based NoC router.

D. Konstantinou et al.

Integration 77 (2021) 104–112

106

requests to all three output ports. The same multicast architecture has
also been used in the Scorpio cache-coherent multicore research pro-
totype [18]. While said approach is effective in handling multicast
communication and is cost-efficient, it suffers from an often-debilitating
affliction: increased susceptibility to HoL blocking. Specifically, if any of
the multiple requested output ports is/are unavailable, the flit at the
head of the input buffer must remain there until all required output ports
are, eventually, served. This requirement inevitably blocks the flits
stored behind the head flit in the same input VC, even though they may
be heading towards available output ports.

Recently, the work in Refs. [12] revived an older architecture [10]
that employs buffer speedup. In this case, each multicast packet is served
by independent input read ports used for accessing the different outputs.
Thus, in contrast to Ref. [9], a packet is blocked only when the requested
output port is not available, and not because a flit at the head of the same
input buffer cannot be replicated to other output ports. The architectures
in Ref. [9,12] constitute the current state-of-the-art in multicast-enabled
router architectures, and they will be used for experimental comparisons
in Section 4.

2.1. Router organization and operation

SmartFork is founded on two basic properties that enable high mul-
ticasting efficiency with minimal changes to the baseline VC-based NoC
router microarchitecture. The first property defines the number of
multicast branches that can be served in parallel in any given cycle,
denoted as P. The value of P aims to reflect the average branching degree
per router observed in established multicast routing algorithms. To
achieve this in a cost-efficient manner, the N output ports in a SmartFork
router are partitioned into P groups. Since P is an architectural param-
eter, the whole design space is covered: the serial approach corresponds
to P = 1, while the fully parallel one corresponds to P = N. The proposed
multicast-enabled design generalizes the degree of parallel branch
replication to any value in the range 1 ≤ P ≤ N, having a double-faceted
goal: matching the needed replication parallelism within the router,
thereby minimizing serialization latency, while the P-way independent/
partitioned buffer access allows access deeper in the buffer – past the
FIFO’s head position – thus mitigating the effects of HoL blocking.

To reduce allocation inefficiencies and HoL blocking when serving
both multicast and unicast traffic, at a reasonable cost, the router con-
nects each partition of output ports with a distinct and independent read
port per input VC, as shown in Fig. 3. Each one of the P read ports per
input VC serves a different and statically allocated partition of the
router’s output ports. For example, in the case of a 2D mesh (N = 5), and
assuming P = 2, the first read port of each input buffer can serve 3 output
ports (East, West, and the Ejection Port), while the second read port of
each input buffer can serve the remaining 2 output ports (North and
South). The P read ports per input buffer allow for independent (i.e.,
non-synchronized) and parallel branch replication across the output-

port partitions. Thus, HoL blocking is allowed for traffic heading to
the same output partitions and it is completely removed for outputs in
different output partitions. This approach is enough, as shown by real
application traffic demands, while using input buffers with multiple
independent read ports equal to the number of output ports in the router
(aka “buffer speedup”), as done [12] for reducing HoL blocking, incurs
an unnecessary cost. Within the SmartFork concept, the approach fol-
lowed in Ref. [9] and the Buffer Speedup used in Refs. [12], can be
thought of as the P = 1 and P = N cases, respectively.

This specific partitioning choice is also depicted in the walk-through
example of Fig. 4. Said example highlights the independence among the
P read ports, which has a clear benefit in reducing HoL blocking. Mul-
ticast flit A of a certain input VC needs to be replicated to the North,
South, and East output ports of a router in a 2D mesh network. This
replication occurs through the two partitions of the SmartFork router. In
the first cycle, flit A needs to request one of the two (North, or South)
output ports that belong to partition 0, and, concurrently, the East
output port that belongs to partition 1. Assume that flit A gets success-
fully serviced for the South output port, but it is blocked on the East
output port.

In the next cycle, the request of flit A for the blocked East output port
persists, while the flit is also requesting the North output port (note that
the flit has not yet been replicated to this particular output port). Having
the North output port serviced, all the output ports of flit A that may be
serviced through the second read port (i.e., the one dedicated to the
partition of the North and South output ports) have been fully served and,
thus, flit A will not use that read port again.

Fig. 3. The organization of a SmartFork router. Assuming the NoC router has N
output ports, SmartFork employs P read ports (with 1 ≤ P ≤ N) to serve a
maximum of P multicast branches in parallel, per cycle.

Fig. 4. Walk-through example of the operation of the SmartFork architecture.
In this example, multicast flits A and B are transmitted towards their respective
required output ports. Let us assume that the East port remains unavailable,
thereby causing HoL blocking.

D. Konstantinou et al.

Integration 77 (2021) 104–112

107

SmartFork’s architecture allows the next flit, B, to request trans-
mission through that partition’s – otherwise idle – read port. Therefore,
the request for the East output port still persists for flit A, since it has not
yet been serviced, while, concurrently and independently, flit B is
allowed to request the South output port and move to it through the
second read port of the same input VC. Each read port is able to continue
servicing all flits heading towards available output ports, regardless of
the progress of flit A that is headed to a currently unavailable output
port, thus effectively reducing HoL blocking per input VC.

2.2. Switch and VC allocation

Input-to-output allocation and switching in a SmartFork router in-
volves several steps. Initially, each input VC prepares at most P flit re-
quests. According to the outcome of the multicast routing computation
logic, each request may refer to multiple output ports that may possibly
belong to multiple output partitions. To simplify the design, the requests
are grouped per partition. Then, for each partition separately, each one
of those flit requests must win locally in the SA1 stage, which arbitrates
among the requests from all the VCs of the same input port. In other
words, the flits in each input port only contend with the flits of all other
VCs belonging to the same input port and wanting to move to the same
output partition. Therefore, the delay complexity of arbitration in the
SA1 stage remains identical to the one encountered in VC-based routers
[22,23], while, instead, in SmartFork P independent SA1 arbiters
operate in parallel per input port.

To keep complexity under control, each read port serves its respec-
tive output ports in a serial manner within its own output-port partition.
If a multicast packet must be split into two multicast branches in a
SmartFork router, and both branches must exit from output ports that
belong to the same output partition, then those branches will be served
serially. For example, using the aforementioned partitioning of output
ports in a 2D mesh (described in Section 2.1), if an incoming multicast
packet must branch out to the North and South output ports of the
router, those branches will be served serially (one after the other), since
the North and South output ports are both served by the same read port.
The packet will first be forwarded to one output port, and then to the
other output port.

The decision of which output port is served first from each input read
port is determined by the port selection logic, which selects one active
output port from those computed by the multicast routing unit. This
selection (of a single output port) needs an additional arbitration step
that is performed in parallel to SA1 for all contending flits, as shown in
Fig. 3.

On the other hand, if a packet must branch out to the North and West
output ports, then both branches can be served in parallel, since the
North and West output ports belong to different output-port partitions
and are, thus, served by different read ports.

The P winners of the SA1 stage will move in parallel to their corre-
sponding output partition having selected one valid request inside each
output partition. Also, since SmartFork is by design non-speculative and
each allocation step is always productive, the valid requests must refer
to an available resource. This is achieved by masking the port request
with the availability/readiness of the output port’s VCs.

Inside each output partition, SA2 arbiters [24] are employed (one for
each output port) which only see unicast requests. Therefore, one N: 1
arbiter per output is enough for the SA2 arbitration step. Essentially,
multicasting is achieved by replicating the same flit to different parti-
tions. The separate arbitration and multiplexing at each output port can
be efficiently implemented using the merged arbiter-multiplexers of
[25].

SmartFork follows a combined allocation [19,26] approach, thus not
requiring a separate VC allocator. In combined allocation, the input VC
that actually won access to its selected output is assigned to an available
output VC selected in parallel to SA2. Alternatively, the assigned output
VC could be selected from a pool of available VCs given to winning

packets in FIFO order [27].

3. Input-to-output partition assignment

SmartFork assumes that input ports are statically assigned to the P
output partitions. Once a partition is selected at design-time, no re-
partitioning is allowed thereafter. However, the input-to-output-
partition connectivity need not be the same for all routers of the
network and may optimally be adapted to (a) the (possibly) known
traffic characteristics and (b) how the routing algorithm distributes
traffic across the NoC.

This principle also applies inside each router, where each input port
can assume a different output port partitioning. For example, in the case
of P = 2 for a 2D mesh router, Read Port #0 of the North input port can
serve the output partition {West, East}, and Read Port #1 can serve
output partition {Local Eject Port, South}. The East input of the same
router is not obligated to use the same read-port-to-output assignment
and can connect its Read Ports #0 and #1 to output partitions {North,
West} and {South, Local Eject Port}, respectively. Note that, in both
cases, the output connections used in this example satisfy the XY routing
algorithm.

Our goal is to solve the assignment of the read ports of each input to
the output ports optimally, using a novel Integer Linear Program (ILP)
formulation that tries to load-balance the traffic passing through each
one of the P available read ports per input. Without loss of generality, we
assume that, for each input under consideration, we have available
traffic demand weights wj that declare how much of the incoming traffic
needs to leave from output port j of the router. If normalized, the sum of
the weights of all outputs for one input should not exceed one.

These weights can be derived from simulation of real or synthetic
traffic, or they can be probabilistic approximations of the traffic ex-
pected to pass from each input-to-output connection, based on the
characteristics of the routing algorithm. For example, the North output
of a router in a 2D mesh is expected to receive more traffic than the East
output, merely due to the turning restrictions of the XY routing algo-
rithm. Similarly, the East-to-West connection of a router in the center of
the NoC is more likely to have a higher weight than in a router on the
periphery of the NoC.

Balancing the utilization of the P read ports means that each read
port experiences similar traffic demand and no read port is over-utilized
compared to the others. This balancing can be achieved by properly
assigning read ports to outputs. To control which read port is connected
to which output, we define binary variables xij ∈ 0, 1: if xij = 1, it means
that the read port i of an input, with 0 ≤ i ≤ P − 1, is connected to output
j of the router, with 0 ≤ j ≤ N − 1. Since, in SmartFork, each output
cannot connect to more than one read ports of the same input, we need
to guarantee that for each output port j,

∑P− 1
i=0 xij = 1.

Based on the assignment of variables xij, the traffic load passing
through the read port i is equal to

φ(i) =
∑N− 1

j=0
xij wj (1)

Each read port would be perfectly load-balanced if all receive approxi-
mately the same load, i.e., φ(i) ≈ φ(k), ∀k∕=i. If this happens, each read
port would see a load equal to the average load of all outputs, i.e., wavg =
∑N− 1

j=0 wj/N.
The defined optimization problem aims at minimizing the absolute

distance of the load of each read port φ(i) from the average traffic load
wavg of the input port under investigation. Therefore, formally, we define
the load-balancing assignment problem as follows:

D. Konstantinou et al.

Integration 77 (2021) 104–112

108

minimize:
∑P− 1

i=0
|φ(i) − wavg|

subject to:
∑P− 1

i=0
xij = 1

xij ∈ {0, 1}, ∀i, j

(2)

The absolute value function can be easily handled in the ILP
formulation by introducing additional variables and constraints [28].
The ILP is solved using the Gurobi solver [29] in less than a second, since
the assumed numbers of output ports N and read ports P are limited in
real-world scenarios.

To see how the assignment problem works, let us describe a simple
numerical example. Assume that an input port needs to connect to 5
output ports, and that the traffic percentage to each output port is
distributed as follows:

{w0,w1,w2,w3,w4} = {0.375,0.457,0.061,0.083,0.024}

In other words, this particular input port needs to send most of its traffic
to outputs 1 and 0, respectively. If those two outputs are grouped in the
same partition, then the read port assigned to it would be over-utilized.
To avoid such scenario, the ILP gives the following assignment for the
case of P = 2 read ports:

Read Port #0 ↔ [1, 2].
Read Port #1 ↔ [0, 3, 4]
In this way, the total load expected on Read Port #0 would be 0.518,

while the total load on Read Port #1 would be 0.464.

4. Experimental evaluation

In this section, we evaluate the performance and hardware cost of
SmartFork, as compared to two current state-of-the-art multicast-
enabled NoC architectures: Design presented in Ref. [9] and a syn-
chronous equivalent version of [12]. Recall that the design in Ref. [9]
facilitates the simultaneous transmission of flits from one input VC to
multiple output ports. This is achieved by allowing input VCs to
concurrently send switch allocation requests to multiple output ports,
while using the same data multiplexing network. On the contrary [12],
multiplies data multiplexing paths offer per input VC as many inde-
pendent read ports as the number of output ports in the router.

The performance evaluation approach is double-faceted, utilizing (1)
synthetic traffic patterns, and (2) real application workloads running in an
execution-driven, full-system simulation environment. Synthetic traffic
patterns are initially used – in Section 4.1 – to stress the evaluated de-
signs and isolate their inherent network attributes. Subsequently, in
Section 4.2, real application workloads are employed to yield more
authentic insights into the real-world performance of the compared ar-
chitectures. Finally, a comprehensive hardware implementation anal-
ysis is presented in Section 4.3.

4.1. Network performance using synthetic traffic

Network performance comparisons were performed using a cycle-
accurate SystemVerilog network simulator that accurately models all
microarchitectural components of the NoC routers. Latency and
throughput measurements were derived from simulations, assuming two
different network topologies: (a) an 8×8 2D mesh network using 5-port
VC-based routers, and (b) a 4×4 2D high-radix mesh network using 8-
port VC-based routers. Each input port employs a 3-flit deep FIFO
buffer. Without loss of generality, all NoC routers have single-cycle
operation (even though all techniques could also be fitted to router
pipelines of arbitrary length). Dimension-ordered XY routing is used for
both unicast and multicast traffic. For the experiments in this sub-
section, two variants of each architecture under investigation are
compared: one with 2 VCs per input port of the NoC router, and one with
4 VCs.

In terms of synthetic traffic patterns, we evaluate uniform-random
traffic, whereby every node sends its packets to all other nodes of the
network with equal probability. Other traffic patterns – such as trans-
pose, bit-complement, and non-uniform localized – have also been
tested and exhibited equivalent behavior without noteworthy changes to
the observed trends. The injected traffic consists of two types of packets
to mimic realistic system scenarios: 1-flit short packets (just like request
packets in a CMP), and longer 3-flit packets (just like response packets
carrying a cache line). We assume a bimodal distribution of packets with
50% of the packets being short, 1-flit packets, and the rest being long, 3-
flit packets, in accordance to recent studies [16]. Both unicast and
multicast packets are injected into the network. In general, the actual
amount of multicast traffic (as a percentage of the total network traffic)
is an application- and/or platform-specific attribute. Prior research has
reported real-world multicast percentages ranging from around 5% to
almost 30% of the total injected traffic [5,30]. Guided by these numbers,
we investigate two different scenarios: (a) 5% multicast traffic (low
multicast intensity), and (b) 30% multicast traffic (heavy multicast in-
tensity). For both scenarios, we assume that each multicast packet is sent
to 25% of the network nodes, which is in line with what has been
observed in real applications [30].

The results pertaining to the synthetic uniform-random traffic are
depicted in Fig. 5(a) and (b), for 5% multicast traffic intensity, and in
Fig. 5(c), (d) for 30% multicast traffic. Compared to the design in
Ref. [9], SmartFork with 2 VCs per input port yields a throughput in-
crease of 11% and 13% when 5% and 30% multicast traffic intensity is
applied, respectively. When 4 VCs are used, the reaped gains are
amplified to 15% and 18%, respectively, while there is no latency
penalty at lower loads. In the same experiments, the ‘FullSpeedup’ ar-
chitecture of [12] – that utilizes 5 independent read ports per input
buffer – achieves negligible throughput gains over SmartFork under
every scenario of multicast intensity and number of VCs, giving equal
latency characteristics over the entire injection load range. The reason
for this is the main observation that led to the design of SmartFork: The
average branch splitting per router imposed by multicasting routing
algorithms is far less than the number of output ports.

To further investigate the designs’ scalability, Fig. 6 depicts the
saturation throughput achieved as the VCs per input port increase. The
saturation throughput improves with increasing VC numbers, albeit
with diminishing returns. Nevertheless, SmartFork achieves up to 20%
throughput improvement over the architecture in Ref. [9] when 8 VCs
are used, while it provides almost identical saturation throughput as the
FullSpeedup design in Ref. [12]. The results of Figs. 5 and 6 highlight the
scalability of SmartFork with the number of VCs: as the VCs increase, the
design in Refs. [9] experiences increasing HoL blocking. On the con-
trary, SmartFork effectively mitigates HoL blocking and reaps substan-
tial throughput improvements that are similar to those obtained by the
design in Ref. [12], i.e., an architecture with a completely independent
and parallel replication scheme.

A similar trend is highlighted when investigating high radix topol-
ogies. Fig. 7 depicts the latency and the saturation throughput of all
architectures under comparison, assuming uniform-random traffic in a
4×4 high-radix 2D mesh. While the network still consists of 64 source-
sink endpoint pairs, each router has in total 8 input and 8 output
ports: 4 are connected to adjacent routers to form the mesh topology,
while the other 4 are connected to the local injection-ejection endpoints.

The results in Fig. 7 summarize the comparison between the designs
in Ref. [9,12] with several versions of SmartFork, each with a different
value of P. The architecture in Refs. [9] enables a higher probability of
parallel/concurrent replication in a higher-radix network (due to its
higher-degree crossbar). Regardless, SmartFork P = 2 enjoys even lower
HoL blocking and reaps more performance, with a saturation throughput
increase of 6.5%. Increasing SmartFork’s parallelism (aka P value)
further enhances its performance, leading to 11.7% and 13% improve-
ments (as compared to Refs. [9]) for P = 3 and P = 4, respectively. On
the other hand, the FullSpeedup architecture of [12], which utilizes 8

D. Konstantinou et al.

Integration 77 (2021) 104–112

109

independent read ports per input buffer, shows only a marginal
throughput increase, as compared to SmartFork. Overall, SmartFork is
able to always outperform the design in Ref. [9], while being flexible
enough to reach any performance target by choosing a different P value.
In fact, SmartFork can approach the performance of the FullSpeedup
architecture of [12], while using fewer read ports per input buffer that
translates to less hardware cost.

4.2. Full-system performance evaluation

In addition to evaluating the network performance under synthetic
traffic (as reported in the previous sub-section), it is also imperative to
evaluate the two compared architectures in a more authentic environ-
ment running real application workloads. Toward this end, we simulate a
64-core tiled CMP system running real application workloads on a
commodity operating system. The execution-driven, full-system simu-
lation framework employs Wind River’s Simics [31] – which handles the
functional simulation tasks – extended with the Wisconsin Multifacet
GEMS simulator [32]. The latter provides a detailed timing model of the
memory hierarchy and it includes the GARNET [33] cycle-accurate NoC
simulator.

The architectures of SmartFork, the design in Ref. [9], and the design
in Ref. [12] were implemented within GARNET. The GARNET NoC
simulator cycle-accurately models the packet-switched routers, their
virtual-channel buffers, allocators/arbiters, crossbars, and all
inter-router links. Table 1 summarizes the salient full-system simulation
parameters. Each CMP tile consists of an in-order UltraSparc III + pro-
cessor core with private and separate 32 KB L1 I and D caches. The CMP

has a total of 16 MB shared L2 cache (each tile has a 256 KB L2 slice; i.e.,
64×256 KB = 16 MB total), and 4 GB of off-chip main memory (DRAM).
The system uses a broadcast-based cache coherence protocol, which is
modeled similarly to AMD’s HyperTransport [34] and the Token
Coherence [35] protocols. The NoC is an 8×8 2D mesh (i.e., one router
per CMP tile) employing dimension-ordered XY routing for both unicast
and multicast/broadcast traffic. In all architectures under comparison (i.
e., SmartFork, the design in Ref. [9], and the design in Refs. [12]), each
router has a single-cycle (intra-router) latency, while the inter-router
link delay is also a single cycle. Each router input port has 3 VCs to
accommodate the employed cache coherence protocol.

The executed applications are part of the PARSEC benchmark suite
[21], which contains multi-threaded workloads from various emerging
applications. All benchmarks were executed with 64 threads (one thread
per processing core). The execution times reported are those of the
“Regions Of Interest (ROI)”, as identified in the PARSEC benchmarks.
The ROI of each benchmark starts right after the initialization of the
input data and ends when the computation is complete.

Fig. 8 summarizes the full-system evaluation results. To put things in
perspective, a baseline reference NoC router design is also included,
which has the exact same micro-architectural parameters as SmartFork
and the routers in Ref. [9,12], but no multicast/broadcast support. Said
baseline router converts multicast packets into multiple independent
unicast packets.

Fig. 8(a) compares the average network latency of the broadcast
packets in each benchmark application. We deliberately focus on the
broadcast packets, since SmartFork and the router in Ref. [9] specifically
target – and expedite the delivery of – multicast/broadcast packets. The

Fig. 5. Network performance results for routers with 2 and 4 VCs under synthetic uniform-random traffic with 5% multicast traffic intensity in (a) and (b) and 30% in
(c) and (d) in an 8×8 2D mesh NoC.

D. Konstantinou et al.

Integration 77 (2021) 104–112

110

percentage of packets that are broadcast ranges from 26% to 31% of all
injected packets across the 9 examined benchmark applications. These
broadcast percentages are an inherent attribute of the broadcast-based
cache coherence protocol. The simulation results are normalized to
the average network latency exhibited by broadcast packets when using
the baseline reference NoC router architecture. As expected, this base-
line router design offers the worst performance. As can be seen in Fig. 8
(a), SmartFork clearly outperforms the design in Ref. [9] in all bench-
mark applications. On average, SmartFork exhibits 30% lower network
latency in the delivery of broadcast packets than the architecture in
Ref. [9]. More importantly, SmartFork matches the performance of [12],

but with a significantly lower hardware cost, as will be demonstrated in
the following sub-section. By employing fewer read ports per input
buffer, SmartFork is markedly more cost-effective than the design in
Ref. [12], without sacrificing any real-world performance.

Network latency alone is not enough to yield insight as to overall
system performance, since the interconnect is only one component
within the system. Thus, it is crucial to also observe the execution times
of the running applications. Fig. 8(b) compares the total execution times
of the various benchmark applications. The results are normalized to the
total execution times obtained when using the baseline reference NoC
router architecture (that has no multicast support). Evidently, Smart-
Fork yields faster execution times in all benchmark applications, as
compared to the design in Ref. [9]; SmartFork achieves, on average, a
14% lower total execution time, which is a very significant and tangible
improvement in real-world performance. Compared to the FullSpeedup
design of [12], SmartFork yields near-identical execution times (less
than 2% difference on average) with a much simpler hardware design.

4.3. Hardware implementation analysis

For the hardware evaluation, it is important to assess – among other
pertinent metrics – the scalability of the investigated architectures with
the number of VCs in each router input port. Consequently, in this sub-
section, we revisit the implementations evaluated in Section 4.1, i.e., for
SmartFork, the design in Ref. [9], and the design in Refs. [12], we
compare two variants: one with 2 VCs per input port of the NoC router,
and one with 4 VCs. In all cases, router traversal has a latency of one
cycle.

The 5-port NoC routers under comparison – all fully implemented in
SystemVerilog – were synthesized using a commercial low-power 45 nm
standard-cell library under worst-case conditions (0.8 V, 125 ◦C), and
placed-and-routed using the Cadence digital implementation flow. In all
NoC configurations, the flit width was set to 128 bits. To enable fair and
meaningful comparisons with respect to area/power/energy, all single-
cycle designs under comparison operate at 1 GHz, which is close to their
maximum achievable clock frequency at the examined worst-cast
operating conditions.

The obtained results are summarized in Table 2. SmartFork occupies
slightly more area (around 9–10%), as compared to the state-of-the-art
[9]. However, SmartFork achieves much higher throughput, and, due
to its efficient micro-architecture, it incurs a near-negligible power
consumption overhead. In fact, SmartFork’s power consumption is very
similar to that of the architecture in Ref. [9]. On the other hand, the
design in Ref. [12] incurs significantly higher hardware cost than
SmartFork, even though it yields similar network performance. Specif-
ically, the architecture in Refs. [12] incurs 32% and 11% higher area
and power cost, respectively, than SmartFork.

To evaluate the proposed SmartFork design’s area and power effi-
ciency, we utilize two metrics that are derivatives of the Kill Rule [36].
Said rule states that the percentage gain in performance (in our case,
throughput) should outweigh the percentage increase in hardware cost
(i.e., in area and power). Based on this reasoning, the two metrics
employed are: (a) Throughput percentage gain over area percentage

Fig. 6. Saturation throughput comparison of the router architectures utilizing
up-to 8 VCs for a) 5% and b) 30% multicast traffic intensity in an 8×8 2D
mesh NoC.

Fig. 7. Latency vs injection load and the corresponding saturation throughput
for uniform random traffic on a high-radix 2D mesh for routers under com-
parison [9,12] and SmartFork with three different P values, assuming 4 VCs and
5% multicast traffic intensity.

Table 1
System parameters for the execution-driven, full-system simulations.

Processor 64 in-order ×86 cores in a tiled CMP layout
OS Linux Fedora
L1 caches Private, separate 32 KB I&D, 4-way set associative 2-cycle latency 64B

cache-line
L2 cache Shared NUCA LLC 4-way set associative 16 MB(64cores × 256 KB slice/

core) 10-cycle latency 64B cache-line
Coherence Broadcast-based cache coherence
Main mem 4 GB, 300-cycle latency
Network 8 × 8 2D Mesh 1 cycle router delay 1 cycle link delay XY Routing 3 VCs

per input port
VC size 5 flits per VC

D. Konstantinou et al.

Integration 77 (2021) 104–112

111

increase, and (b) Throughput percentage gain over power percentage
increase. The obtained values for these metrics are shown in the last two
columns in Table 2, and they refer to the SmartFork and FullSpeedup
design in Ref. [12], over the design in Ref. [9]. Obviously, in the case of
SmartFork all four values are larger than 1, thereby indicating higher
throughput gain than the hardware cost paid. For example, in the case of
SmartFork with 4 VCs, every 1% increase in power consumption results
in a 12.37% increase in reaped throughput, relative to Ref. [9].

On the contrary, despite its high performance, the FullSpeedup
design of [12] is dominated by its excessive area and power re-
quirements. In most cases, its corresponding values in the last two col-
umns of Table 2 are less than one, signifying that more than 1% of
hardware cost needs to be “paid” in exchange” for 1% of throughput
gain, leading to much lower levels of efficiency, as compared to
SmartFork. Overall, the two efficiency metrics clearly indicate that
SmartFork is highly area- and power-efficient in increasing the achieved
throughput. Hence, it constitutes a superior design choice over the
FullSpeedup design in Ref. [12].

Finally, SmartFork P = 2 not only reduces the area of the design
relative to FullSpeedup [12], but it also simplifies physical design by
significantly reducing the intra-router routing congestion, as shown in
Fig. 9 for 2-VC-based routers. The layout of FullSpeedup in the case of a
2D mesh reveals the severity of wiring congestion incurred by the
multiple read ports. The congestion is a result of inter-connecting the 25
distinct input read ports with the 5 router output ports. On the contrary,
wiring congestion in SmartFork P = 2 is significantly lower.

5. Conclusions

The increasing prevalence of multicast traffic in NoCs highlights the
imperative need to provide scalable multicast support in future systems.
In this work, we present the novel VC-based and multicast-enabled
SmartFork NoC router architecture. SmartFork relies on a flexible and

Fig. 8. Performance results using an execution-driven, full-system simulator running real applications from the PARSEC benchmark suite [21] on a 64-core CMP. For
all benchmark applications, we report (a) the average network latency of the broadcast packets, and (b) the total application execution times. The results are
normalized to the performance of a baseline reference NoC router with no multicast support.

Table 2
Hardware implementation results of the architectures under investigation at 45 nm technology and 0.8 V.

Design @1 GHz VCs Area (μm2) Power (mW) Thru-put%Gain/Area%Incr. Thru-put%Gain/Power%Incr.

Design in [9] 2 57,223 5.36
FullyParrallel [12] 82,390 6.21 0.34 0.94

SmartFork 62,370 5.58 1.39 3.09
Design in [9] 4 118,393 10.10

FullyParrallel [12] 171,835 11.21 0.40 1.66
SmartFork 130,442 10.25 1.73 12.37

Fig. 9. Post-clock-tree-synthesis layout of a 2-VC, 5-port SmartFork imple-
mentation with P = 2 and with an equivalent design following FullSpeedup
architecture [12].

D. Konstantinou et al.

Integration 77 (2021) 104–112

112

cost-efficient packet replication mechanism that can yield imple-
mentations targeting any desired point on the multicast performance
spectrum. A specific variant of SmartFork – adapted to the average
branch splitting observed under well-known multicast routing algo-
rithms – is demonstrated to yield higher or almost identical throughput
than the current state-of-the-art architecture, while also achieving very
high area and power efficiency.

CRediT authorship contribution statement

Dimitris Konstantinou: Conceptualization, Methodology, Software,
Validation, Investigation, Writing - review & editing. Chrysostomos
Nicopoulos: Conceptualization, Methodology, Writing - review &
editing. Junghee Lee: Methodology, Software, Validation. Giorgos
Dimitrakopoulos: Conceptualization, Methodology, Writing - review &
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] Arteris, Arteris IP FlexNoC AI Package, 2018.
[2] X. Lin, L.M. Ni, Deadlock-free multicast wormhole routing in multicomputer

networks, Comp. Archit. News (1991) 116–125.
[3] R.V. Boppana, S. Chalasani, C.S. Raghavendra, On multicast wormhole routing in

multicomputer networks, in: IEEE Symp. on Par. and Distr. Processing, Oct 1994,
pp. 722–729.

[4] M. Ebrahimi, M. Daneshtalab, M.H. Neishaburi, S. Mohammadi, A. Afzali-Kusha,
J. Plosila, H. Tenhunen, An efficent dynamic multicast routing protocol for
distributing traffic in nocs, in: Design Automation and Test in Europe (DATE), April
2009, pp. 1064–1069.

[5] N.E. Jerger, L.-S. Peh, M. Lipasti, Virtual circuit tree multicasting: a case for on-
chip hardware multicast support, Comput. Archit. News (2008) 229–240.

[6] S. Ma, N.E. Jerger, Z. Wang, Supporting efficient collective communication in nocs,
in: IEEE International Symposium on High-Performance Comp Architecture
(HPCA), 2012.

[7] S. Rodrigo, J. Flich, J. Duato, M. Hummel, Efficient unicast and multicast support
for cmps, in: Intern. Symp. on Microarchitecture (MICRO), Nov 2008, pp. 364–375.

[8] L. Wang, Y. Jin, H. Kim, E.J. Kim, Recursive partitioning multicast: a bandwidth-
efficient routing for networks-on-chip, in: Int. Symp. on Networks-on-Chip (NoCS),
May 2009, pp. 64–73.

[9] T. Krishna, L.-S. Peh, B.M. Beckmann, S.K. Reinhardt, Towards the ideal on-chip
fabric for 1-to-many and many-to-1 communication, in: Int. Symp. on
Microarchitecture (MICRO), 2011, pp. 71–82.

[10] R. Sivaram, D. Panda, C. Stunkel, Multicasting in irregular networks with cut-
through switches using tree-based multidestination worms, in: Parallel Computer
Routing and Communication, 1997, pp. 39–52.

[11] W. Hu, Z. Lu, A. Jantsch, H. Liu, Power-efficient tree-based multicast support for
networks-on-chip, in: ASP-DAC, Jan 2011, pp. 363–368.

[12] K. Bhardwaj, S.M. Nowick, A continuous-time replication strategy for efficient
multicast in asynchronous nocs, IEEE Trans. Very Large Scale Integr. Syst. 27 (2)
(2019) 350–363.

[13] Z. Lu, B. Yin, A. Jantsch, Connection-oriented multicasting in wormhole-switched
networks on chip, in: ISVLSI, March 2006.

[14] R.A. Stefan, A. Molnos, K. Goossens, daelite: a tdm noc supporting qos, multicast,
and fast connection set-up, IEEE Trans. Comput. (March 2014) 583–594.

[15] M.P. Malumbres, J. Duato, J. Torrellas, An efficient implementation of tree-based
multicast routing for distributed shared-memory multiprocessors, in: IEEE Symp.
on Par. and Dist. Processing, Oct 1996.

[16] S. Ma, N.E. Jerger, Z. Wang, Whole packet forwarding: efficient design of fully
adaptive routing algorithms for networks-on-chip, in: IEEE International
Symposium on High-Performance Comp Architecture (HPCA), Feb 2012, pp. 1–12.

[17] F.A. Samman, T. Hollstein, M. Glesner, Adaptive and deadlock-free tree-based
multicast routing for networks-on-chip, IEEE Trans. VLSI Syst. (July 2010)
1067–1080.

[18] B. Daya, C.-H. Chen, S. Subramanian, K. Woo-Cheol, P. Sunghyun, T. Krishna,
J. Holt, A.P. Chandrakasan, L. Peh, Scorpio: a 36-core research chip demonstrating
snoopy coherence on a scalable mesh noc with in-network ordering, in:
International Symposium on Computer Architecture, June 2014, pp. 25–36.

[19] G. Dimitrakopoulos, A. Psarras, I. Seitanidis, Microarchitecture of Network-On-
Chip Routers: A Designer’s Perspective, 2015 plus 0.5em minus 0.4emSpringer.

[20] K. Bhardwaj, W. Jiang, S.M. Nowick, Achieving lightweight multicast in
asynchronous nocs using a continuous-time multi-way read buffer, in: Int. Symp.
on Networks-on-Chip (NoCS), 2017.

[21] C. Bienia, S. Kumar, J.P. Singh, K. Li, The parsec benchmark suite: characterization
and architectural implications, in: International Conference on Parallel
Architectures and Compilation Techniques, 2008, pp. 72–81.

[22] I. Seitanidis, A. Psarras, E. Kalligeros, C. Nicopoulos, G. Dimitrakopoulos,
ElastiNoC: a self-testable distributed vc-based network-on-chip architecture, in:
International Symposium on Networks-on-Chip (NOCS), 2014, pp. 135–142.

[23] A. Psarras, I. Seitanidis, C. Nicopoulos, G. Dimitrakopoulos, ShortPath: a network-
on-chip router with fine-grained pipeline bypassing, IEEE Trans. Comput. 65 (10)
(2016) 3136–3147.

[24] G. Dimitrakopoulos, N. Chrysos, C. Galanopoulos, Fast arbiters for on-chip network
switches, in: IEEE Intern. Conf. on Computer Design (ICCD), 2008, pp. 664–670.

[25] G. Dimitrakopoulos, E. Kalligeros, K. Galanopoulos, Merged switch allocation and
traversal in network-on-chip switches, IEEE Trans. Comput. 62 (10) (2013)
2001–2012.

[26] Y. Lu, C. Chen, J.V. McCanny, S. Sezer, Design of interlock-free combined
allocators for networks-on-chip, in: EEE 25th International SOC Conference
(SoCC), 2012, pp. 358–363.

[27] T. Krishna, J. Postman, C. Edmonds, L. Peh, P. Chiang, Swift: a swing-reduced
interconnect for a token-based network-on-chip in 90nm cmos, in: 2010 IEEE
International Conference on Computer Design, 2010, pp. 439–446.

[28] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
plus 0.5em minus 0.4emUSA.

[29] L. Gurobi, Optimization, “Gurobi Optimizer Reference Manual, 2020 [Online].
Available: http://www.gurobi.com.

[30] S. Abadal, R. Martínez, J. Solé-Pareta, E. Alarcćn, A. Cabellos-Aparicio,
Characterization and modeling of multicast communication in cache-coherent
manycore processors, Comput. Electr. Eng. 51 (2016) 168–183.

[31] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation platform,
Computer (Feb 2002) 50–58.

[32] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu, A.R. Alameldeen,
K.E. Moore, M.D. Hill, D.A. Wood, “Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset, SIGARCH Comput. Archit. News (Nov.
2005) 92–99.

[33] N. Agarwal, T. Krishna, L. Peh, N.K. Jha, Garnet: a detailed on-chip network model
inside a full-system simulator, in: IEEE International Symposium on Performance
Analysis of Systems and Software, April 2009, pp. 33–42.

[34] P. Conway, B. Hughes, The amd opteron northbridge architecture, IEEE Micro 27
(2007).

[35] M.M.K. Martin, M.D. Hill, D.A. Wood, Token coherence: decoupling performance
and correctness, in: International Symposium on Computer Architecture (ISCA),
June 2003.

[36] A. Agarwal, M. Levy, The kill rule for multicore, in: Design Automation Conference
(DAC), 2007, pp. 750–753.

D. Konstantinou et al.

http://refhub.elsevier.com/S0167-9260(20)30287-X/sref1
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref2
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref2
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref3
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref3
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref3
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref4
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref4
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref4
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref4
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref5
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref5
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref6
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref6
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref6
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref7
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref7
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref8
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref8
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref8
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref9
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref9
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref9
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref10
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref10
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref10
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref11
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref11
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref12
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref12
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref12
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref13
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref13
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref14
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref14
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref15
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref15
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref15
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref16
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref16
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref16
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref17
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref17
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref17
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref18
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref18
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref18
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref18
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref19
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref19
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref20
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref20
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref20
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref21
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref21
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref21
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref22
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref22
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref22
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref23
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref23
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref23
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref24
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref24
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref25
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref25
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref25
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref26
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref26
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref26
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref27
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref27
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref27
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref28
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref28
http://www.gurobi.com
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref30
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref30
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref30
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref31
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref31
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref31
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref32
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref32
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref32
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref32
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref33
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref33
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref33
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref34
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref34
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref35
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref35
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref35
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref36
http://refhub.elsevier.com/S0167-9260(20)30287-X/sref36

	Multicast-enabled network-on-chip routers leveraging partitioned allocation and switching
	1 Introduction
	2 SmartFork: partitioned multicasting
	2.1 Router organization and operation
	2.2 Switch and VC allocation

	3 Input-to-output partition assignment
	4 Experimental evaluation
	4.1 Network performance using synthetic traffic
	4.2 Full-system performance evaluation
	4.3 Hardware implementation analysis

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

