
ElastiNoC: A Self-Testable Distributed
VC-based Network-on-Chip Architecture

I. Seitanidis∗, A. Psarras∗, E. Kalligeros†, C. Nicopoulos‡ and G. Dimitrakopoulos∗
∗Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

†Information & Communication Systems Engineering, University of the Aegean, Samos, Greece
‡Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

Abstract—Network-on-Chip (NoC) design tries to keep a bal-
ance between network performance and physical implementation
flexibility. The adoption of Virtual Channels (VC) holds promise
for scalable NoC design. VCs allow for traffic separation and
isolation, enable deadlock avoidance and improve network per-
formance. In this paper, we present ElastiNoC, a novel distributed
VC-based router architecture that enjoys all the benefits offered
by VCs and leads to efficient silicon-aware implementations.
The proposed architecture utilizes an efficient buffering strategy
and allows for modular pipelined organizations that increase the
clock frequency. Moreover, it offers maximum freedom in terms
of physical placement, by allowing the NoC components to be
physically spread throughout the chip, irrespective of the network
topology. The combined effect of all supported features enables
significant delay reductions under equal performance, when
compared to state-of-the-art VC-based NoC implementations.
Moreover, the careful addition of self-test structures allows
ElastiNoC to enjoy fully distributed Built-In Self Testability
(BIST), where testing unfolds in phases and reaches high fault
coverage with small test application time.

I. INTRODUCTION

The design of scalable Network-on-Chip (NoC) architec-
tures calls for new implementations that achieve high through-
put and low-latency operation, without exceeding the stringent
area-energy constraints of modern Systems-on-Chip (SoC) [1].

In terms of network functionality, Virtual Channels (VCs)
– which allow a physical channel to be used in a time-
multiplexed manner by different traffic flows, provided that
each flow owns a separate buffer space – are an already
proven solution [2]. Architectures supporting the use of VCs
(1) enable traffic separation and isolation by assigning different
traffic classes to different VCs, (2) improve performance, and
(3) reduce on-chip physical routing congestion, by trading off
physical channel width with a number of VCs, thereby creating
a more layout-flexible SoC architecture.

VCs are also instrumental for the correct operation of
higher-level mechanisms. For instance, protocol-level restric-
tions in Chip Multi-Processors (CMP) employing directory-
based cache coherence necessitate the use of VCs. Coher-
ence protocols require isolation between the various message
classes to avoid protocol-level deadlocks. For example, the
MOESI directory-based cache coherence protocol requires at
least three virtual networks to prevent protocol-level dead-
locks. A virtual network comprises of one VC (or a group of
VCs) that handles a specific message class of the protocol [3].

Traditional VC-based NoC architectures focus mostly on
microarchitectural improvements to the router’s internal or-
ganization and pipeline structure [4], [5]. Prior research has

explored salient router attributes, such as appropriate alloca-
tion policies [6], as well as the optimization of the associated
VC buffering structures [7], [8], [9], concentrating mostly on
buffer sharing and related flow control strategies. A complete
overview of routers’ microarchitecture can be found in [10].

In this paper, we revisit first the pipelined configurations
of baseline routers with the goal of identifying – via a
simple intuitive analytical model – the amount of pipelining
needed to achieve optimal network latency under arbitrary
topologies, packet sizes, and routing algorithms. Our analysis
aims to shed more light on previous design trends that targeted
primarily the reduction of the intra-router pipeline stages. We
clearly show that router pipelining (and its associated clock
frequency benefit) will always be beneficial, even for simple
NoC designs, when applied with care, so as to avoid over-
pipelining and its associated diminishing returns.

Motivated by this analysis, we introduce a novel dis-
tributed VC-based router architecture, which enables fine-
grained pipelining and provides maximum flexibility in terms
of NoC physical placement. The proposed structures are also
enhanced with novel self-testability features and a scalable
testing mechanism that achieves high fault coverage with small
test application time.

While the concepts of distributed router design and fine-
grained network pipelining have been explored in the past,
the focus has been on applying the said attributes to designs
that do not support VCs [11], [12], [13], [14], [15]. Supporting
VCs in that context needs multiple parallel networks of such
distributed routers. Obviously, multiple networks do not con-
stitute the most resource-efficient solution, due to inevitable
resource duplication. Hence, the need for an architecture that
efficiently combines all these benefits with support for VCs is
imperative. To the best of our knowledge, the design proposed
in this paper is the first distributed VC-based router implemen-
tation that supports this form of modularity. In summary, the
main contributions of this work are:

• The introduction of a new architectural paradigm for VC-
based NoC routers, called ElastiNoC, which enables the
modular construction of pipelined routers. The resulting
design, presented in Section III, yields highly-scalable
NoC implementations.

• A shift in the design philosophy of VC-based NoC routers
from centralized and monolithic structures to modular and
distributed components that can be “stitched” together to
form a larger entity, while still providing full VC support
and extensive flexibility during physical placement.

• The augmentation of ElastiNoC with self-testability ca-

Fig. 1. The delay of representative single-cycle 5-port NoC routers with
64-bit wide ports and 4 VCs per input in the case of VC-based routers. The
results are normalized to the delay of a wormhole-based router (i.e., no VC
support). “No VC change” means that packets do not change VC; their VC is
decided upon injection and remains the same until they reach their destination.

pabilities, as presented in Section IV. The routers are
able to conduct testing sessions in a modular manner
over multiple phases, that achieve high fault coverage
(in excess of 99%). Self testing imbues ElastiNoC with
a valuable (albeit often ignored) asset, which greatly
enhances its viability to much larger future designs.

The experimental results presented in Section V – based
on both network simulations and standard-cell-based hard-
ware synthesis implementations – validate the efficacy and
efficiency of ElastiNoC. The combined effect of all introduced
features enables the design of highly scalable VC-based NoC
architectures, which offer high operating frequencies and
provide equal (or even better) networking performance, as
compared to state-of-the-art VC-based implementations.

II. MODELING LOW-LATENCY ON-CHIP NETWORKS

In this section, we develop a simple intuitive analytical
model that connects the network latency with the routers’ oper-
ating clock frequency and their internal pipeline organization.
The goal is to construct a model that enables the designer to
derive a first-order approximation to an optimal configuration,
given certain parametrical constraints. The presented model,
although based on several simplifying assumptions, provides
valuable intuition on when router pipelining is needed, and
which pipeline depth makes sense to implement.

First, assume that the NoC’s topology and size are fixed, and
the possible use of concentration has already been decided.
Moreover, assume that the link bit-widths have also been
decided. Such decisions fix the radix of the routers and their
port sizes, which are critical factors in determining the overall
delay. Still, even for fixed-radix routers, their delay can vary
significantly, depending on the microarchitecture of the routers
(e.g., support for VCs, allocation organization etc.) and other
implementation constraints.

Figure 1 shows the normalized minimum delay of several
single-cycle routers with 5 input ports and 64-bit wide chan-
nels when synthesized in 45nm technology. The comparison
includes (a) a simple wormhole router, (b) a VC-based router
with baseline VC allocation, whereby packets can change VC
in-flight, (c) a VC-based router with baseline VC allocation,
whereby packets are not allowed to change VC, (d) a VC-
based router with speculative VC allocation, whereby packets
can change VC, and (e) a VC-based router with speculative

VC allocation, whereby packets cannot change VC. All delays
are normalized to the delay of the wormhole router, which
does not support VCs. In all cases, the routing computation
is performed in series with the remaining tasks.The VC-based
routers have 4 VCs per input port with 4 buffers per VC. The
wormhole router has 4 buffer slots per input port.

The delay of each single-cycle router is the sum of several
sub-tasks, such as Buffer Read (BR), Routing Computation
(RC), VC Allocation (VA), Switch Arbitration (SA), Handling
of returning Grants (GH), and Switch Traversal (ST), which
also includes the delay of credit updates and VC state re-
allocation (in the case of a tail flit leaving an output port).
Note that in speculative routers that do VA and SA in parallel,
the critical path passes through the SA unit. Even though the
evaluated routers have completely different behavior in terms
of throughput-versus-load performance, they represent almost
all design options available for the design of monolithic NoC
routers. In any case, the minimum clock cycle that a single-
cycle router can operate at is TCY C ≥ D + c, where D
represents the worst-case delay of the router’s internal paths,
and c is the clocking overhead (sum of the register clock-to-Q
delay and the setup time; depicted as CO in Figure 1).

Router pipelining is expected to reduce the clock period.
However, every pipelining decision stops across the borders
of the traditional basic blocks within each router, e.g., VC
allocation, switch arbitration, and switch traversal. The fact
that such blocks do not have an evenly balanced delay profile
– as shown in Figure 1 – makes pipelining even harder, since
the achieved clock frequency is limited by the delay of the
critical path. For the optimal case, we can assume that it is
possible to break the router’s critical path into k equal-delay
stages. Then, the router’s clock period can drop to

TCY C ≥ D

k
+ c (1)

By increasing the pipeline stages of a router, its clock
frequency can increase, thereby leading to faster implemen-
tations. At the same time, however, each flit spends more
cycles inside each router, before moving to the next one.
Therefore, the depth of the pipeline cannot be decided in
isolation; the decision should also take into account other
network parameters, such as the number of hops each packet
needs to make between source and destination pairs, and the
average packet size, assuming that a mix of packets of different
sizes may traverse the network.

The hop count is determined by many factors, such as the
network topology and size, the employed routing algorithm,
and the statistics of the traffic patterns. To keep our model
simple, we incorporate the contributions of all these factors
within one variable, i.e., the average hop count H , which
averages the contribution of each feature. Thus, the zero-load
latency (in cycles) of a packet is equal to

T = H (k + 1) + P − 1 (2)

Each flit spends k cycles in each k-pipelined router and 1 cycle
to cross the link between two routers. Variable P = L/W
represents the serialization latency of a packet with a size of
L bits traveling over W -bit wide physical links1.

1The minus one removes the contribution of the head flit, which is included
in the first term of the equation.

16

18

20

22

24

26

28

30

0 1 2 3 4 5 6 7

70

80

90

100

110

Z
e

ro
-l

o
a

d
 L

a
te

n
c
y
 (

n
s
)

A
re

a
 (

k
u

m
2)

Number of Pipeline Stages (k)

-22%

-6%
-1%

16

18

20

22

24

26

28

30

0 1 2 3 4 5 6 7

70

80

90

100

110

Z
e

ro
-l

o
a

d
 L

a
te

n
c
y
 (

n
s
)

A
re

a
 (

k
u

m
2
)

Number of Pipeline Stages (k)

-21%

-7%

(a) (b)
Fig. 2. The average zero-load packet latency (in absolute time) computed
directly from eq. (3) and the associated router area overhead, as the number
of pipeline stages are varied. Results are shown for (a) a baseline, and (b) a
speculative VC-based router assuming 4 VCs per input port.

Since each k-stage pipelined router works with a clock
period of TCY C

2, the zero-load latency of each packet in
absolute time is the product of the latency in cycles and the
minimum clock period of a pipelined router:

TABS(k)=T×TCY C = (H (k + 1) + P − 1)

(
D

k
+ c

)
(3)

It should be noted here that even if the use of the packet’s
zero-load latency alone is not sufficient to fully capture a NoC
design’s behavior, the resulting configurations will still hold
for the majority of possible network loading conditions that
are not close to the saturation throughput.

To explore the interesting interplay between packet latency
and pipeline depth, we fix the average hop count to H = 6.25,
which roughly corresponds to deterministic XY routing in
an 8×8 2D mesh, assuming uniform random traffic and an
average packet size of P = 3 (50% 1-flit request packets and
50% 5-flit reply packets). For this configuration, the zero-load
latencies TABS (as a function of k) of (a) a baseline and (b)
a speculative single-cycle VC-based router that allows for in-
flight VC changes, are shown in Figure 2. When k moves from
1 to 2 (k = 1 corresponds to the un-pipelined single-cycle
solution), the latency savings are significant and are above
20%. The addition of more pipeline stages reduces packet la-
tency, but with diminishing returns. For example, moving from
3 to 4 pipeline stages offers less than 1% savings in packet
latency, without justifying the additional cost in control logic
and buffering resources. In a VC-based router, the number
of buffers should be equal to the minimum required to cover
the flow-control round-trip latency; else, throughput is severely
compromised. Pipelining increases the round-trip delay, which,
in turn, increases the mimimum buffering requirements of the
entire router. Therefore, any pipeline decision should also take
into account the buffering cost that this option incurs. Figure 2
depicts the area cost required for each pipelined alternative.
Straight lines are actual measurements after synthesis while
dashed lines correspond to calculations that add the area of
extra buffering. Inspecting packet latency and buffering cost
together leads to the conclusion that pipelining is indeed a
useful design choice that ends its useful contribution at around
3 pipeline stages. Above that point, the investment in extra
area due to more pipeline stages is not compensated by the
(diminishing) reductions in packet latency.

2For simplicity, we assume that all NoC components (e.g., routers and links)
belong to a single clock domain.

In addition to the low-radix scenario examined above, we
also experimented with high-radix routers (e.g., those found
in a flattened butterfly topology [16]) to explore optimality in
networks with lower hop counts, but higher router latencies
(due to the complexities associated with high-radix designs).
Our evaluation results – omitted for brevity – indicate that
optimal pipelining in those scenarios is achieved with 4 or 5
stages, depending on the various salient parameters.

Using the simple analytical model leads to two interesting
conclusions. The first one is that the decision of pipelining the
router cannot be made solely based on its delay, but the process
should also take into account the environment in which the
router will operate. The second one (and perhaps non-intuitive)
is that the designer should not only opt for microarchitectural
optimizations that decrease the router’s delay by parallelizing
its tasks (e.g., with speculation), but, instead, should embrace
a combined approach that utilizes optimal pipelining. This
realization serves as the primary motivation and fundamental
driver of the work presented in this paper.

Unfortunately, in state-of-the-art monolithic router struc-
tures, pipelining decisions stop across the boundaries of the
traditional basic blocks, which have been widely viewed as
“atomic” (i.e., indivisible). Furthermore, the delay of these
blocks is not evenly balanced. Therefore, even if 3-stage
pipelines (or 4- and 5-stage pipelines in high-radix environ-
ments) are still possible with this coarse separation, the achiev-
able clock frequency would be sub-optimal, since the speed of
the router would be limited by the worst-case delay of the most
delay-critical block. Additionally, most existing router designs
are inherently centralized in terms of their physical layout.
This is attributed to certain monolithic components within each
router; the crossbar switch, the allocators, and the buffering
structures significantly limit the possible flexibility in the
physical placement of the overall router design. Consequently,
current architectures are not spatially scalable, i.e., they cannot
be efficiently distributed in space. This limitation may also
have adverse effects on the router’s delay.

These limitations of traditional VC-based router architec-
tures are addressed by the ElastiNoC architecture proposed in
this work. The new design philosophy: (a) enables modular
pipeline implementations, (b) yields high operating frequen-
cies, and (c) allows for efficient spatially distributed hardware
implementations. The latter characteristic provides the floor-
planning and placement tools with more freedom in generating
optimal layout configurations.

III. ELASTINOC: MODULAR VC-BASED ARCHITECTURE

Any network topology, from single-stage crossbars to ar-
bitrary cubes, meshes, or butterfly-based structures can be
implemented by decomposing the switch operation to primitive
merge and split functions. In this paper, we design, for the first
time, novel merge primitives (and the associated simplified
split structures) that support VCs and offer the same degree of
flexibility – in terms of network performance and functionality
– as monolithic VC-based routers, but with higher-operating
speed, and distributed physical placement capabilities.

A. Modular router construction
The fundamental primitive of ElastiNoC, called the Merge

Unit (MU), consists of two inputs and one output. Its goal is

MU

LRC
In#0

2VC
Elastistore

Out#0

In#3
Out#3

MU

MU

MU

MU

MU

LRC

Fig. 3. The modular construction of an example ElastiNoC 4×4 VC-based
router using the proposed MU primitive that supports 2 VCs.

to switch and buffer locally the flits of two inputs that belong
to different VCs. Buffering is done via ElastiStore units [17],
which follow an elastic protocol and are able to simultaneously
store the data of many VCs using the minimum amount of
buffering. Each ElastiStore module comprises one single-flit
register per VC, plus one other single-flit register that can be
dynamically allocated to the first stalled VC.

By using MUs and splitting the data arriving at each input
port, one can design an arbitrary VC-based router. An example
is shown in Figure 3, which depicts an ElastiNoC router with
4 inputs and 4 outputs. Upon arrival at the input of the router,
each packet has already computed its destined output port
via Look-ahead Routing Computation (LRC). Subsequently –
depending on buffer availability, output VC availability, and
the allocation steps involved in each MU – the flits of the
packet are forwarded to the MU of the appropriate output.
Integration of MU and ElastiStore primitives is straightfor-
ward, since they all operate under the same ready(i)/valid(i)
handshake protocol. All router paths from input to output see
a pipeline of MUs of log2 N stages. Moving to the next router
involves one extra cycle on the link that is just a one-to-one
connection between two ElastiStores. The flow control on the
links does not allow packets to change VC and its operation
needs only an arbiter and a multiplexer for selecting a flit to
send to the next router.

The fact that all input-to-output paths experience log2 N
stages of MUs is extremely important. This attribute aligns
ElastiNoC with the optimal pipelining conclusions extracted
in Section II for both low- and high-radix routers. For low-
radix routers (with 5-8 input ports), optimal pipelining calls
for 2-3 stages, while the 4-5 pipeline stages required for
high-radix routers (with more than 12 input ports) are also
in agreement with the logarithmic number of stages of the
proposed architecture. Thus, ElastiNoC allows for sufficiently
fine-grained modularity, which can yield optimally pipelined
designs over a wide spectrum of router radices.

Due to the distributed nature of ElastiNoC, the split con-
nections can be customized to reflect the turns allowed by the
routing algorithm. For example, in a 5-port router for a 2D
mesh employing XY dimensioned-ordered routing, splitting
from the Y+ input to the X+ output is not necessary since this
turn is prohibited. Several other deterministic and partially-
adaptive routing algorithms can be defined via turn prohibits as
shown in [18]. When such customization is utilized, significant
area savings are expected, due to the removal of both buffering

per
Input VC

availready

input
VC state

outVC(0)
valid(0)

dequeueVC

#0

VC

#1sh
ar

ed

VA1/SA1

V VA1
V:1 arb

availready

V

SA1
V:1 arb

SA2
2:1 arb

selected
output VC

avail
ready

VC

#0

VC

#1sh
ar

ed

outVC(1)
valid(1)

VC

#0

VC

#1sh
ar

ed

Output

output
VC stateInput #0

Input #1

granted(0)

granted(1)

1

0

Fig. 4. The fundamental ElastiNoC primitive, the Merge Unit (MU). The
diagram depicts the per-input and per-output multiplexers together with the
combined allocation logic (SA1, SA2) that runs in parallel to VA1.

and logic resources. On the contrary, when such optimizations
are performed in traditional VC-based routers, only parts of
the crossbar and switch allocation logic are reduced, while the
VC allocation logic and buffering, which are responsible fot
the majority of the router’s area, are not affected.

This modular router construction enables packet flow to be
pipelined in a fine-grained manner, implementing all necessary
steps of buffering, VC and port allocation, and multiplexing in
a distributed way inside each MU, or across MUs. Also, the
placement of MUs does not need to follow the floor-plan of
the chosen NoC topology. Instead, MUs can be freely placed
in space, provided that they are appropriately connected.

B. The Merge Unit (MU)

Each MU is responsible for switching one output between
2 inputs assuming the existence of per-input and per-output
VCs, as shown in Figure 4. Since switching is achieved by
connecting several MUs in series (as illustrated in Figure 3),
the buffers presented at the input of Figure 4 are actually the
output buffers of the previous MUs.

1) Allocation and Switching Logic: Packets arriving at the
two inputs of each MU must compete for a single output.
Since the output can carry flits that belong to different VCs,
each packet has to first allocate a VC at the output of the
MU (known as an “output VC”), before leaving the input
VC. Allowing packets to change VC in-flight, within each
MU, is possible when the routing algorithm does not impose
any VC restrictions (e.g., XY routing does not even require
the presence of VCs). However, if the routing algorithm
and/or the upper-layer protocol (e.g., cache coherence) place
specific restrictions on the use of VCs, arbitrary VC changes
are prohibited, because they may lead to deadlocks. Any
restrictions are enforced by the allocator of the MU.

Our goal is to make the MU as fast as possible without sacri-
ficing throughput. Therefore, we follow a combined allocation
approach [19], customized and optimized to the characteristics
of our design by allowing packets to change VC in flight at
the granularity of a single MU. Each input VC holds two state

variables showing (a) if the VC has valid data, and (b) if it has
been allocated to an output VC. Each output VC also holds two
state variables: (a) variable “available” indicates whether it is
currently allocated (“locked”) by an input VC, and (b) variable
“ready” indicates if there exists free buffer space, which, in
our case, is received by the output ElastiStore’s ready signals.

When a head flit arrives at an input VC it simultaneously
tries to get matched to an output VC, and also to gain access to
the output port of the MU. Both actions should be successful
for the head flit to reach the output of the MU. Before issuing
any request to the allocation logic, the head flit checks if
there is at least one available and ready output VC (readiness
corresponds to buffer availability). If this is true, the head flit
issues a request to SA1 that promotes one flit from each input.
Next, the two input ports (i.e., the SA1 winner of each port)
arbitrate in global SA (SA2) to advance to the output port via
the data multiplexers driven by the grant signals of the SA1
and SA2 round-robin arbiters.

In parallel to SA1 and SA2, the head flit has to select one
available output VC. This is done independently per input VC
using one V:1 round robin arbiter (VA1), where V denotes the
number of supported VCs. Thus, when a head flit wins SA2, it
is allocated to the output VC selected in parallel by VA, and it
updates its per-input state variable. On the contrary, if a head
flit loses in SA2, it will not refresh its VC state and retry in the
next cycle, repeating the whole process. The parallel operation
of VA1 and SA1-SA2 does not involve any speculation, since
SA1 requests are considered valid only when there is at least
one available and ready output VC. The stored input VC state
is inherited by the packet’s following body and tail flits, which
use it (a) to generate an SA1 request (after checking with the
output VC’s readiness), and (b) to reach the same output VC,
after winning in SA2, as well. The tail it is also responsible for
releasing both the per-input and the per-output state variables,
allowing the output VC to be allocated to another packet.

2) Buffering: ElastiStore allocates the minimum of just one
register (i.e., holding a single flit) per VC, plus one additional
register that is shared dynamically between VCs, and enables
full throughput of elastic operation using one ready/valid hand-
shake signal per VC. The static allocation of a single buffer to
each VC guarantees forward progress for all VCs and avoids
possible protocol-level deadlocks. Since each ElastiStore acts
both as an input VC buffer for downstream connections and
as an output VC buffer for upstrem connections, it keeps all
the necessary variables per VC, as shown in Figure 5.

When an input VC is ready to accept a new flit it asserts

valid(1)

outVC(1)V

enqueue

data_in

VC1

data(1)

en

D Q

VC0

data(0)

en

D Q

shared
register

ElastiStore control
in_valid(1)

in_valid(0)

in_ready(1)

in_ready(0)

W

W

avail(1)

W

dequeue

en

D Q

outVC(0)

valid(0)

avail(0)

ready(1)

ready(0)

Fig. 5. The ElastiStore-based buffer architecture. ElastiStore consists of
merely one single-flit register per VC, plus one additional single-flit register
that is shared dynamically between VCs.

VC0LFSR

s
h

a
re

d

VC1
TestEn

1

0

availRVC0LFSR

s
h

a
re

d

VC1
TestEn

1

0

Input B
ElastiStore

outVCV

MISR

s
h

a
re

d

w

w

w

w

w

w

1

1

1

1

Serial Scan In

Serial Scan In

Serial Scan Out

w

Merging Unit
Multiplexing and
Allocation Logic

Output
Elastistore

Input A
ElastiStore

CaptureEn

outVCV

Arb. Priority

scannable registers

Fig. 6. BIST enhancements of a merge unit by incorporating the logic of
LSFR/MISR within that of the shared buffer at each ElastiStore.

the ready(i) signal. An in valid(i) signal means that valid data
for the ith VC has arrived at the ElastiStore buffer. A transfer
occurs for VC#i, when both signals are asserted. Flits arriving
at each ElastiStore are stored in the main register of each VC.
The shared register is used only to host any in-flight arriving
flit for a stalled VC. This may happen, since back-pressure
signals are first registered, before being sent upstream, to
guarantee maximum scalability in terms of delay. Filling the
main register with data does not render the corresponding
VC unavailable, since there is still extra space at the shared
register. A VC stops being ready when its main and the shared
buffer are full. When the allocation logic of MU dequeues a flit
from an input VC, the main register of this VC is refilled either
with new arriving data from the input, or with data possibly
stored in the shared buffer. This automatic data movement
from the shared to main buffer avoids any bubbles in the flow
of flits across the MUs and achieves maximum throughput.

IV. ELASTINOC SELF TESTABILITY

As technology continues to scale and chips continue to
grow, system reliability and scalable Built-In Self-Test (BIST)
architectures are gaining significant importance. NoC testing
has evolved over the recent years providing topology-agnostic
and modular self-testing methodologies [20], [21]. The dis-
tributed structure of ElastiNoC does not match well with
traditional core-level BIST architectures [22]. Therefore, we
targeted the design of a new distributed BIST architecture that
(a) reuses as much as possible the hardware of ElastiNoC,
(b) achieves high fault coverage and fault localization at the
MU level (detects which MU contains a faulty node) and (c)
completes NoC testing within a small number of test cycles.
The last feature is critical when the NoC that reaches all IP
cores of the system is used as a test access mechanism for
those cores. In such cases, the sooner the NoC is tested, the
sooner the testing of the rest of the system can begin.

The self-testability features of ElastiNoC are applied at the
MU level. Our target is to test the two input ElastiStores
of each MU, along with the associated multiplexing and
allocation logic, and capture the responses in the shared
buffer of the output ElastiStore. To achieve this, the shared
buffers of the input ElastiStores should function as Test
Pattern Generators (TPGs) during testing, and specifically as
Linear Feedback Shift Registers (LFSRs), so as to provide
pseudorandom patterns to the tested circuit. Furthermore, the

shared buffer of the output ElastiStore of the MU should act
as a Multiple Input Signature Register (MISR), in order to
compact the responses. This organization, shown in Figure 6,
allows us to reuse the flip-flops of the shared register of
each Elastistore and transform it into a Built-In Logic Block
Observer (BILBO) with small hardware overhead (a BILBO
register combines the operation of an LFSR, an MISR, and
a shift register). Testing of a router’s MUs that belong to the
same switching level constitutes an independent test phase.
In the next test phase, where the previous and the next MU
levels are tested, the functionality of the shared buffers as
LFSRs/MISRs is inverted, since the output ElastiStores of the
current level are the inputs of the next, whereas the inputs of
the current level are the outputs of the previous one. A test
phase can be applied simultaneously to all NoC routers.

Allowing the shared buffers of the input and output Elasti-
stores to act as TPGs and response compactors respectively,
requires some additional test isolation logic that is enabled
only during testing. The Elastistores under test (input Elasti-
Stores) are isolated using 2-to-1 multiplexers that multiplex
their data/control inputs with the outputs of the shared buffers
that act as LFSRs, as depicted in Figure 6. During testing
(TestEnable=1) the original bypass multiplexers of Elastistores
get the same value, which guarantees that the outputs of the
LFSRs propagate in the MU irrespective of the value on the
select lines of the bypass multiplexers.

Additionally, every other testing logic added should pay off
in terms of fault coverage. Data registers are easily testable
since they are directly accessible. The combinational logic of
the MUs can be easily tested as well. Testing gets complicated
for the input/output VC state registers and the priority state of
each round-robin arbiter that can be accessed and observed
only implicitly. Our preliminary sequential ATPG and fault-
simulation experiments indicate that long test sequences with
top-off deterministic patterns cannot achieve anything more
than just moderate fault coverage. For that reason, we have
chosen to adopt a partial-scan approach, where the internal
state registers shown in Figure 6 are put in scan chains (the
tested circuit, as a whole, remains sequential). This choice
allowed for very high fault coverage with very short, strictly
pseudorandom, test sequences, without incurring significant
overhead, since the aforementioned scannable flip-flops are
only a small portion of the total flip-flops involved in a MU
(the majority are data registers). To drive the scan chains and
compact the captured responses, we augmented the shared
buffer with some additional flip-flops, as shown in Figure 6.

During each test phase, multiple MUs are independently
tested in parallel. For example, the 4 × 4 router depicted in
Figure 3 would have been tested in three phases. The first
phase utilizes the shared buffers of the input Elastistores as
TPGs and the shared buffers at the outputs of the first-level
of MUs as response compactors. Before testing starts, all flip-
flops of the tested circuits are reset. Due to the partial scan
chain architecture, the generation of a new pseudo-random test
vector requires a certain number of cycles (equal to the scan-
chain length), so as to be shifted in the scan chains. Then, 1
clock cycle is needed to put the MU in normal mode and allow
the circuit responses to be captured in the scan chains. In the
same clock cycle, normal MU outputs are fed and compacted

in the output MISR. Finally, the response captured in the scan
chains is shifted-out and compacted to the MISR as well.
This last operation is overlapped with the scan shift-in of the
next test vector. Thus, the total number of clock cycles for
generating, applying and compacting a test vector is equal to
scan-chain length + 1 (the “+1” term is for the capture cycle).

At the end of each test phase, a signature for all responses is
stored in each MISR. To verify the results of the test session,
this signature needs to be compared with the golden fault-free
signature (computed off-line) of the applied test vectors and
produce a final error bit. This comparison can be made serially,
bit-by-bit, with a locally stored golden signature.

In the following two test phases, the intermediate ElastiStore
shared buffers change role from MISR to LFSR and test the
last MUs and their associated LRC logic, using exactly the
same test sequence (the responses are captured at the output
ElastiStores). The last test phase tests the output links that
are connected to the inputs of the next routers via the two
ElastiStores present at their endpoints. Since these three test
phases can be applied simultaneously to all NoC routers,
testing can finish in a few thousand cycles, as shown in
Section V. Gathering the error signals of each MU can be
either done at the router level via a small local test controller,
or they could be sent via 1-bit pipelined links to a centralized
test controller. Depending on the number of pipeline stages per
router, and based on the fact that the even-numbered stages can
be tested independently from the odd-numbered ones, testing
of ElastiNoC requires a constant number of 2 or 3 test phases
overall, which is independent of the size of the network.

V. EXPERIMENTAL RESULTS

In this section, we compare ElastiNoC with conventional
VC-based architectures, both in terms of network performance
and hardware complexity. We also report the fault coverage
achieved by the proposed distributed BIST architecture and the
required test application time, and we quantify the area/delay
overhead of the self-testability features.

A. Hardware complexity
The proposed ElastiNoC routers (using lookahead RC)

were implemented in VHDL and mapped (synthesized) to an
industrial low-power 45 nm standard-cell library under worst-
case conditions (0.8 V, 125 ◦C), using the Cadence digital
implementation flow. The generic router models have been
configured to 5 input-output ports, as needed by a 2D mesh
network, and to 2 and 4 VCs per port, while the flit width was
set to 64 bits. Arbitration in all routers follow the fast arbiter
design of [23]. The area/delay curves obtained for all designs
- after constraining the logic-synthesis and back-end tools, and
the extraction of physical layout information (each output is
loaded with a wire of 2 mm) - are shown in Figure 7.

The routers under comparison for 2 and 4 VCs per port
include an ElastiNoC design with 2 MUs in series per router,
a speculative 1-cycle design that corresponds to the fastest
monolithic design, as well as 2-stage and 3-stage pipelined
baseline router implementations. In both cases (2 and 4 VCs),
the proposed ElastiNoC design achieves the highest delay
savings of 20% and 15% for 2 and 4 VCs, respectively, as com-
pared to the fastest 3-stage pipelined baseline router. Please
keep in mind that the delay numbers reported correspond

 20K

 30K

 40K

 50K

 60K

 70K

 80K

 1000 1500 2000 2500 3000

A
re

a
 (

u
m

2
)

Delay (ps)

1-Stage Speculative 2VC

2-Stage Baseline 2VC

3-Stage Baseline 2VC

ElastiNoC 2VC

ElastiNoC-Optimized 2VC

 50K

 60K

 70K

 80K

 90K

 1000 1500 2000 2500 3000

A
re

a
 (

u
m

2
)

Delay (ps)

1-Stage Speculative 4VC

2-Stage Baseline 4VC

3-Stage Baseline 4VC

ElastiNoC 4VC

ElastiNoC-Optimized 4VC

(a) (b)
Fig. 7. Hardware implementation results of various router designs with (a)
2 VCs, and (b) 4 VCs per port.

to 0.8V operation, which increases significantly the delay of
the circuits. For example, a close inspection of the clock
frequency of ultra-fast 3-stage commercial routers optimized at
the transistor level [24], [25], which offers additional benefits
versus standard-cell-based design, reveals that their frequency
marginally passes 1 GHz when operated at 0.8V.

For all cases regarding state-of-the-art routers, we assumed
the minimum buffering requirement needed to cover the round-
trip time imposed by their internal pipeline organization. The
round-trip latency of a single-cycle router is three cycles,
translating to three buffers per VC, since each flit spends one
cycle inside the router, one additional cycle on the link in
the forward direction, while the back-pressure signals (such
as credit updates) need one cycle on the link to return. Thus,
the pipelined routers with two and three stages increase the
round-trip latency by one and two, respectively – unless, direct
combinational flow-control update paths are employed across
routers, which limit the benefits of pipelining. As a result, the
2- and 3-stage pipelined routers need a minimum of four and
five buffers per VC.

The amount of ElastiNoC buffering is between the buffers
required for a 2- and a 3-stage router. While ElastiNoC
requires larger area than monolithic routers for the case of
2 VCs, this trend changes in the case of 4 VCs. In this case,
under equal delay, the proposed routers and especially the one
that is optimized to the routing logic, depicted as “ElastiNoC-
Optimized” save significant amount of area when compared to
the 2- and the 3-stage routers, since it allows for both buffer
and logic removal. The power consumption of the routers
under comparison follows a similar trend.

Finally, we measured the area-delay performance of
ElastiNoC-Optimized and assuming that the packets entering
the network are not allowed to change VC as done in [26].
This simplification saves more than 3% and 10% of the delay
of ElastiNoC for 2 and 4 VCs per port, respectively, and lowers
its area footprint by 12% and 15%. The expected drawbacks of
such optimization are: (a) a reduction in throughput by increas-
ing head-of-line blocking per static VC, and (b) complications
in implementing adaptive routing.

B. Fault coverage and test application time

The synthesized MU netlists for 2 and 4 VCs were utilized
for obtaining the self-testability results. The Hope sequential
fault-simulator [27] was employed to compute the fault cov-
erage (FC), while the LFSR TPG and the MISR compaction
operations were simulated using a custom tool. The results of
the proposed MU BIST approach are shown in Table I.

TABLE I
TEST COVERAGE AND TEST APPLICATION RESULTS FOR A MU.

VCs Scan FFs Scan chains Stuck-at FC Test patterns Test cycles Aliasing
2 24 6 99.93% 302 1510 0%
4 78 13 100% 1642 11494 0%

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t
L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

Base2Stages-2VC
Base2Stages-4VC
Base3Stages-2VC
Base3Stages-4VC

ElastiNoC-2VC
ElastiNoC-4VC

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

a
c
k
e
t
L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

Base2Stages-2VC
Base2Stages-4VC
Base3Stages-2VC
Base3Stages-4VC

ElastiNoC-2VC
ElastiNoC-4VC

(a) (b)
Fig. 8. Latency vs. load curves for (a) uniform random traffic and (b) non-
uniform localized traffic. Network traffic from real applications is estimated
to lie in-between these two synthetic traffic patterns.

Note that the exhibited FC has been calculated over all
testable stuck-at faults of a circuit. A small amount of the
total faults of each examined MU (approximately 1-1.5%)
have been reported as untestable by the Strategate sequential
ATPG tool [28], and, as a result, they are not included in
FC calculation. No deterministic test patterns have been used
though for obtaining the reported results. The only purpose of
ATPG was to determine the untestable faults. As can be seen,
the proposed BIST approach achieves very high FC (complete
in the case of 4 VCs) with quite short test sequences. The
total NoC test time is network-size independent and equal to
3 (test phases) × 1510 = 4530 clock cycles for 2 VCs, and
3 × 11494 = 34482 cycles for 4 VCs. In these figures, a
few extra cycles should be added for signatures comparison
and error signal gathering. Our experiments showed that there
is no FC penalty when modifying the scan chains volume;
more and shorter scan chains can be used, when possible,
for reducing test application time. Also, as expected with
such wide MISRs (64 bits + the volume of ready/valid output
signals), no aliasing was observed between the golden and the
faulty circuits signatures.

After including the needed testability structures described
in Section IV in ElastiNoC and resynthezing the resulting
designs, we end up with 22% increase, on average, in the
total area for a 5×5 router. The impact on the delay is a slight
7% increase, as compared to an ElastiNoC without any self-
testability features. This area/delay overhead should be treated
as an investment that pays off its purpose by offering fine-
grained testability, and fault isolation at the MU level. Its cost
can be amortized by increasing the flit width and the number
of VCs. This happens since the extra cost involves mostly the
logic of the shared buffer at each ElastiStore, which is constant
irrespective of the number of VCs.

C. Network performance

Network-performance comparisons were performed using
a cycle-accurate SystemC network simulator that models all
micro-architectural components of a NoC router, assuming an
8×8 2D mesh network with XY dimension-ordered routing.
The evaluation involves two synthetic traffic patterns: Uniform
Random (UR) and non-uniform Localized Traffic (LT). We

estimate that network traffic from real applications would
lie in-between these two synthetic traffic patterns. For LT
traffic, we assume that 75% of the overall traffic is local
(i.e., the destination is one hop away from the source), while
the remaining 25% of the overall traffic is uniform-randomly
distributed to the non-local nodes. We experimented with other
distributions as well, but they all showed similar results. The
injected traffic consists of two types of packets to mimic
realistic system scenarios: 1-flit short packets (just like request
packets in a CMP), and longer 5-flit packets (just like response
packets carrying a cache line). For the latency-throughput
analysis, we assume a bimodal distribution of packets with
50% of the packets being short, 1-flit packets, and the rest
being long, 5-flit packets, in accordance to recent studies [29].

Figure 8 shows the latency-throughput curves as functions
of the node injection rate, for the two aforementioned synthetic
traffic patterns, and the same router configurations (in terms
of numbers of supported VCs and their pipeline structure)
used in the hardware complexity analysis. In all cases, the
performance of the ElastiNoC routers is indistinguishable from
the equivalent baseline routers, both at low and at high loads,
while in some cases the performance of ElastiNoC is, in
fact, better. The latency of the 3-stage pipelined router is
higher, since it costs more cycles to traverse each router of
the network. For the 2-stage pipelined solutions that include
ElastiNoC and the baseline router, keep in mind that even if
the reported latency in cycles is equal, in reality it corresponds
to different clock frequencies; ElastiNoC is at least 15% faster.

Multiple parallel physical elastic-buffer-based networks of
simpler wormhole routers [30] (with each network mapped
to one VC) would enjoy slightly higher clock frequencies,
due to the complete removal of any VC allocation step.
However, when compared with ElastiNoC routers under equal
network bisection bandwidth, multiple networks would suffer
in performance, as verified by our experiments (omitted due
to space limitations), because of the high serialization latency
imposed by the narrower channels in each physical network.

VI. CONCLUSIONS

Complex MPSoCs built for embedded systems, as well as
modern CMPs, have adopted NoC technology for their internal
connectivity. This approach was originally utilized to tackle
the physical integration and verification complexity of large
systems. Future NoCs go beyond requirements related to phys-
ical implementation and actively participate in delivering high
performance, quality of service, and dynamic adaptivity at a
minimum area overhead. Virtual channels within NoC routers
are quickly becoming a necessary ingredient of modern NoCs,
and are viewed as instrumental in enhancing performance and
offering several network- and system-wide services. In this
paper, we introduce the ElastiNoC architecture as the first
NoC design that offers: (a) distributed implementation for
VCs, including buffering, allocation, and necessary switching;
(b) modular pipelined organization; (c) same (or even better)
network performance, as compared to baseline monolithic VC-
based architectures; and (d) a scalable self-testing mechanism
that enables fine-grained fault localization (at the MU level)
with small test application time.

REFERENCES

[1] J. Handy, “NoC interconnect improves SoC economics,” Objective
analysis - Semiconductor market research, 2011.

[2] W. J. Dally, “Virtual-Channel Flow Control,” in Proc. of the 17th Annual
Intern. Symp. on Computer Architecture (ISCA), May 1990, pp. 60–68.

[3] M. M. K. Martin and et al., “Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH Comput. Archit.
News, vol. 33, no. 4, pp. 92–99, Nov. 2005.

[4] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in HPCA, 2001.

[5] R. D. Mullins, A. F. West, and S. W. Moore, “Low-latency virtual-
channel routers for on-chip networks,” in ISCA, 2004, pp. 188–197.

[6] G. Michelogiannakis, N.Jiang, D.Becker, and W.J.Dally, “Packet chain-
ing: Efficient single-cycle allocation for on-chip networks,” in Proc.
IEEE/ACM In. Symp. on Microarchitecture (MICRO), 2011, pp. 83–94.

[7] A. T. Tran and B. M. Baas, “RoShaQ: High-performance on-chip router
with shared queues,” in IEEE ICCD, 2011, pp. 232–238.

[8] D. U. Becker, “Adaptive backpressure: Efficient buffer management for
on-chip networks,” in IEEE ICCD, 2012.

[9] S. M. Hassan and S. Yalamanchili, “Centralized buffer router: A low
latency, low power router for high radix nocs,” in IEEE/ACM Intern.
Symp. on Network on Chip, April 2013.

[10] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, Microarchitecture of
Network-on-Chip Routers: A designer’s perspective. Spinger, 2014.

[11] A. Roca, C. Hernndez, J. Flich, F. Silla, and J. Duato, “Silicon-aware
distributed switch architecture for on-chip networks,” Journal of Systems
Architecture, vol. 59, no. 7, pp. 505 – 515, 2013.

[12] A. Balkan, G. Qu, and U. Vishkin, “Mesh-of-trees and alternative inter-
connection networks for single-chip parallelism,” IEEE Transactions on
VLSI Systems, vol. 17, no. 10, pp. 1419–1432, Oct 2009.

[13] A. Roca, J. Flich, and G. Dimitrakopoulos, “Desa: Distributed elas-
tic switch architecture for efficient networks-on-fpgas,” in Field Pro-
grammable Logic and Applications (FPL), Aug 2012, pp. 394–399.

[14] A. Rahimi, I. Loi, M. Kakoee, and L. Benini, “A fully-synthesizable
single-cycle interconnection network for shared-l1 processor clusters,”
in DATE, March 2011, pp. 1–6.

[15] M. N. Horak, S. M. Nowick, M. Carlberg, and U. Vishkin, “A low-
overhead asynchronous interconnection network for gals chip multipro-
cessors,” in Proc. of Symp. on Networks-on-Chip, 2010, pp. 43–50.

[16] J. Kim, J. Balfour, and W. J. Dally, “Flattened butterfly topology for
on-chip networks,” in Proc. of In. Symp. on Microarchitecture, 2007.

[17] I. Seitanidis, A. Psarras, G. Dimitrakopoulos, and C. Nicopoulos,
“Elastistore: An elastic buffer architecture for network-on-chip routers,”
in Proc. of Design Automation and Test in Europe (DATE), Mar. 2014.

[18] J. Flich, A. Mejia, P. Lopez, and J. Duato, “Region-based routing: An
efficient routing mechanism to tackle unreliable hardware in networks
on chip,” in Intern. Symp. on Networks on Chip (NOCS), 2007.

[19] Y. Lu, C. Chen, J. V. McCanny, and S. Sezer, “Design of interlock-free
combined allocators for networks-on-chip,” in EEE 25th International
SOC Conference (SoCC), 2012, pp. 358–363.

[20] M. Kakoee, V. Bertacco, and L. Benini, “A distributed and topology-
agnostic approach for on-line noc testing,” in IEEE/ACM Intern. Symp.
on Networks on Chip (NoCS), May 2011, pp. 113–120.

[21] A. Strano and et al., “Exploiting network-on-chip structural redundancy
for a cooperative and scalable built-in self-test architecture,” in DATE,
2011, pp. 661–666.

[22] Mentor Graphics, “Logic BIST Applications and Usage Whitepaper,” in
Silicon Test and Yield Analysis, 2010.

[23] G. Dimitrakopoulos, N. Chrysos, and C. Galanopoulos, “Fast arbiters
for on-chip network switches,” in IEEE ICCD, 2008, pp. 664–670.

[24] P. Salihundam and et al., “A 2Tb/s 6x4 Mesh Network with DVFS and
2.3Tb/s/W router in 45nm CMOS,” in Symp. VLSI Circuits, 2010.

[25] S. R. Vangal and et al., “An 80-Tile Sub-100-W TeraFLOPS Processor
in 65-nm CMOS,” IEEE JSSC, vol. 43, pp. 6–20, Jan. 2008.

[26] F. Gilabert and et al., “Improved utilization of noc channel bandwidth by
switch replication for cost-effective multi-processor systems-on-chip,” in
NOCS, 2010, pp. 165–172.

[27] H. K. Lee and D. S. Ha, “Hope: An efficient parallel fault simulator for
synchronous sequential circuits,” in DAC, 1992, pp. 336–340.

[28] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Dynamic state
traversal for sequential circuit test generation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 5, no. 3, pp. 548–565, Jul. 2000. [Online].
Available: https://filebox.ece.vt.edu/∼mhsiao/strat dnload/

[29] S. Ma, N. Enright Jerger, and Z. Wang, “Whole Packet Forwarding:
Efficient Design of Fully Adaptive Routing Algorithms for Networks-
on-Chip,” in HPCA, Feb. 2012, pp. 467–478.

[30] G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic buffer flow
control for on-chip networks,” in HPCA, 2009.

