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ABSTRACT

Two architectures for parallel-prefix modulo 2n − 1 adders are
presented in this paper. For large wordlengths we introduce the
sparse modulo 2n − 1 adders that achieve significant reduction
of the wiring complexity without imposing any delay penalty.
Then, the Ling-carry formulation of modulo 2n − 1 addition is
presented. Ling modulo adders save one logic level of implemen-
tation and provide high-speed solutions for smaller adder widths,
where wiring complexity is small. The performance of the pro-
posed adders has been validated with static CMOS implementa-
tions. In all examined cases, the proposed designs achieve sig-
nificant savings in both area and delay compared to previously
published architectures.

1. INTRODUCTION

Modulo 2n−1, or equivalently one’s complement addition, plays
an essential role in Residue Number System applications [1], in
fault-tolerant computer systems [2], in error detection in com-
puter networks [3], and in floating-point arithmetic [4].

Many solutions have been presented for fast modulo 2n − 1
addition. In [5] modulo adders are proposed that use a parallel-
prefix carry computation unit along with an extra prefix level that
handles the end-around-carry. In [6] it was shown that the re-
circulation of the end-around-carry can be performed within the
existing prefix levels. Therefore, the need of the extra prefix level
is cancelled and parallel-prefix modulo 2n−1 adders are derived
that can perform carry computation in log2 n levels. However,
the routing requirements are increased. Finally, in [7] select-
prefix modulo 2n − 1 adders have been proposed, that aim at
reducing the area complexity of the parallel-prefix structures but
suffer from significant delay penalties.

In this paper two new architectures are presented. The first
one, is based on the architecture of [6], and allows the design
of sparse modulo 2n− 1 adders with reduced wiring complexity.
The proposed sparse adders are equally fast with the adders of [6]
and since they do not suffer from increased routing are better
suited for large wordlengths. In the second case, the Ling-carry
formulation of modulo 2n − 1 addition is proposed for the first
time in the open literature. Ling adders [8] are based on a simpli-
fied form of the carry-lookahead equations and allow faster im-
plementations [9]. The proposed Ling-based modulo adders offer
significant delay reductions compared to the adders of [6], since
they save one logic level of implementation, without increasing
wiring complexity.

The rest of the manuscript is organized as follows. Sec-
tion 2 revisits the basics of parallel-prefix addition and sparse
adder design, and provides a brief review of modulo 2n − 1
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Figure 1. Examples of parallel-prefix structures for integer
adders.

adder architectures. Section 3 presents the proposed sparse mod-
ulo adders. Section 4 describes the design of Ling-based modulo
adders, while experimental results that validate the efficiency of
the proposed architectures, are given in Section 5. Finally, con-
clusions are drawn in Section 6.

2. PARALLEL-PREFIX ADDITION

Suppose that A = an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0

represent the two numbers to be added and S = sn−1sn−2 . . . s0

denotes their sum. An adder can be considered as a three-stage
circuit. The preprocessing stage computes the carry-generate bits
gi, the carry-propagate bits pi, and the half-sum bits hi, for every
i, 0 ≤ i ≤ n − 1, according to: gi = ai · bi, pi = ai + bi,
hi = ai ⊕ bi, where ·, +, and ⊕ denote the logical AND, OR
and exclusive OR operations respectively. The second stage of
the adder, hereafter called the carry-computation unit, computes
the carry signals ci, for 0 ≤ i ≤ n − 1 using the carry generate
and carry propagate bits gi and pi. The third stage computes the
sum bits according to si = hi ⊕ ci−1.

Carry computation is transformed into a parallel prefix prob-
lem using the ◦ operator, which associates pairs of generate and
propagate signals and was defined in [10] as, (g, p) ◦ (g′, p′) =
(g + p · g′, p · p′). In a series of associations of consecutive gen-
erate/propagate pairs (g, p) the notation (Gk:j , Pk:j), is used to
denote the group generate/propagate term produced out of bits
k, k − 1, . . . , j, that is,

(Gk:j , Pk:j) = (gk, pk) ◦ (gk−1, pk−1) ◦ . . . ◦ (gj , pj). (1)

The Kogge-Stone [11] and Ladner-Fisher [12] parallel-prefix struc-
tures, for an 8-bit adder, are shown in Fig. 1.

For large wordlengths (n > 32) the design of sparse parallel-
prefix adders is preferred, since the wiring and area of the design
are significantly reduced without sacrificing delay [1]. The de-
sign of sparse adders relies on the use of a sparse parallel-prefix
carry computation unit and carry-select (CS) blocks. Only the
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Figure 2. (a) Sparse-4 parallel-prefix structure for a 32-bit inte-
ger adder and (b) the logic level implementation of the CS block.

carries at the boundaries of the carry-select blocks are computed,
saving considerable amount of area in the carry-computation unit.
A 32-bit adder with sparseness of 4 bits is shown in Fig. 2(a). The
carry select block computes two sets of sum bits corresponding to
the two possible values of the incoming carry. A logic-level im-
plementation of a 4-bit carry-select block is shown in Fig. 2(b).
Since the two candidate sum bits are computed earlier than the
selecting carry, no extra delay is imposed by the use of the carry-
select blocks.

2.1. Modulo 2N − 1 adders

The computation of modulo 2n − 1 addition is in fact a condi-
tional operation defined as,

(A + B) mod (2n−1) =

(
(A + B) mod 2n, A + B < 2n

(A + B) mod 2n + 1, A + B ≥ 2n

or equivalently,

(A + B) mod (2n−1) = (A + B) mod 2n + cn−1.

According to [5], the addition of the carry output cn−1 of the in-
teger adder to the sum (A + B) mod2n, can be performed using
an additional carry increment stage as shown in Fig. 3(a). In this
case, one extra level of • cells is required that are driven by the
carry output of the adder. This approach suffers from large delay
since both one extra prefix level is required, and the re-entrant
carry has a fanout proportional to the adder’s wordlength.

In [6] an alternative approach has been presented. It was
shown that the ith carry ci in the case of modulo 2n − 1 addition
can be expressed as

ci = Gi:0 + Pi:0 Gn−1:i+1 , (2)

which is computed using the ◦ operator as,

(gi, pi) ◦ · · · ◦ (g0, p0) ◦ (gn−1, pn−1) ◦ · · · ◦ (gi+1, pi+1).

Using this formulation, the carries can be computed by recircu-
lating the intermediate generate and propagate terms in the ex-
isting prefix levels of a parallel-prefix tree. The resulting adder
is shown in Fig. 3(b). The adders of [6] are faster than those

proposed in [5], but suffer from excessive wiring that limits their
use to small wordlengths. This problem is alleviated by the new
sparse adder topologies presented in the next section.
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Figure 3. Modulo 28 − 1 adder designs.

3. SPARSE MODULO 2N − 1 ADDERS

The proposed methodology for the design of sparse parallel-prefix
modulo 2n − 1 adders is presented via an example. Assume that
we need to design a sparse-4 parallel-prefix modulo 232−1 adder.
In this case, only one every four carries is generated. Therefore,
in order to design the carry-select block, we need to associate the
rest of the carries with the available ones.

25 24 23 22 21 .  .  . 1 0 31 30 .  .  . 25 2426
C23C25

Figure 4. Circular overlapping between the terms of c23 and c25.

For example the carry c25 = G25:0 + P25:0 G31:26 (see (2)),
needs to be derived based on c23 = G23:0 + P23:0 G31:24 in
order to generate s26. We will show that although c23 contains
the group generate term G25:24 which partially overlaps with the
group generate term G25:0 of c25, in a circular manner, as shown
in Fig. 4, it is still possible to produce c25 from c23.

Since, according to (1), G25:0 = G25:24 + P25:24 G23:0 and
P25:0 = P25:24 P23:0, carry c25 can be written as:

c25 = G25:24 + P25:24 G23:0 + P25:24 P23:0 G31:26. (3)

The term G25:24 can be expanded to

G25:24 + G25:24 (P25:24 P23:0 P31:26). (4)

Replacing (4) in (3) and factoring the common terms of the re-
sulting relation it is derived that

c25 = G25:24 + P25:24 (G23:0 + P23:0 (G31:26 + P31:26 G25:24))

= G25:24 + P25:24 (G23:0 + P23:0 G31:24)

= G25:24 + P25:24 c23. (5)

From (5) it is derived that although carries c25 and c23 refer
to modulo 2n − 1 addition, the relation that associates them is
the same as in the case of integer addition. Therefore, the carry
select block used for integer adders can be used without mod-
ifications for the design of sparse modulo 2n − 1 adders. The
resulting design is shown in Fig. 5(a). The same principle can
be applied to the design of sparse modulo adders with a carry in-
crement stage (see Fig. 5(b)). In this case, both the area and the
large fanout of the re-entrant carry are reduced compared to the
structures proposed in [5].

Equation (5) is the inverse application of the circular idem-
potency property, which holds for modulo 2n − 1 addition, and
has been used in [13] for designing modulo adders for every n.
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Figure 5. The proposed 32-bit sparse modulo adders using the
architectures of [6] and [5], respectively.

4. LING MODULO 2N − 1 ADDERS

Ling’s definition of carry-lookahead equations [8], simplifies carry
computation and leads to faster adder architectures. In this sec-
tion, we present the Ling-based formulation of modulo 2n − 1
addition, while the corresponding parallel-prefix structures are
obtained using the architecture presented in [9]. In order to de-
scribe the proposed approach, a modulo 28−1 adder will be used
as an example.

According to (2) the carry c2 of a modulo 28 − 1 adder is
equal to:

c2 =g2 + p2g1 + p2p1g0 + p2p1p0g7 + . . .

. . . + p2p1p0p7p6p5p4g3

(6)

Since gi = pi · gi relation (6) is expressed as

c2 = p2(g2 + g1 + p1g0 + p1p0g7 + . . .

. . . + p1p0p7p6p5p4g3) = p2H2. (7)

The term H2 can be considered as the Ling-carry equivalent for
the case of modulo 2n − 1 addition. The terms of H2 can be
further grouped as follows

H2 =(g2 + g1) + (p1p0)(g0 + g7) + (p1p0)(p7p6)(g6 + g5)+

+ (p1p0)(p7p6)(p5p4)(g4 + g3). (8)

Assuming that

G∗i = gi + gi−1 and P ∗i = pi · pi−1, (9)

where g−1 = g7 and p−1 = p7 equation (8) can be written as,

H2 = G∗2 + P ∗1 G∗0 + P ∗1 P ∗7 G∗6 + P ∗1 P ∗7 P ∗5 G∗4 (10)

which can be equivalently expressed using the ◦ operator as

H2 ↔ (G∗2, P
∗
1 ) ◦ (G∗0, P

∗
7 ) ◦ (G∗6, P

∗
5 ) ◦ (G∗4, P

∗
3 ) (11)
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Figure 6. The proposed Ling-based modulo 28 − 1 adder and
the definition of the new preprocessing and sum bits computation
stages.

The corresponding expressions for the rest Ling modulo carries
Hi can be derived in a similar manner.

H0 ↔ (G∗0, P
∗
7 ) ◦ (G∗6, P

∗
5 ) ◦ (G∗4, P

∗
3 ) ◦ (G∗2, P

∗
1 )

H2 ↔ (G∗2, P
∗
1 ) ◦ (G∗0, P

∗
7 ) ◦ (G∗6, P

∗
5 ) ◦ (G∗4, P

∗
3 )

H4 ↔ (G∗4, P
∗
3 ) ◦ (G∗2, P

∗
1 ) ◦ (G∗0, P

∗
7 ) ◦ (G∗6, P

∗
5 )

H6 ↔ (G∗6, P
∗
5 ) ◦ (G∗4, P

∗
3 ) ◦ (G∗2, P

∗
1 ) ◦ (G∗0, P

∗
7 )

H1 ↔ (G∗1, P
∗
0 ) ◦ (G∗7, P

∗
6 ) ◦ (G∗5, P

∗
4 ) ◦ (G∗3, P

∗
2 )

H3 ↔ (G∗3, P
∗
2 ) ◦ (G∗1, P

∗
0 ) ◦ (G∗7, P

∗
6 ) ◦ (G∗5, P

∗
4 )

H5 ↔ (G∗5, P
∗
4 ) ◦ (G∗3, P

∗
2 ) ◦ (G∗1, P

∗
0 ) ◦ (G∗7, P

∗
6 )

H7 ↔ (G∗7, P
∗
6 ) ◦ (G∗5, P

∗
4 ) ◦ (G∗3, P

∗
2 ) ◦ (G∗1, P

∗
0 )

It is evident that using the pairs (G∗i , P ∗i−1), where G∗−1 =
G∗7 and P ∗−1 = P ∗7 , the Ling modulo carries of the even and
the odd-indexed bit positions can be computed independently.
The parallel-prefix architecture for the Ling-based modulo 28−1
adder is shown in Fig. 6. In general, the Ling-carries in the case
of modulo 2n − 1 addition can be defined as follows:

Hi ↔ (G∗i , P ∗i−1) ◦ (G∗i−2, P
∗
i−3) ◦ . . . ◦ (G∗i+2, P

∗
i+1)

It should be noted that the parallel prefix computation of the
modulo 2n − 1 Ling carries Hi requires one less prefix level,
compared to the adders shown in Fig. 3(b). The pairs (G∗i , P ∗i−1)
are directly computed in a single logic level from the input bits
(ai, bi) and (ai−1, bi−1) using AND-OR gates according to (9).
The sum bits si can be computed using a multiplexer that selects
either hi or (hi⊕pi−1) according to the value of Hi−1 [9], since

si = Hi−1 · hi + Hi−1 · (hi ⊕ pi−1), (12)

where x denotes the complement of x. Taking into account that,
in general, an XOR gate has almost the same delay as a multi-
plexer and that both hi and (hi ⊕ pi−1) are computed in fewer
logic levels than Hi−1, it is evident that no extra delay is imposed
for the calculation of the output bits from the Ling carries.

5. EXPERIMENTAL RESULTS

In this section we present a complete experimental investigation
of the performance of the proposed adders and the ones presented
in [5] and [6]. All adders were described in Verilog HDL and
mapped on a 0.18µm technology library [14] assuming typical
conditions (1.8V, 25◦C), and using the Synopsys Design Com-
piler. Each design was iteratively optimized, until no further de-
lay optimizations were possible. The same design constraints,



Table 1. The area (µm2) and delay (ns) results for the proposed
Ling-based modulo adders and the adders of [6] and [5].

bits Prop. Ling [6] Red (%) [5] Red (%)
8 Delay 0.51 0.60 15 0.73 30

Area 2353 2402 2 2504 6
16 Delay 0.63 0.71 11 0.89 29

Area 5696 5898 3 5834 2

Table 2. The area (µm2) and delay (ns) results for the adders
of [5] and [6] and their proposed sparse counterparts.

bits Prop. Sparse [6] [6] Red (%)
32 Delay 0.84 0.84 0

Area 10815 13363 19
64 Delay 0.95 0.95 0

Area 21991 31002 29
(a)

bits Prop. Sparse [5] [5] Red (%)
32 Delay 0.99 1.02 2

Area 10583 13347 20
64 Delay 1.11 1.18 5

Area 21508 28783 25
(b)

bits Prop. Sparse [6] Prop. Sparse [5] Red (%)
32 Delay 0.84 0.99 15

Area 10815 10583 -2
64 Delay 0.95 1.11 14

Area 21991 21508 -2
(c)

such as maximum fanout, output capacitance, and available input
drive strength, were used for all designs.

The results for the 8 and 16-bits adders are shown in Table 1.
The proposed Ling-based modulo 2n − 1 adders outperform all
other solutions both in terms of delay and area by an average of
21.41% and 3.47% respectively. For the adders proposed in [5]
the Kogge-Stone parallel prefix structure has been used, since it
offers the minimum delay.

The sparse structures presented in Section 3 are better suited
for large adder wordlengths. Therefore we implemented 32 and
64-bits sparse adders utilizing 4-bit carry-select blocks. In Ta-
bles 2(a) and 2(b), the adders proposed in [5] and [6] are com-
pared with their sparse counterparts presented in Section 3. The
new derived structures are more efficient both in terms of delay
and area. Among them the proposed sparse variants of [6], as
the one shown in Fig. 5(a), are the most efficient in the area-time
sense. They offer an average of 24% area reduction compared to
the adders of [6] without any delay penalty (see Table 2(a)). Also,
as shown in Table 2(c), they require almost the same implemen-
tation area with the proposed sparse modulo adder that utilizes
an extra carry-increment stage (Fig. 5(b)), while being faster by
14% on average.

As a final step, we compared the proposed Ling modulo adders
with the proposed sparse variants of [6], for 32 and 64-bit adder
widths. The results are shown in Table 3(a). The Ling-based
adders are faster but require significantly more implementation
area, more than 18%. In order to better compare the two proposed
solutions in the area-time space, the Ling-based adders were re-
optimized targeting the delay of the sparse variants of [6]. The
more relaxed delay constraint for the proposed Ling adders re-
sulted in more area efficient designs. However, as shown in Ta-
ble 3(b), the proposed sparse variants of [6] still require at least
14% less area for their implementation, thus providing an attrac-
tive solution for large adder widths. Ling-based adders remain
the most efficient solution for smaller wordlengths.

Table 3. The area (µm2) and delay (ns) results for the proposed
sparse variants of [6] and the new Ling-based modulo adders.

bits Prop. Sparse [6] Prop. Ling Red (%)
32 Delay 0.84 0.76 -9

Area 10815 13339 18
64 Delay 0.95 0.87 -9

Area 21991 31044 29
(a)

bits Prop. Sparse [6] Prop. Ling Red (%)
32 Delay 0.84 0.84 0

Area 10815 12606 14
64 Delay 0.95 0.95 0

Area 21991 29165 24
(b)

6. CONCLUSIONS

In this paper we have presented two new architectures for the case
of modulo 2n − 1 addition that outperform previously published
designs in both area and delay. The efficiency of the proposed
designs has been validated using static CMOS implementations.
For large wordlengths area-time efficient sparse modulo 2n − 1
adders have been proposed. Also for smaller adder widths, where
wiring complexity is small, Ling-based modulo adders have been
introduced, and offer the fastest implementations.
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