
978-1-7281-9457-8/20/$31.00 ©2020 IEEE

2D Error Correction for F/F based Arrays using In-
Situ Real-Time Error Detection (RTD)

Abstract—This work proposes in-situ Real-Time Error Detection
(RTD): embedding hardware in a memory array for detecting a
fault in the array when it occurs, rather than when it is read. RTD
breaks the serialization between data access and error detection
and, thus, it can speed-up the access-time of arrays that use in-line
error-detection and correction. The approach can also reduce the
time needed to root-cause array related bugs during post-silicon
validation and product testing. The paper presents how to build
RTD into an array with flip-flops to track in real-time the column-
parity and introduces a two-dimensional RTD based error-
correction scheme. As compared to SECDED, the evaluated
scheme has comparable error-detection and correction strength
and, depending on the array dimensions, the access time is reduced
by 8-24% at an area and power overhead between 12-53% and 21-
42% respectively.
Keywords—reliability, memory arrays, error detection and
correction, real-time error detection, bugs, post-silicon validation

I. INTRODUCTION

Error detection and correction codes [1] are widely used to
protect memory arrays of electronic devices from errors.
Typically, a coding technique adds one or more parity bits to
each word in an array to encode redundant information about the
word. When a codeword (data plus parity) is read from the array,
the parity is calculated from the data and an error is detected if it
does not match the parity read from the array.

In this paper, we propose in-situ real-time error detection
(RTD), an error protection approach that can detect a fault in an
array when it happens, rather than when the faulty value is read.
At a high level, what RTD does is to calculate in real-time what
the parity of all codewords in an array are, and check them all
the time against the parity of the codewords produced when the
codewords were written in the array. Essentially, RTD can detect
a fault instantaneously after it occurs, whereas other coding-
based protection techniques, collectively referred to as nRTD,
detect the fault only after the stored data is read.

RTD has practical uses in reliability and post-silicon
validation. For reliability (e.g., protect against soft-errors [2])
RTD can speed-up the access time of arrays required to provide
in-line error-detection and correction. For post-silicon validation
[3], RTD can be very effective in reducing the time needed to
root-cause bugs that manifest as array-content corruptions for
both test and production chips.

The paper explains the RTD’s functionality and shows how
to integrate RTD in an array built with flip-flops (F/F) to track in
real-time its column-parity. We also present a two-dimensional
(2D) ECC scheme based on RTD. A comparison of the 2D ECC

RTD design against traditional (nRTD) SECDED reveals that
adding RTD provides a significant access time reduction albeit
with an area and power overhead.

In the rest of the paper, we discuss the RTD Architecture
(Sec. II), an RTD 2D ECC scheme (Sec. III), an RTD
implementation for a F/F array (Sec. IV), an evaluation of RTD
overheads (Sec. V) and its use for post-silicon validation (Sec.
VI), related work (Sec. VII), and conclusions (Sec. VIII)

II. RTD ARCHITECTURE

We illustrate the extra functional requirements of an array
with RTD using an example. The implementation of RTD, how
to embed it inside an array, is the subject of Sec. IV. Fig. 1.a
shows a baseline array without error protection that contains R
rows, C columns, a read port to output (OUT) the value at the
read-address, and one write port to store the input (IN) at the
write-address. Fig. 1.b shows the additional array interfaces and
functionality needed to detect in real-time whether each array
column contains a fault. Specifically, this requires having in-situ
(i.e. built in the array) the following two extra read ports:
i) a port to track RTCP (the real-time-column parity). This port
does not need an address decoder, to select a specific row, since
it produces the xor of all bit values in each column, and
ii) a port that reads the previous data (PD) at the write address
about to be overwritten during a write cycle. This port shares the
same address decoder with the write port.

Additionally, RTD requires a SCP (stored-column-parity)
register with C bits (as many as array columns). This register
maintains the column parity and it is updated on every array
write cycle with the bitwise-xor of the current value in SCP, the
previous data (PD) and the value to be written in the array (IN).
Finally, an error signal vector (EV), C bits wide, is produced
using the bitwise-xor of the SCP and RTCP. Anytime there is a
mismatch at the same bit position between SCP and RTCP, the
corresponding bit in the EV is asserted to flag the presence of a
fault in the corresponding column (or SCP position).

The two key properties of RTD are: i) can detect a fault as
soon as it occurs (without first reading the entry that contains the
fault), and ii) maintaining the SCP does not require a read access
to the array (to obtain the PD) before an array write. Put it
another way, RTD in-situ hardware helps break the dependence
between data access and error detection without the performance
overhead of a read before write. These RTD characteristics open
an opportunity to speed-up the access for arrays that require in-
line error detection and correction, the main subject of the
remaining paper.

Yiannakis Sazeides
University of Cyprus, Cyprus

Arkady Bramnik
Intel, Israel Ron Gabor

Toga Networks, Israel

Chrysostomos Nicopoulos
University of Cyprus, Cyprus

Ramon Canal
Universitat Politècnica de Catalunya, Spain Dimitris Konstantinou

Democritus University of Thrace, Greece

 Giorgos Dimitrakopoulos
Democritus University of Thrace, Greece

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 21,2021 at 14:06:04 UTC from IEEE Xplore. Restrictions apply.

A. RTD Attributes

RTD requires one extra port to provide the RTCP and for
each write port, an extra read port to read the previous data from
the address to be overwritten on a write cycle. No extra read port
is needed for shared R/W ports. For arrays that are updated at
boot time (e.g., patch arrays [4]) and are read-only thereafter,
there is no need for extra read port.

The error detection strength of RTD in Fig. 1.b is an odd
number of faults in each column, i.e. it can detect which columns
contain an odd number of faults. If it is desirable to detect a burst
of vertical errors in a column, vertical logical-interleaving can be
used [5][6]. For instance, to detect any burst of two consecutive
vertical errors we need to use RTCP with 2-bit (set) vertical
interleaving that tracks separately the RTCP for even and odd
rows. Additionally, two SCP registers, each with C bits, need to
maintain separately the parity of even and odd rows. On write
and read cycles, extra logic (not shown in Fig. 1 due to space
constraints) will control which RTCP to use and SCP to update
depending on whether an even or odd row is accessed.

III. A RTD USE CASE: 2D ECC

In this section, we present a 2D in-line ECC scheme based
on RTD. In-line ECC checks/corrects the data before forwarded
for use, i.e., ECC lies in the read critical-path. Unless stated
otherwise, to simplify the discussion, we assume that at any
given time faults are present only in one array row.

The scheme shown in Fig. 1.c combines RTD and nRTD in
a 2D fashion to provide error correction. The RTD is used to
track the array’s column parity (as in Sec. II) and produce in real-
time the EV that indicates the array columns that contain a fault.
A conventional (nRTD) parity is used to detect faults in each
row. The row parity is generated (denoted by G in Fig. 1 (c)) and
stored on a write cycle. On a read cycle, a checker (C1) is used
to check if the parity of the accessed data and the corresponding
row parity match.

If during a read cycle the row parity status is no-error (NE)
then the read data is forwarded to the output (OUT) as is
(bitwise-xored with a zero-correction vector (CV for
data@raddress)). Otherwise, there is a parity mismatch and,
since this is the only row with faults (assumption that a single
row contains faults), the CV is set equal to the EV and used to
flip and repair the data bits in the column positions with errors
(i.e., a correctable error (CE)).

To maintain the SCP correctly we need to handle carefully
the case when an entry with a fault is overwritten. Specifically,
in the bit positions that the entry has errors we need to flip them
before using the data to compute the new SCP. This is
accomplished with an extra checker (C2) that during a write
cycle it checks if there is an error in the PD (the data to be
overwritten) and produces a CV (CV for data@waddress) to
calculate the SCP.

A single bit row-parity is unable to detect an even number of
errors during a read. To prevent such silent-data-corruption
(SDC), the decoder (D in Fig. 1.c) monitors the EV and triggers
a DUE (detected-unrecoverable-error) when an even number of
bits are set in the EV.

Based on the above, the behavior of the decoder (D) can be
defined in terms of the row parity status (1 indicating an error, 0
no-error and X don’t care) and the number of 1’s in the EV (0
for zero, o for odd and e for even but non-zero) as follows:

Table 1: 2D ECC+RTD Decoder
Row Parity Status 0 0 1 1 X

Number of 1s in EV 0 o 0 o e
Decoder Output (D) NE NE DUE CE DUE

The first four columns define the behavior during a read cycle.
The 0-0 occurs when there is neither a row-parity mismatch nor
an error detected by RTD in any column. The 0-o happens when
the row contains no error but there is an odd number of columns
with errors in another row. For both of these cases there is no
error in the data that is read. The 1-0 means that the row-parity
indicates an error but the RTD does not flag any error in any
column. This can occur when an even number of faults occur
across rows in a column and should raise a DUE. Such event
cannot occur when faults are contained only in one array row.
The 1-o happens when the row-parity indicates an error and the
number of columns with faults is odd. In this case, the error is
corrected according to EV. Finally, anytime we detect an even
number of columns with error we trigger a DUE. This avoids the
SDC when a row with an even number of faults is read since a
parity bit is unable to detect an even number of errors in the row.

A. RTD with Horizontal Interleaving

The DUEs caused by a burst of even errors in a row can
become a CE by employing horizontal logical-interleaving with
degree equal to the burst length [6]. For instance, for a two-bit
burst horizontal logical interleaving will employ two parity bits
per row one for the bits in even positions and the other for bits in

Fig. 1: a) Baseline Array without Protection, b) Array with RTD of Column Faults, c) Array with 2D ECC using RTD of Column Faults + nRTD of Row Faults

RxC bits

input data (IN)

……

output data (OUT)

raddress

READ‐enable

waddress

Write‐Enable

SCP (C bits)

output data (OUT)

RxC bits

……

Input Data
Output, the data@raddress
Previous, the data@waddress(PD)
RTCP real‐time‐column‐parityraddress

READ‐enable

waddress

Write‐enable

SCP: stored column parity
EV: Error Vector

EV= RTCP SCP

(update SCP on a write cycle)
SCP(t+1)= IN PD SCP(t)

(Real Time signals of
columns with errors)

RTCP

PD

input data (IN)

(a) (b)

SCP

DUE
CED

output data (OUT)

DATA row parity

C2

C1

……

……

Generate row parity
Checker for data@raddress
Checker for data@waddress
Decoder (error is CE or DUE?)

CV: Correction Vector

G

input data (IN)

check bits
raddress

READ‐enable

waddress

Write‐enable

CV for data@raddress

……

CV for data@waddress

C

2

C1

C2

(c)

RTCP

PD

C

2

G

D

EV

SCP(t+1)=
IN PD SCP(t) CV

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 21,2021 at 14:06:04 UTC from IEEE Xplore. Restrictions apply.

odd positions. On a read access, two checkers will produce
separate parity status for the even and odd positions. Two
separate count of 1’s in the EV are used, one for the even
positions and another for the odd. The Decoder functionality for
such scheme is defined in terms of the even and odd parity status
and the number of 1’s in the odd and even EV bit positions as
follows (o indicates odd number of 1s, e even but not zero, and
y 0 or odd and X don’t care):

 Table 2: 2D ECC+RTD+2-bit Horizontal Interleaving Decoder
Even Par. Stat. 0 X 0 1 1 1 X X

Odd Par. St. 0 1 1 X 0 1 X X
of 1s in even EV bits y X y 0 o o X e
of 1s in odd EV bits y 0 o X y o e X

Decoder (D) N D C D C C D D
The behavior is similar to the one without interleaving. DUE is
triggered when either or both the number of even or odd columns
with error is even and when a partition has an error but its
corresponding EV count is 0. Otherwise, any error is correctable,
even when there is an error in both the even and odd partitions.
This scheme provides comparable protection strength as
SECDED for a two-bit horizontal errors bursts.

IV. RTD APPLICABILITY AND IMPLEMENTATION

In this paper, we show how to implement RTD for a F/F
based array. Such arrays are popular in modern CPUs [7]. F/F
arrays with size up to a few thousand bits offer area and power
advantages over equal-size SRAM-based arrays [8].
Consequently, F/F based arrays are attractive for inclusion in
products, and novel techniques for error-protecting and
debugging them, as in this work, are of practical value.

RTD is applicable to SRAM and CAM arrays but it requires
using modified cells with extra port(s) to facilitate RTD.
Developing and analyzing such SRAM and CAM cell designs
represents an interesting direction for future work.

A. RTD Implementation for a F/F Array

Our implementation of RTD is based on the bit-slice based
F/F array design proposed in [8]. Each bit-slice contains a
column of F/Fs and a column with a multiplexer tree that is used
to read one of the cells according to which bit-slice row is
selected. The logic design of a bit-slice with 8 F/Fs with 1 read
and 1 write port is presented in Fig. 2. An array consists of many
bit-slices that share the same read and write address decoders for
selecting which row to read and write.

Before presenting the RTD implementation, we show in Fig.
3 (left) a traditional (nRTD) in-line SECDED build using the bit-
slice in Fig. 2. The design assumes 4-bits of data per row and,
therefore, requires four parity bits to provide SECDED
protection [1]. The figure also shows that the error detection and
correction is realized through a checker and a decoder [9]. The
checker produces a syndrome that is decoded to determine, in the
case the error is correctable, the 1-hot encoding of the bit-
position with the error. This error-vector is bitwise-xored with
the data to correct the error.

The RTD implementation of the 2D ECC in Sec. III is shown
in Fig. 3 (right). It introduces in-situ, built in the bit-slice, an
extra mux column to read the PD (the data to be overwritten on
a write) and a column that determines the RTCP of the F/Fs in
the bit-slice. The total number of bit-slices are five, four for the
data and one for the row-parity. On a read cycle, the data from
the selected row are checked for error using the row-parity. In

the case of an error, the data are xored with the EV produced by
xoring the SCP and RTCP (as in Fig. 1.c). Note that Fig. 3, for
readability, only shows the design used during a read cycle.

Fig. 3 helps highlight the trade-offs presented by RTD. It
requires fewer but wider bit-slices and instead of a SECDED
checker and syndrome decoder, it only needs a parity-tree.

V. RTD DELAY, AREA AND POWER EVALUATION

A. Methodology

The proposed 2D ECC RTD implementation as well as the
SECDED ECC are evaluated in terms of their impact on the
salient metrics of delay (timing), area and power.

The mux-columns in the bit-slices are implemented using 2-
input NAND-NOR trees as in [8]. The evaluated 2D ECC RTD
design uses two-bit horizontal logical-interleaving and its
RTCP-columns are built using 2-input XOR trees. The SECDED
designs, depending on the number of data bits, use different Odd-
Weight columns generate and check matrices as in [9]. The
checker produces the syndrome using 2-input XOR parity trees
and each syndrome output bit is decoded using 2-input
NOR+NAND trees. Numerous designs are evaluated with
different number of rows (4,8,16,32,64,128) and columns
(2,4,8,16). To search the design space fast we use the analytical
methodology in [10] and estimate area, delay and power figures
expressed as equivalent gates in this work as follows:

 Table 3: Area, power and delay figures in terms of equivalent gates
Gate Area,Power Delay
Not 0.1 1
2-input Nand/Nor 0.2 1.5
2-input Xor 0.6 2.5
F/F cell 1 N/A

First-order analytical models are defined for the area, delay and
power for each array design we evaluate. We have validated the
models by comparing normalized trends against three RTL
implementations of a 64x64 F/F-based array; with no protection,
only row-parity protection and an RTD design as in Fig. 1.b. The

Fig. 2: Bit-slice with a column of F/Fs and a mux tree

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 21,2021 at 14:06:04 UTC from IEEE Xplore. Restrictions apply.

arrays are implemented in System Verilog. The designs are
validated at the RTL level for functional correctness, synthesized
to a commercial low-power 45nm standard-cell library under
worst-case conditions (0.8V, 125C), and placed-and-routed with
the Cadence digital implementation flow for minimum delay.
The maximum error observed in timing is 4.5% and in area 5.3%.

B. Evaluation

Fig. 4 reports the normalized (to SECDED) area and delay
analysis for different array sizes being the number of rows in the
x-axis and the number of columns in the line colors. Clearly,
2DECC+RTD outperforms in terms of delay SECDED in any
configuration with 8% to 24% improvement. This is the direct
benefit of using RTD. On the other hand, the area overhead of
2D-ECC+RTD is considerable (12% to 53%), especially for a
small number of rows. In addition, the power overhead is
substantial 21% to 42% (not shown in Fig. 4 for clarity). We note
that our findings are specific to the designs evaluated and the
methodology used. The cost and benefits from RTD may depend
on many parameters including port topology and technology.

Overall, RTD is not free, and a designer will need to weigh
the return-on-investment from RTD’s potential to shorten access
time and facilitate post-silicon validation (Sec. VI), against the
area and power costs RTD entails. Such trade-off is difficult to
quantify, as it requires intimate familiarity with design cycles
and manufacturing, and it is beyond the scope of this work. Our
main goal is to introduce the RTD approach as a design option.

VI. RTD TO SPEEDUP BUG LOCALIZATION

Bug localization during post-silicon validation can be quite
taxing, as it may require months to complete [11], delaying the
launch of a product. What makes bug localization so challenging
is the potentially large time window between a bug activation
and its manifestation to an observable error, a vast expanse that
needs to be covered to root-cause the bug. For instance, consider
a situation where a very rarely occurring bug corrupts an array
entry. Without any form of protection (No-Protection), the bug
manifestation will be detected after the specific entry is read and
the faulty value causes some abnormal behavior (e.g., an illegal
address exception), or it leads to a wrong output that is detected
by comparing against a golden reference. If the array employs a
protection scheme that is not real time (nRTD), the error can be
detected when the faulty entry is read. Although nRTD can

reduce the error-detection latency, as compared to No-
Protection, the time gap between the error cause and the error
detection by nRTD can be arbitrarily long, e.g., more than a
billion cycles. Consequently, even with nRTD, the root-causing
procedure remains exceedingly hard and time consuming. The
RTD approach virtually eliminates the detection latency.

VII. RELATED WORK

Previous work has proposed using 2D ECC for caches [5].
The main difference of our work is that to maintain the column
parity we do not require a read-before-write that competes for a
read port needed for regular reads as we add - in-situ in hardware
- an extra read port for each write-port. Moreover, previous work
requires a very expensive (in terms of cycle count) correction
procedure to determine the columns with errors. We circumvent
this by employing another port that tracks the RTCP.

VIII. CONCLUSIONS

RTD is a hardware technique for detecting faults in arrays
immediately after they happen, instead of after they are read.
RTD relies on in-situ array hardware for tracking in real-time the
column-parity. We show how to use RTD to design a 2D ECC
scheme. An evaluation comparing the 2D ECC RTD against a
SECDED design for arrays with F/Fs, reveals that RTD can
reduce access time at area and power cost. The code strength of
the two schemes is comparable. RTD can also help reduce the
time to root-cause bugs during post-silicon validation.

REFERENCES
[1] R. W. Hamming, "Error detecting and error correcting codes," in The Bell

System Technical Journal, vol. 29, no. 2, April 1950.
[2] R.C. Baumann, “Radiation-induced soft errors in advanced semiconductor

technologies,” IEEE TDMR, vol. 5, no. 3, 2005.
[3] S. Mitra et al., "Post-silicon validation opportunities, challenges and recent

advances," DAC, 2010.
[4] L. Gwenap, “P6 Microcode can be Patched,” Microprocessor Rep., 1997
[5] J. Kim et al., "Multi-bit Error Tolerant Caches Using Two-Dimensional

Error Coding," MICRO, 2007.
[6] J. Maiz et al., “Characterization of Multi-bit Soft Error events in advanced

SRAMs”, EDM 2003
[7] S. Kumar et al., “Analysis of Neutron-Induced Multi-Bit-Upset (MBU)

Clusters in a 14nm Flip-Flop Array,” IEEE TNS, vol. 66, no. 6, 2019
[8] A. Teman et al., “Power, Area, and Performance Optimization of Standard

Cell Memory Arrays Memory Arrays Through Controlled Placement,”
ACM TODAES, vol. 21, no. 4, May 2016.

[9] M. Y. Hsiao, "A Class of Optimal Minimum Odd-weight-column SEC-
DED Codes," in IBM JRD, vol. 14, no. 4, July 1970.

[10] D. Rossi et al., "Error correcting code analysis for cache memory high
reliability and performance," DATE, 2011.

[11] D. Lin et al., "A structured approach to post-silicon validation and debug
using symbolic quick error detection," ITC, 2015.

Fig. 4: SECDED vs. 2D-ECC RTD area and delay

0,4
0,5
0,6
0,7
0,8
0,9
1

1,1
1,2
1,3
1,4
1,5
1,6

4 8 16 32 64 128

N
o
rm

al
iz
ed

 A
re
a,
 D
el
ay

Number of Rows

Area‐2 Area‐4 Area‐8
Area‐16 Delay‐2 Delay‐4
Delay‐8 Delay‐16

Fig. 3: Bit-sliced SECDEC (left) Bit-sliced 2D ECC RTD (right) for an array
with 4-data columns. Green columns are new in-situ logic to support RTD.

F/
Fs

M
U
X
 (
re
ad

 o
u
tp
u
t)

M
U
X
 (
re
ad

 w
ri
tt
e
n
)

X
O
R
(R
e
al
 T
im

e
 C
o
lu
m
n
 P
ar
it
y)

Parity Tree
p0d3:0

d0

scp0

F/
Fs

M
U
X
 (
re
ad

 o
u
tp
u
t)

M
U
X
 (
re
ad

 w
ri
tt
e
n
)

X
O
R
(R
e
al
 T
im

e
 C
o
lu
m
n
 P
ar
it
y)

d1

scp1

F/
Fs

M
U
X
 (
re
ad

 o
u
tp
u
t)

M
U
X
 (
re
ad

 w
ri
tt
e
n
)

X
O
R
(R
e
al
 T
im

e
 C
o
lu
m
n
 P
ar
it
y)

d2

scp2

F/
Fs

M
U
X
 (
re
ad

 o
u
tp
u
t)

M
U
X
 (
re
ad

 w
ri
tt
e
n
)

X
O
R
(R
e
al
 T
im

e
 C
o
lu
m
n
 P
ar
it
y)

d3

scp3

F/
Fs

M
U
X
 (
re
ad

 o
u
tp
u
t)

M
U
X
 (
re
ad

 w
ri
tt
e
n
)

X
O
R
(R
ea
l T
im

e
 C
o
lu
m
n
 P
ar
it
y)

outp0

scppd
0

p
re
v0

rt
cp
0

d
1

p
re
v1

rt
cp
1

d
2

p
re
v2

rt
cp
2

d
3

p
re
v3

rt
cp
3 p
0

p
re
vp

0
rt
cp
p
0

F/
Fs

M
U
X

F/
Fs

M
U
X

F/
Fs

M
U
X

F/
Fs

M
U
X

F/
Fs

M
U
X

F/
Fs

M
U
X

F/
Fs

M
U
X

F/
Fs

M
U
X

d0 d1 d2 d3 p0 p1 p2 p3

Checker
Syndrome[3:0]

Decoder

DUE

Error
Vector

d0 d1 d2 d3
CE

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 21,2021 at 14:06:04 UTC from IEEE Xplore. Restrictions apply.

