
Switch Allocator for Bufferless Network-on-Chip Routers

Giorgos Dimitrakopoulos
Informatics and Communications Engineering

University of West Macedonia
Karamanli & Ligeris, Kozani, Greece

gdimitrak@uowm.gr

Kostas Galanopoulos
Electrical and Computer Engineering

National Technical University of Athens
Zografou campus, Athens, Greece

galanopu@mail.ntua.gr

ABSTRACT

Bufferless switches can be an attractive and energy-efficient design
option for on-chip networks when network utilization is low and
low-latency operation matters the most. However, this promising
design option is limited by the complexity of the control logic re-
quired to operate a bufferless switch that imposes large delays and
limits the clock frequency. Pipelining is not an option in this low-
latency environment. In this paper, we propose a new switch allo-
cator for bufferless switches that parallelizes the steps required for
achieving a match between requesting inputs and available outputs
and offers significantly faster implementations.

Keywords

bufferless router, switch allocation, deflection routing, logic design

1. INTRODUCTION
Bufferless switches have been proposed as a low-cost (low power)

solution for on-chip networks. In this case, when two or more
incoming flits compete for the same output only one of them is
granted to move to a productive output closer to its final destina-
tion. The remaining flits can be either misrouted (deflected) to other
outputs [1], [2], or dropped and not-acknowledged to the upstream
switch [3], [4]. In this way, buffering the non-granted flits at the
inputs of the switch is avoided. Similarly, circuit switching [5] can
also remove buffering requirements at the cost of connection setup
overhead.

Such bufferless switches target mainly low-latency operation at
low network loads. Several researchers have shown that this region
of operation matches well the network traffic imposed by several
applications [1], [6]. On the other hand, bufferless switches offer
limited maximum throughput when compared to high-end buffered
switches [7]. The cause for this effect is that the deflection of flits
to unproductive outputs spreads the congestion throughout the net-
work. Nevertheless, the savings in buffer and clocking power may
alleviate this negative effect under certain circumstances. Also, the
power saved from buffers can be re-spent to the network by making
the links and the crossbars wider thus gaining back some of the lost
bandwidth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INA-OCMC ’11, January 23, 2011, Heraklion, Greece
Copyright 2011 ACM 978-1-4503-0272-2 ...$10.00.

The ultimate goal for low-latency operation is to allow switch
traversal to happen in a single cycle even if high clock frequencies
are required. The clock frequency of the switch can be increased
by pipelining its operations. However, in the case of bufferless
switches, this is not a good option mainly for two reasons: First,
pipelining increases the latency seen by a flit when it traverses an
almost empty network at low loads and second it increases the neg-
ative effect of a possible deflection, since more cycles are needed
for a deflected flit to get back on track.

As a first thought bufferless switches are expected to lead to sim-
pler switch designs since they allow the movement of flits even to
unproductive directions. However, this goal has not been succeeded
yet. One critical parameter that limits the applicability of buffer-
less switches and restricts their scalability, is the delay complexity
of the corresponding switch allocator that decides which flits will
leave from their requested output and which ones will be misrouted
to the rest outputs. The delay of commonly used switch allocators
in the case of bufferless switches is significantly larger than that of
buffered switches. In this way, bufferless switches cannot a high
clock frequency and the goal for a true single-cycle operation is
limited only to slow clock frequencies [7], [8].

In the case of the simpler form of buffered switches the switch
allocator is composed of a single arbiter per output. This organi-
zation is not enough in the case of bufferless switches since some-
how the output port of the deflected flits needs to be determined.
At each cycle, every input port may have a new flit for transmis-
sion. According to the operation of FLIT-BLESS switch allocator
for bufferless switches [1], the priority of a flit to move to a pro-
ductive output is determined by its weight relative to the weights
of the flits from the remaining inputs that want to leave from the
same output. The weight of each flit reflects the amount of time
it spent in the network. Thus, the requests coming from the oldest
flits receive the highest priority, and they are considered first. These
flits always gain access to a productive output port that brings them
closer to their final destination. By not allowing the oldest flits to
be deflected livelock conditions are also prevented.

in.1

in.2

in.3

in.4

arbiter

arbiter

arbiter

arbiter

Serial port allocator
merge sorting network

sort input flits according to weight

for each input flit in weight order

 if received a grant from a productive output

 send flit to this port

 else

 deflect flit to the first available port

 end if

Switch allocator for bufferless switch

(a) (b)

Figure 1: (a) FLIT-BLESS switch allocation for deflection-

based bufferless switches and (b) the fastest previous imple-

mentation.

INA-OCMC 2011 — January 23th, 2011, Heraklion, Greece 19

routing
n

w

D
E

M
U

X

w

MAX
position

n.
.
.

.

.

.

1

input 1 output 1

n

w

D
E

M
U

X

w

MAX
position

n

.

.

.

1

input n output n

.

.

.

...

1

1

n V
OR

OR

OR

OR

.

.

.
.
.
.

one-hot output
port request

Flit's weight

w

w

Output Port
availability

grants for
input 1

DR[1]

DR[n]

.

.

.
Load

Distributor

productive grant
for output n

n

n

Deflection
request

OR

OR

.

.

.
Productive and deflection

grants to crossbar

Deflection
grant output 1

1

1

n

n

one-hot grant
signals for output 0routing

output 1
available

Figure 2: The organization of the proposed switch allocator.

Fig. 1 summarizes the operation of the switch allocator for buffer-
less switches and also gives a rough block diagram of its implemen-
tations according to [1], [7]. The switch allocator is built around
serially connected arbiters that inevitably yield a slow critical path.
Each arbiter receives one request and tries to match it with the cor-
responding output if it is available. When an output is matched to
an input request, it is considered taken and it cannot be used by the
following arbiters. In the case that the received request corresponds
to an unavailable output, the arbiter matches the requesting input to
the first available output even if this decision sends the flit to an
unproductive path. The flits are sorted according to their priority
and the ones with the highest priority are served first. In this way,
the the number of productive outputs given at each cycle is maxi-
mized. Sorting is best implemented in hardware by a fast sorting
network [9]. Each node of the sorting network contains a compara-
tor and puts the largest element in the output pointed by the arrow
inside each node.

In this paper, we offer a new organization for the switch alloca-
tor of bufferless switches. The proposed design implements also
the algorithm of Fig. 1(a) but it completely removes the serial
dependency among output arbiters that appear in the best so far
implementation of Fig. 1(b). Also, at the same time the weight
comparison is transformed to a simpler form and the need for a
complete sorting network is canceled. In this way, new scalable
circuits can be designed that reduce significantly the delay of the
switch allocator.

2. THE PROPOSED SWITCH ALLOCATOR
The organization of the proposed switch allocator is shown in

Fig. 2. At first, the destination address of each flit is passed to
the routing logic that determines which output port leads to a pro-
ductive path. According to the one-hot index of the output port the
weights of the flits are gathered per output port after a simple mask-
ing with the output requests and appropriate wire rearrangment. At
each output port we may have one or more active requests along
with their corresponding weights. The selection of the highest pri-
ority flit is performed by selecting the flit that is associated with the
largest weight. The MAX operation shown in Fig. 2 is implemented
as a binary tree of comparators and is faster than a general sorting
network. The speed of determining the maximum weight can be

also improved by following the techniques presented in [10].
The flits of the inputs that did not receive any grant after this step

should be deflected to any available output. Therefore, we need to
identify appropriately which outputs are available and which flits
should be deflected. An output is available if it did not receive
any active requests from any input. This is known in advance and
in parallel to the max-weight selection by checking the requests
produced by the routing logic. The flits that should be deflected
are the ones that did not receive a grant by the MAX logic at each
output. Thus, at each input, the grant signals received from each
output are ORed together to identify if there was at least one active
grant. If this is not the case, the flit of the corresponding input is
eligible for deflection.

0

1

2

3

0

1

2

3

Inputs Outputs

Deflection-ready flits

productive
match

0

1

2

3

0

1

2

3

Inputs Outputs

Available
Outputs

0

1

2

3

0

1

2

3

Inputs Outputs

unproductive
match

Max selection per output Load distribution Complete final match

Figure 3: An example of the operation of the proposed switch

allocator implementing the algorithm of Fig. 1.

The input that has a flit ready for deflection asserts a deflection
request DR. DR signals along with the output-port availability
flags V are passed to a new circuit called load distributor that
matches between the deflection-ready inputs and the available out-
puts so that no available output remains underutilized. An example
of the assignment of 4 inputs to 4 outputs is shown in Fig. 3. In
this example, 2 inputs are ready to transmit a deflection cell and
2 outputs are available to receive one. This case may arise from
the original set of requests where only input 0 and 1 have won a
productive output either because they had the highest priority (the
case for input 0) or because they requested an output without any
contention (the case for input 1).

By the construction of the proposed switch allocator it is evi-
dent that the allocation procedure always maximizes the number of

INA-OCMC 2011 — January 23th, 2011, Heraklion, Greece 20

productive outputs and it does not wrongly deflects any flit that re-
quested an output with no contention. What remains to be clarified
is the design of the fast load distributor that spreads deflection flits
to the available outputs.

3. LOAD DISTRIBUTOR
At first, we begin with a topological organization of the load

distributor, assuming that it is implemented as a box where input
deflection requests DR are aligned vertically in the left (west) side
of the box, while the availability flags V that denote which output
is free are aligned horizontally at the upper (north) side of the box.
The deflection request of the first input and the availability flag
of the first output are placed on the upper-left (north-west) corner
of the distributor. The assignment of requests to available outputs
begins from input 0 and output 0, and moves gradually to the re-
maining inputs and outputs placed to positions with a larger index.

V[2]

0 01

DR[0][2] = 0DR[0][1] = 1DR[0][0] = 1 DR[0][3] = 0

Input request
propagation stops

V[1]V[0]

DR[0]

0

0

1
V[1][0] = 1

V[2][0] = 0

V[3][0] = 0

V[0][0] = 1

Availability flag
propagation stops

DR[1]

DR[2]

V[0]

DR[0]

(a) (b)

Figure 4: The propagation of (a) the availability flags and (b)

the input requests.

At the beginning, as depicted in Fig. 4(a), we assume the avail-
ability flag of the first output. According to the operation of the
distributor the availability flag is propagated downwards until it
finds an active deflection request. When a match is achieved, the
availability flag seen by the remaining inputs is set to zero since
this output is no longer available and has been selected by another
input. Therefore, the availability flag V [0] moving in the NORTH-
SOUTH direction is transferred unchanged from row i to i+1, i.e.,
V [i + 1][0] = V [i][0], when DR[i] = 0. On the contrary, when
DR[i] = 1, the availability of this output is consumed by input i
and the availability seen by the remaining inputs with index larger
that i is set equal to 0. Hence, when DR[i] = 1, flag V [i + 1][0]
is set to 0. Summarizing both conditions that connect V [i][0] and

DR[i] with V [i + 1][0], we get that V [i + 1][0] = V [i][0] ·DR[i].
This operation is exactly the same with the operation of the priority
encoder. The only difference is that instead propagating the priority
for an input, we propagate the output availability flags.

In a similar manner, when we isolate the deflection request of
input 0, we need to propagate it to all outputs until we find the
first available one. In other words, DR[0] is kept alive and keeps
moving in the WEST-EAST direction, until it meets an available
output, as shown in Fig. 4(b). When an available output is found the
request is set to zero since the corresponding input is not allowed
to send more than one flits at each cycle. Therefore, the request
that propagates from input i to all outputs (columns) is equal to

DR[0][i + 1] = DR[0][i] ·V [i]. Again the problem is solved via a
priority encoder that now acts on the availability flags and decides
on the propagation of the input request.

The solution to the load distribution problem needs at the same
time both the per-row and the per-column arbitration steps. The
combined operation leads to a regular 2D arbitration array based

South

West
East

North

Grant[i][j]

DR[1]

DR[2]

Propagated Request

Propagated Availability

V[0] V[1] V[2]

1

0

1

0 1 1

1 0

0 0

1 1

1

1

0

0

input
deflection
requests

output availability

0

0

Matched Pair

DR[0] (0,0)

(1,0)

(2,0) (2,1) (2,2)

(1,1) (1,2)

(0,2)(0,1)

0

0

0 0

0 0

01

1

1

Figure 5: The 2D structure of the basic form of the load dis-

tributor.

on the unified arbitration cell as shown in Fig. 5 and is just a com-
bination of the per-row and per-column cells presented earlier. In
this way, while the availability flags are propagated vertically until
they meet an active request, the requests travel horizontally until
they meet an available output. A match between an input/output
pair is actually achieved when both the incoming availability flag
DV [i][j] and the incoming request DR[i][j] of the ith row and jth
column, respectively, are both equal to 1. This condition is given to
the output Grant[i][j] of the cell.

3.1 Delay optimized load distributor
The basic circuit for the load distributor has a delay equal to the

delay of 2n AND gates.1 This delay is imposed by the order of
assignment of inputs to outputs that we selected for the circuit of
Fig. 5. However, in a deflection operation there is no need to main-
tain this exact order. The deflection requests can be assigned to any
available output in any order. The only constraints that the load
distributor should respect are the following: First each deflection
request should be checked for a possible match against all avail-
ability flags irrespective the order of availability-flags traversal, and
second, one availability flag should match to only one deflection
request. Therefore, following this simple observation, we can per-
form a structural-only modification to the basic load-distribution
module and derive a new circuit that is twice as fast. We will
present the delay-optimized load distribution in three steps.

The first step involves how the deflection requests are connected
to the load distributor. In the original circuit the deflection requests
DR[1] and DR[2] are connected to the first column of the 2D ar-
ray. In this way, even though they could match with ports 1 and
2 they had to wait first the availability of port 0. This constraint
can be removed by connecting DR[1] and DR[2] directly to the
main diagonal of the array. This modification followed by the ap-
propriate re-wiring is shown in the 1st diagram of Fig. 6. After
this modification the propagation delay of the deflection requests is
symmetric for all inputs.

1Inverters are omitted since they are merged with logic after syn-
thesis.

INA-OCMC 2011 — January 23th, 2011, Heraklion, Greece 21

Move deflection requests
in main diagonal

DR[1]

DR[2]

V[0] V[1] V[2]

DR[0]
(0,0)

(1,0)

(2,0) (2,1) (2,2)

(1,1) (1,2)

(0,2)(0,1)

1

Bring availability flags in
the main diagonal

2

DR[1]

DR[2]

V[0]

V[1]

V[2]

DR[0]
(0,0)

(1,0)

(2,0) (2,1) (2,2)

(1,1) (1,2)

(0,2)(0,1)

Change the direction of
request propagation

3

DR[1]

DR[2]

V[0]

V[1]

V[2]

DR[0]
(0,0)

(1,0)

(2,0) (2,1) (2,2)

(1,1) (1,2)

(0,2)(0,1)

Figure 6: The transformation procedure to design a fast symmetric load distributor.

Although DR[0] can match directly with output 0 if it is avail-
able, this does not hold for DR[1] and DR[2] and the rest outputs.
To give the opportunity to DR[1] and DR[2] to try in the first stage
to match with their symmetric outputs 1, and 2, as done for DR[0],
we can move appropriately the entrance points of the availability
flags V [1] and V [2]. The placement of V [1] and V [2] to the main
diagonal of the circuit is shown in the 2nd diagram of Fig. 6.

Up to now, we managed to speed up the circuit and removed
some unnecessary dependencies. However, still the deflection re-
quests DR[1] and DR[2] have to wait the complete propagation
of DR[0] before matching with an available output. This delay
overhead can be easily removed by changing the direction of prop-
agation of the requests in all rows of the circuit, as shown in the 3rd
diagram of Fig. 6. In this way, we end up with a fully symmetric
circuit that has a maximum delay of 3 AND gates in every path.

The design of a fast n-to-n load distributor can be performed by
starting with a original n × n array similar to Fig. 5, connecting
all deflection requests and availability flags along the main diago-
nal of the array and then changing finally the direction of request
propagation in each row.

4. DELAY ANALYSIS AND COMPARISONS
Exact delay comparisons between the proposed architecture and

the most efficient previous proposal shown in Fig. 1 requires logic
synthesis and placement & routing for both modules. However,
in this case, the delay difference in terms of logic levels between
the two modules under comparison is that big, that just counting
suffices to prove the delay savings expected by the proposed im-
plementation. Please notice that the delay of both circuits is gate
limited and the contribution of the internal wires is rather small.

The switch allocator shown in Fig. 1 has a delay equal to the
delay of an n-input sorting network plus the delay of n serially
connected arbiters. The fastest sorting network has a delay equal to
1
2

(
log2

2 n + log2 n
)

comparators, while the delay of each arbiter
is roughly equal to the delay of log2 n+1 logic gates [11], [12]. In
the proposed case, the critical path passes through a max-selection
unit that involves only log2 n comparators in series and a load dis-
tributor that imposes an extra delay of n gates.

The delay overhead of demuxes and OR gates shown in the block
diagram of the proposed switch allocator are not counted, since
they are inherent to any switch allocator [13] even in the case of
buffered switches, and exist also in a full implementation of the
sorting-based switch allocator of [1].

5. CONCLUSIONS
A practical switch allocator for bufferless switches has been pre-

sented in this paper that removes the serial dependency of output
port allocation found in previous proposals and offers significantly
faster circuit implementations.The proposed switch allocator can
act as a new tool to the hand of network architects that do not
need to consider anymore switch allocation in the case of buffer-
less switches as a slow and hard-to-design module, thus allowing
them to derive new more efficient architectures.

6. REFERENCES
[1] T. Moscibroda and O. Mutlu, "A case for bufferless routing in

on-chip networks", ISCA-36, 2009.

[2] Z. Lu, M. Zhong, and A. Jantsch, "Evaluation of on-chip
networks using deflection routing", GLSVLSI-16, 2006.

[3] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato, "Reducing
packet dropping in a bufferless NoC", Euro-Par-14, 2008.

[4] M. Hayenga, N. Jerger, and M. Lipasti, "Scarab: A single
cycle adaptive routing and bufferless network", MICRO-42,
2009.

[5] K. Goossens and A. Hansson, "The Aethereal Network on
Chip after Ten Years: Goals, Evolution, Lessons, and Future",
DAC, 2010.

[6] J. Kim. "Low-cost router microarchitecture for on-chip
networks", MICRO-42, 2009.

[7] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C.
Kozyrakis, "Evaluating bufferless flow-control for on-chip
networks", NOCS, 2010.

[8] S. Tota M. R. Casu, and L. Macchiarulo, "Implementation
analysis of NoC: a MPSoC trace-driven approach",
GLSVLSI-16,2006.

[9] Z. Hong and R. Sedgewick, "Notes on merging networks",
ACM STOC, 1982

[10] K. Harteros, "Fast Parallel Comparison Circuits for
Scheduling",ăTech. Report FORTH-ICS/TR-304, 2002.

[11] G. Dimitrakopoulos, N. Chrysos and K. Galanopoulos, "Fast
arbiters for on-chip network switches", ICCD, 2008.

[12] G. Dimitrakopoulos, "Logic-level implementation of basic
switch components", in Designing Network On-Chip
Architectures in the Nanoscale Era, Jose Flich and Davide
Bertozzi, Eds., CRC Press, 2010.

[13] D. Becker and W. Dally, "Allocator implementations for
network-on-chip routers", ACM/IEEE SC, 2009.

INA-OCMC 2011 — January 23th, 2011, Heraklion, Greece 22

