Low-cost fault-tolerant switch allocator for
network-on-chip routers

Giorgos Dimitrakopoulos
Informatics and Communications Engineering
University of West Macedonia
Karamanli & Ligeris, Kozani, Greece

gdimitrak@uowm.gr

ABSTRACT

Reliable operation that can be checked on-line is of paramount
importance to current and future systems-on-chips that are
implemented in very deep submicron technologies. In such
systems, the communication among architectural modules is
handled by a modular network-on-chip infrastructure that
should be sufficiently protected from transient faults that
may affect its correct operation. The error protection mech-
anism should cover all fault scenarios and incur the mini-
mum area/energy/delay overhead. In this paper, we propose
such an on-line checking mechanism for the switch allocator
of the router that detects every possible single transient or
permanent fault in the arbiters and handles it appropriately,
thus preserving the reliable operation of the switch.

Keywords

fault-tolerance, on-line testing, switch allocation, logic de-
sign

1. INTRODUCTION

Interconnection networks lie at the kernel of any complex
SoC and provide a modular communication infrastructure
that parallelizes the communication between system’s mod-
ules by utilizing a network of switches connected with mul-
tiple point-to-point links. The switches are the basic build-
ing blocks of such interconnection networks and their design
critically affects the performance of the whole system. The
main role of the switches is to guide the incoming packets
to the appropriate output, allowing them to move closer to
their final destination. When two or more packets request
the same output, only one wins and the rest have to wait
for their turn in the input buffers of the switch. The inputs
that are allowed to send their data are determined by the
switch allocator. The switch allocator accepts the requests
from each input and decides which one to grant in order to
produce a valid connection pattern for the crossbar’s multi-
plexer that handle the actual data switching.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

INA-OCMC ’12, January 25, 2012, Paris, France

Copyright 2012 ACM 978-1-4503-1010-9/12/01 ...$10.00.

25

Emmanouil Kalligeros

Information and Communications Systems Eng.

University of the Aegean
Karlovassi 83200, Samos, Greece

kalliger@aegean.gr

The performance of the network’s switches has increased
in the recent years by better architecting and taking also
advantage of the benefits of technology scaling [1]. However,
in the future, such benefits will not come any more for free.
The reduced transistor sizes and supply voltages have made
logic gates more susceptible to single event transients (or
upsets) that, when allowed to propagate to storage elements,
lead to soft errors that alter the state of the system and may
corrupt its functionality [2]. When such a transient fault hits
one of the network’s switches, several erroneous conditions
arise that need to be efficiently handled on-line in order to
mitigate their possible catastrophic effects.

In this paper, we focus on enhancing the reliability of the
switch allocation logic by providing a self-checking capabil-
ity to the arbiters of the switch [3]. The output of each
arbiter is checked in every cycle for invalid decisions, block-
ing away any cases that cause incorrect network operation,
such as packet misrouting, packet loss or packet corruption.
Instead of treating every faulty scenario differently, we pro-
pose a new error detection mechanism that maps all the
examined faulty cases to the same two erroneous conditions
that are later detected by a newly introduced checker mod-
ule. The proposed checker introduces insignificant area and
delay overhead, thus providing a viable solution to both low
cost and high-performance switches.

Relative to previous state-of-the-art on fault-tolerant switch
allocation [4], [5], [6], this work (a) minimizes the number
of employed checker modules by employing a new mapping
technique, (b) covers in detail all possible single faults, and
(c) allows for early system warning when the checker itself
presents an internal fault.

In the following, we present in Section 2 the proposed fault
tolerant arbiter architecture. In Section 3 we describe the
new checker module, analyze its behavior in the presence of
faults and measure its area/delay characteristics. Finally,
conclusions are drawn in Section 4.

2. ARBITER ON-LINE TESTING

A generic arbiter, as shown in Fig. 1, consists of two parts;
the arbitration logic that decides which request to grant
based on the current state of the priorities, and the prior-
ity update logic that decides, according to the current grant
vector, which inputs to promote. The width of the priority
state associated with each input depends on the complexity
of the priority selection policy. For example, a single priority
bit per input is enough for simple round-robin policy, while
for more complex weight-based policies such as age-based al-
location, multi-bit priority state is needed. The arbitration

logic, besides the grant signals, produces also a no-request
(NR) flag that declares the case that the arbiter did not re-
ceive any requests. This flag is already supported by the ma-
jority of the arbiters since it can be produced directly from
the arbitration logic without any hardware overhead. Also,
in many cases, such as wormhole switching, the arbiter’s de-
cision should be locked until the last flit of a packet (tail
flit) leaves the switch. In this case, actual arbitration is per-
formed only among head flits that inherit their grants to the
following flits of the same packet. As long as the lock signal
is asserted, the output of the arbiter remains unchanged and
points to the same winning input.

Datay, —
o | X
5 - g Datagyrt
atayy —
#N £
Requests _,| e Grant !

Arbitration [2rants = 1g Locked
.| Logic Grants
NR Lock

Enable
A
Priority
Update
Priority
State

Figure 1: The baseline organization of an output
arbiter and a multiplexer.

An arbiter’s decision is considered valid when it grants
only one of the incoming requests. If there aren’t any ac-
tive requests it should not provide any grants. In this way,
the output multiplexer is configured to send to the output
either one valid flit or none. Also, as long as the lock sig-
nal is asserted, the arbiter is not allowed to change its valid
output. In the presence of a single error, permanent or tran-
sient, either inside the arbiter or at its output lines (grant
signals) the behavior observed at the outputs of the arbiter
may change as follows:

Multiple grants (MG): The arbiter produces multiple
grants at each output that would cause the multiplexer ei-
ther to merge in the output link the bits of many different
flits or to send at the output the wrong flit. The exact behav-
ior depends on the internal design of the multiplexer. This
case should be avoided since it causes flit corruption or mis-
routing and a higher-level error recovery mechanism needs
to be employed in order to recover the correct status of the
network [7]. Therefore, we always need to detect this case
and stop the data at the output of the multiplexer before
leaving the switch. Additionally, the appearance of multiple
grants to an output arbiter may cause an input to receive
a wrong number of grants leading possibly to an unwanted
multicast or an early flit dequeue. When a multiple-grant
error is detected, the grants returned to the inputs from
the erroneous arbiter should be nullified. In this way, it is
guaranteed that the inputs always receive valid grants.

26

No grant (NG): The arbiter does not produce any grants
even if there are active requests that can be served. This
case does not affect the correctness of the network opera-
tion and it only degrades network performance by reducing
the throughput of the switch. Therefore, we don’t worry
much about this case. When the faulty node that caused
the no-grants case recovers to its correct value, the arbiter
will soon return to its normal operation leaving the network
unaffected. If NR=1 then the arbiter correctly did not pro-
duce any grants. However, when NR=0 it means that this
happened due to a fault. Therefore, if both the bits of the
grant vector and the NR flag are all equal to 0, an error
exists in the arbiter.

Wrong grant (WG): The arbiter produces only one grant
that makes the output look valid, i.e., follows the onehot
code, but it corresponds either to an inactive request or
points to a position different from the one with the highest
priority.

e Under a single fault, it is impossible for the arbiter to
give a grant to an inactive request without simultane-
ously granting at least one active request®. Therefore,
a wrong grant will always correspond to the multiple
grants error condition, possibly involving inactive re-
quests too.

e However, it is possible for the arbiter to grant an ac-
tive request that does not have the highest priority.
This condition may arise due to an error in the prior-
ity state. In this case, we can start serving the new
input, even if another with higher priority should have
won. Since the grant vector is valid, this decision is
locked as a normal one and applied to the crossbar for
all the flits of the packet.

In order to identify all the above error conditions, we need
to check only two cases at the output of the arbiter. The
first case involves the detection of multiple-asserted grants
and the second one involves the detection of all-deasserted
grants. In both cases, when referring to the grant vector of
the arbiter we should include also the NR flag. Practically,
we don’t care about which module of the arbiter is actually
the faulty one. For example, a possible fault in the priority
state or the priority update logic may promote by mistake a
low priority input. If this error does not translate to multiple
grants or no grants as done in the case of MG and WG, it is
just a performance error similar to NG and does not affect
the correct operation of the network.

To protect the arbiter and the switch as a whole from the
three possible fault scenarios, we design a new checker that
checks the output of the arbiter and decides, in parallel to
multiplexing, if the arbiter’s decision ruins the correct oper-
ation of the switch. The checker reports an error only when
it observes multiple-asserted grants, including the NR bit,
or none of them. In every case, the checker is driven by the
grant signals connected to the select lines of the multiplexer.

The operation of the output logic, shown in Fig. 2, is the
following: When lock is equal to 0, we are free to take a
new decision, checking at the same time the validity of the

L This behavior holds for all arbiters that are based on prior-
ity encoding, carry lookahead-like structures and the matrix
arbiter, practically covering almost all possible implementa-
tions [8].

outputs of the arbiter. If an error is detected, lock stays
at 0 (this is done since the head flit is not dequeued; no
flit dequeueing is performed when an error is detected - see
below) and the arbiter retries until the checker reports an
error-free grant vector. When this happens, lock is set to 1
and the output of the switch starts serving the flits of the
granted packet. After lock=1, the checker and the multiplex-
ers receive the output of the register that locked the valid
grant/NR vector. In this stage, the operation of the output
of the switch is practically decoupled from the operation of
the arbiter, and thus the system is protected by any fault
that occurs in the arbiter in the meantime. Additionally, if
a fault appears at the register that holds the onehot locked
grants, then, under the single-fault assumption, this fault
will translate either to a multiple grant or to a no grant case
and will be detected by the checker. When the effect of such
a fault is removed, the output of the switch will continue
serving the flits of the selected input.

——>
Datagyr
Checker

Grants/NR

Datayy —>|

L)
Datayyy —>

Grants

L

R t: Lock
eqUESIS — Arbitration | Grants | —> Graor?ts(/eﬂR
Logic =
NR Lock
Enable

Priority
Update

Priority

State

Figure 2: The on-line testable arbiter architecture.

As shown in Fig. 2, only when the checker decides that
the output of the arbiter is valid, the data at the output of
the multiplexer are latched by the output register and leave
the switch. Also, the checker’s output is used for masking
the arbiter’s grants. In case of an error, this mask protects
the inputs from receiving multiple grants or a wrong grant
that would cause the input to dequeue a flit that is not yet
to leave the switch.

3. FAULT-TOLERANT CHECKER

The proposed checker receives as input the grant signals
of the arbiter along with its NR bit. An error is detected
when more than two input lines of the checker are asserted
or when none of them is asserted. Equivalently, the checker
reports a correct input when there is a single 1 in the input
vector, i.e., the checker’s input follows the onehot code.

The proposed checker constitutes a binary-tree structure,
which is constructed by identical nodes. Each node receives
a pair of 3-bit wide inputs (HZF) from two nodes of the
above tree level and generates 3 outputs, which follow the
same encoding as the inputs (see Fig. 3). The inputs and
the outputs of the checker nodes are also in onehot form and
their meaning is the following:

27

H LZLFL Hg ZR

i

Check
Node

HZF

Figure 3: The interface of the basic building block
of the checker

e H (oneHot bit): It means that there is exactly one
input with value 1 in the examined subset of checker
inputs. In this case, HZF = 100.

e 7 (Zero bit): all of the examined checker inputs are 0;
then, HZF = 010.

F (Fault bit): It is set when there are two or more 1s
in the examined subset of checker inputs. When this
happens, HZF = 001.

The functionality of a checker node is quite simple: if any
of its inputs is equal to 001 (fault case), then the output
should be also 001. Additionally, the output should indi-
cate a fault (001) if both inputs denote onehot (100). This
means that there are two disjoint subsets of checker inputs
that are onehot encoded, i.e., there is a single 1 in both
subsets, and hence, at least two 1s exist at the checker’s
inputs. Therefore, FF = Fr, + Fr + Hr - Hr. It is now
easy to understand that an onehot indication at the outputs
of a node (100) should be generated if one of its input de-
notes onehot (100) and the other zero (010); consequently,
H = Hy, - Zr + Hr - Z1. Finally, the zero output should
be set only when both node inputs indicate zero (010); as a
result, Z = Z, - Zg.

The adoption of onehot encoding within the proposed
checker offers two significant advantages: a) in the presence
of a single fault in the checker, the affected HZF triplet will
assume an invalid (non-onehot) value, and b) it simplifies
the implementation of the checker nodes. Note also that a
zero-indicating triplet (010) at the inner nodes of the pro-
posed checker does not imply a fault, since it can be later
combined with an onehot-indicating triplet (100). However,
if the zero combination (010) appears at the outputs of the
checker, this means that the checker inputs are erroneous
(all inputs are zero).

In order to generate the HZF triplets from the checker’s
inputs, a preprocessing stage is required. Each preprocess-
ing (PP) node receives one input A; and produces the cor-
responding HZF triplet. The boolean functions of the PP
node outputs are trivial: H = A;, Z = A;,and F =0. The
proposed checker, along with a running example for 4 inputs
is shown in Fig. 4.

3.1 Fault analysis

We examine all four possible cases regarding the reliable
operation of the arbiter and the checker:

Arbiter correct — Checker correct: Correct operation.

Arbiter faulty — Checker correct: The checker identi-
fies the error (checker output: 001 or 010) and no data are

0 1 1 O

\
\

PP| [P
1\0_‘\—“—"_110 0 1 _‘\—H—"_OW o
Check Check
Node Node
1|o|cI I1|0|0
L
Check
Node
||
001

Figure 4: The structure and operation of a 4-input
checker

leaving the corresponding output port. Also, the grants that
return to the input ports are appopriately masked.

Arbiter correct — Checker faulty: The proposed checker
is properly designed so that a single fault within its struc-
ture manifests itself at the outputs. Specifically, we have
exhaustively verified that, assuming correct inputs, a fault
affecting the value of any single line of the checker, will prop-
agate to the outputs. The outputs’ value will be different
from the correct 100 value (not necessarily the 001 or the 010
fault-indicating output of normal checker operation, but any
other output than the correct 100 — its exact value depends
on the fault). Actually, the proposed checker is totally self
checking under the single fault assumption, since it is both
fault secure (in the presence of a fault, a non-valid output is
produced), and self testing (all single faults are detected at
the checker outputs by applying the set of non-faulty, i.e.,
onehot, inputs) [9]. Even if we allow the correct, in this
case, arbiter’s decisions to affect the output of the switch, it
is useful to know when the checker cannot ensure that the
monitored circuit (i.e., the arbiter) is working properly.

Arbiter faulty — Checker faulty: First of all, we have
to note that this final case contravenes the single fault as-
sumption, since faults occur in both the arbiter and its
checker. However, this is an additional feature of the pro-
posed checker; if a single fault occurs in the arbiter, this fault
is reported at the checker’s outputs, even in the presence of a
single fault in the checker. As above, we have confirmed this
behavior by exhaustively verifying that the outputs of the
checker assume a different value from the correct one (100).
We have to note that this property is due to the utilization
of onehot encoding within the checker itself that does not
allow a meaningful onehot triplet to be transformed to an-
other one, under a single fault. In this case, problems would
occur if 001, i.e., fault, could change to 100, i.e., onehot, or
100, i.e., onehot, could change to 010, i.e., zero, for multi-
ple asserted grants, and if 010, i.e., zero, could change to
100, i.e., onehot, for all-deasserted grants at the arbiter’s
outputs.

3.2 Implementation results

We have implemented the on-line testable arbiter archi-
tecture shown in Fig. 2, in a 65nm CMOS technology us-

28

ing a standard-cell based design flow and compared it to
the baseline structure of Fig. 1. The parameterized form of
the circuits was described in VHDL, while synthesis, place-
ment and routing were performed using Synopsys Design
Compiler and Cadence SOC encounter, respectively. The
arbiters of the switch followed the architecture of [10].

In the case of 4, 8 and 16 inputs, the area overhead of
the checker is negligible ranging below 1%, when assuming
at least a 32-bit wide datapath for the multiplexers. Also,
the delay of the checking module increases the critical path
of the switch for the examined cases by less than 5%, since,
according to Fig. 2, the error flag of the checker controls the
data loading operation of the register at each output port of
the switch and runs in parallel to multiplexing.

4. CONCLUSIONS

The faults that appear in the arbiter’s logic can affect
the correct operation of the switch in several ways. The
aim of this work is to reduce the possible faulty outcomes
to only two errorneous cases that can be easily detected
by the proposed low-cost on-line checker. When a fault is
detected, packet loss, misrouting or corruption is avoided
and the network continues its correct operation un-affected.
Also, reliable operation is fully preserved since the checker
is self-checked during the system’s normal operation.

5. REFERENCES

[1] J. Kim. "Low-cost router microarchitecture for on-chip
networks”, MICRO-42, 2009.
[2] K. Mohanram and N.A. Touba, "Cost-Effective
Approach for Reducing Soft Error Failure Rate in Logic
Circuits”, Proc. of IEEE International Test Conference,
pp- 893-901, 2003.
S. Mitra and E. J. McCluskey, "Which concurrent error
detection scheme to choose?,” ITC 2000.
D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, C.
R. Das "Exploring Fault-Tolerant Network-on-Chip
Architecture”, DSN, 2006.
K. Constantinides, S. Plaza, J. Blome, B.Zhang, V.
Bertacco, S. Mahlke, T. Austin, M. Orshansky,
”BulletProof: a defect-tolerant CMP switch
architecture, ” in Proc. HPCA’06, pp.5-16, Feb. 2006.
Q. Yu, M. Zhang, P. Ampadu, "Exploiting inherent
information redundancy to manage transient errors in
NoC routing arbitration,” Proc. 5th ACM/IEEE Int.
Symp. on Networks-on-Chip (NoCS’11), pp.105-112,
May 2011
S. Murali, T. Theocharides, N. Vijaykrishnan, M.J.
Irwin, L. Benini, G. De Micheli, ”Analysis of error
recovery schemes for networks on chips,” IEEE Design
& Test of Computers, vol. 22, no. 5, pp. 434442, 2005.
G. Dimitrakopoulos, "Logic-level implementation of
basic switch components”, in Designing Network
On-Chip Architectures in the Nanoscale Era, Jose Flich
and Davide Bertozzi, Eds., CRC Press, 2010.
McCluskey, E. J., "Design techniques for Testable
Embedded Error Checkers,” IEEE Computer, Vol. 23,
No. 7, pp. 84-88, July 1990.
[10] G. Dimitrakopoulos, N. Chrysos and K. Galanopoulos,
”Fast arbiters for on-chip network switches”, ICCD,
2008.

3]

(4]

(6]

[7

9

