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2D Error Correction for F/F based Arrays using In-
Situ Real-Time Error Detection (RTD) 

Abstract—This work proposes in-situ Real-Time Error Detection 
(RTD): embedding hardware in a memory array for detecting a 
fault in the array when it occurs, rather than when it is read. RTD 
breaks the serialization between data access and error detection 
and, thus, it can speed-up the access-time of arrays that use in-line 
error-detection and correction. The approach can also reduce the 
time needed to root-cause array related bugs during post-silicon 
validation and product testing. The paper presents how to build 
RTD into an array with flip-flops to track in real-time the column-
parity and introduces a two-dimensional RTD based error-
correction scheme. As compared to SECDED, the evaluated 
scheme has comparable error-detection and correction strength 
and, depending on the array dimensions, the access time is reduced 
by 8-24% at an area and power overhead between 12-53% and 21-
42% respectively. 
Keywords—reliability, memory arrays, error detection and 
correction, real-time error detection, bugs, post-silicon validation 

I. INTRODUCTION 

Error detection and correction codes [1] are widely used to 
protect memory arrays of electronic devices from errors. 
Typically, a coding technique adds one or more parity bits to 
each word in an array to encode redundant information about the 
word. When a codeword (data plus parity) is read from the array, 
the parity is calculated from the data and an error is detected if it 
does not match the parity read from the array.  

In this paper, we propose in-situ real-time error detection 
(RTD), an error protection approach that can detect a fault in an 
array when it happens, rather than when the faulty value is read. 
At a high level, what RTD does is to calculate in real-time what 
the parity of all codewords in an array are, and check them all 
the time against the parity of the codewords produced when the 
codewords were written in the array. Essentially, RTD can detect 
a fault instantaneously after it occurs, whereas other coding-
based protection techniques, collectively referred to as nRTD, 
detect the fault only after the stored data is read. 

RTD has practical uses in reliability and post-silicon 
validation. For reliability (e.g., protect against soft-errors [2]) 
RTD can speed-up the access time of arrays required to provide 
in-line error-detection and correction. For post-silicon validation 
[3], RTD can be very effective in reducing the time needed to 
root-cause bugs that manifest as array-content corruptions for 
both test and production chips. 

The paper explains the RTD’s functionality and shows how 
to integrate RTD in an array built with flip-flops (F/F) to track in 
real-time its column-parity. We also present a two-dimensional 
(2D) ECC scheme based on RTD. A comparison of the 2D ECC 

RTD design against traditional (nRTD) SECDED reveals that 
adding RTD provides a significant access time reduction albeit 
with an area and power overhead. 

In the rest of the paper, we discuss the RTD Architecture 
(Sec. II), an RTD 2D ECC scheme (Sec. III), an RTD 
implementation for a F/F array (Sec. IV), an evaluation of RTD 
overheads (Sec. V) and its use for post-silicon validation (Sec. 
VI), related work (Sec. VII), and conclusions (Sec. VIII) 

II. RTD ARCHITECTURE 

We illustrate the extra functional requirements of an array 
with RTD using an example. The implementation of RTD, how 
to embed it inside an array, is the subject of Sec. IV. Fig. 1.a 
shows a baseline array without error protection that contains R 
rows, C columns, a read port to output (OUT) the value at the 
read-address, and one write port to store the input (IN) at the 
write-address. Fig. 1.b shows the additional array interfaces and 
functionality needed to detect in real-time whether each array 
column contains a fault. Specifically, this requires having in-situ 
(i.e. built in the array) the following two extra read ports:  
i) a port to track RTCP (the real-time-column parity). This port 
does not need an address decoder, to select a specific row, since 
it produces the xor of all bit values in each column, and  
ii) a port that reads the previous data (PD) at the write address 
about to be overwritten during a write cycle. This port shares the 
same address decoder with the write port. 

Additionally, RTD requires a SCP (stored-column-parity) 
register with C bits (as many as array columns). This register 
maintains the column parity and it is updated on every array 
write cycle with the bitwise-xor of the current value in SCP, the 
previous data (PD) and the value to be written in the array (IN). 
Finally, an error signal vector (EV), C bits wide, is produced 
using the bitwise-xor of the SCP and RTCP. Anytime there is a 
mismatch at the same bit position between SCP and RTCP, the 
corresponding bit in the EV is asserted to flag the presence of a 
fault in the corresponding column (or SCP position). 

The two key properties of RTD are: i) can detect a fault as 
soon as it occurs (without first reading the entry that contains the 
fault), and ii) maintaining the SCP does not require a read access 
to the array (to obtain the PD) before an array write. Put it 
another way, RTD in-situ hardware helps break the dependence 
between data access and error detection without the performance 
overhead of a read before write. These RTD characteristics open 
an opportunity to speed-up the access for arrays that require in-
line error detection and correction, the main subject of the 
remaining paper. 
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A. RTD Attributes 

RTD requires one extra port to provide the RTCP and for 
each write port, an extra read port to read the previous data from 
the address to be overwritten on a write cycle. No extra read port 
is needed for shared R/W ports. For arrays that are updated at 
boot time (e.g., patch arrays [4]) and are read-only thereafter, 
there is no need for extra read port. 

The error detection strength of RTD in Fig. 1.b is an odd 
number of faults in each column, i.e. it can detect which columns 
contain an odd number of faults. If it is desirable to detect a burst 
of vertical errors in a column, vertical logical-interleaving can be 
used [5][6]. For instance, to detect any burst of two consecutive 
vertical errors we need to use RTCP with 2-bit (set) vertical 
interleaving that tracks separately the RTCP for even and odd 
rows. Additionally, two SCP registers, each with C bits, need to 
maintain separately the parity of even and odd rows. On write 
and read cycles, extra logic (not shown in Fig. 1 due to space 
constraints) will control which RTCP to use and SCP to update 
depending on whether an even or odd row is accessed. 

III. A RTD USE CASE: 2D ECC 

In this section, we present a 2D in-line ECC scheme based 
on RTD. In-line ECC checks/corrects the data before forwarded 
for use, i.e., ECC lies in the read critical-path. Unless stated 
otherwise, to simplify the discussion, we assume that at any 
given time faults are present only in one array row.  

The scheme shown in Fig. 1.c combines RTD and nRTD in 
a 2D fashion to provide error correction. The RTD is used to 
track the array’s column parity (as in Sec. II) and produce in real-
time the EV that indicates the array columns that contain a fault. 
A conventional (nRTD) parity is used to detect faults in each 
row. The row parity is generated (denoted by G in Fig. 1 (c)) and 
stored on a write cycle. On a read cycle, a checker (C1) is used 
to check if the parity of the accessed data and the corresponding 
row parity match.  

If during a read cycle the row parity status is no-error (NE) 
then the read data is forwarded to the output (OUT) as is 
(bitwise-xored with a zero-correction vector (CV for 
data@raddress)). Otherwise, there is a parity mismatch and, 
since this is the only row with faults (assumption that a single 
row contains faults), the CV is set equal to the EV and used to 
flip and repair the data bits in the column positions with errors 
(i.e., a correctable error (CE)). 

To maintain the SCP correctly we need to handle carefully 
the case when an entry with a fault is overwritten. Specifically, 
in the bit positions that the entry has errors we need to flip them 
before using the data to compute the new SCP. This is 
accomplished with an extra checker (C2) that during a write 
cycle it checks if there is an error in the PD (the data to be 
overwritten) and produces a CV (CV for data@waddress) to 
calculate the SCP.   

A single bit row-parity is unable to detect an even number of 
errors during a read. To prevent such silent-data-corruption 
(SDC), the decoder (D in Fig. 1.c) monitors the EV and triggers 
a DUE (detected-unrecoverable-error) when an even number of 
bits are set in the EV.  

Based on the above, the behavior of the decoder (D) can be 
defined in terms of the row parity status (1 indicating an error, 0 
no-error and X don’t care) and the number of 1’s in the EV (0 
for zero, o for odd and e for even but non-zero) as follows: 

Table 1: 2D ECC+RTD Decoder 
Row Parity Status 0  0 1 1 X 

Number of 1s in EV 0  o 0 o e 
Decoder Output (D) NE  NE DUE CE DUE 

The first four columns define the behavior during a read cycle. 
The 0-0 occurs when there is neither a row-parity mismatch nor 
an error detected by RTD in any column. The 0-o happens when 
the row contains no error but there is an odd number of columns 
with errors in another row. For both of these cases there is no 
error in the data that is read. The 1-0 means that the row-parity 
indicates an error but the RTD does not flag any error in any 
column. This can occur when an even number of faults occur 
across rows in a column and should raise a DUE. Such event 
cannot occur when faults are contained only in one array row. 
The 1-o happens when the row-parity indicates an error and the 
number of columns with faults is odd. In this case, the error is 
corrected according to EV. Finally, anytime we detect an even 
number of columns with error we trigger a DUE. This avoids the 
SDC when a row with an even number of faults is read since a 
parity bit is unable to detect an even number of errors in the row. 

A. RTD with Horizontal Interleaving 

The DUEs caused by a burst of even errors in a row can 
become a CE by employing horizontal logical-interleaving with 
degree equal to the burst length [6]. For instance, for a two-bit 
burst horizontal logical interleaving will employ two parity bits 
per row one for the bits in even positions and the other for bits in 

 
Fig. 1: a) Baseline Array without Protection, b) Array with RTD of Column Faults, c) Array with 2D ECC using RTD of Column Faults + nRTD of Row Faults 
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odd positions. On a read access, two checkers will produce 
separate parity status for the even and odd positions. Two 
separate count of 1’s in the EV are used, one for the even 
positions and another for the odd. The Decoder functionality for 
such scheme is defined in terms of the even and odd parity status 
and the number of 1’s in the odd and even EV bit positions as 
follows (o indicates odd number of 1s, e even but not zero, and 
y 0 or odd and X don’t care): 

   Table 2: 2D ECC+RTD+2-bit Horizontal Interleaving Decoder 
Even Par. Stat. 0 X 0 1 1 1 X X 

Odd Par. St. 0 1 1 X 0 1 X X 
# of 1s in even EV bits y X y 0 o o X e 
# of 1s in odd EV bits y 0 o X y o e X 

Decoder  (D) N D C D C C D D 
The behavior is similar to the one without interleaving. DUE is 
triggered when either or both the number of even or odd columns 
with error is even and when a partition has an error but its 
corresponding EV count is 0. Otherwise, any error is correctable, 
even when there is an error in both the even and odd partitions. 
This scheme provides comparable protection strength as 
SECDED for a two-bit horizontal errors bursts. 

IV. RTD APPLICABILITY AND IMPLEMENTATION  

In this paper, we show how to implement RTD for a F/F 
based array. Such arrays are popular in modern CPUs [7]. F/F 
arrays with size up to a few thousand bits offer area and power 
advantages over equal-size SRAM-based arrays [8]. 
Consequently, F/F based arrays are attractive for inclusion in 
products, and novel techniques for error-protecting and 
debugging them, as in this work, are of practical value. 

RTD is applicable to SRAM and CAM arrays but it requires 
using modified cells with extra port(s) to facilitate RTD. 
Developing and analyzing such SRAM and CAM cell designs 
represents an interesting direction for future work. 

A. RTD Implementation for a F/F Array  

Our implementation of RTD is based on the bit-slice based 
F/F array design proposed in [8]. Each bit-slice contains a 
column of F/Fs and a column with a multiplexer tree that is used 
to read one of the cells according to which bit-slice row is 
selected.  The logic design of a bit-slice with 8 F/Fs with 1 read 
and 1 write port is presented in Fig. 2. An array consists of many 
bit-slices that share the same read and write address decoders for 
selecting which row to read and write. 

Before presenting the RTD implementation, we show in Fig. 
3 (left) a traditional (nRTD) in-line SECDED build using the bit-
slice in Fig. 2. The design assumes 4-bits of data per row and, 
therefore, requires four parity bits to provide SECDED 
protection [1]. The figure also shows that the error detection and 
correction is realized through a checker and a decoder [9].  The 
checker produces a syndrome that is decoded to determine, in the 
case the error is correctable, the 1-hot encoding of the bit-
position with the error. This error-vector is bitwise-xored with 
the data to correct the error.  

The RTD implementation of the 2D ECC in Sec. III is shown 
in Fig. 3 (right). It introduces in-situ, built in the bit-slice, an 
extra mux column to read the PD (the data to be overwritten on 
a write) and a column that determines the RTCP of the F/Fs in 
the bit-slice. The total number of bit-slices are five, four for the 
data and one for the row-parity. On a read cycle, the data from 
the selected row are checked for error using the row-parity. In 

the case of an error, the data are xored with the EV produced by 
xoring the SCP and RTCP (as in Fig. 1.c). Note that Fig. 3, for 
readability, only shows the design used during a read cycle.  

Fig. 3 helps highlight the trade-offs presented by RTD. It 
requires fewer but wider bit-slices and instead of a SECDED 
checker and syndrome decoder, it only needs a parity-tree.  

V. RTD DELAY, AREA AND POWER EVALUATION 

A. Methodology 

The proposed 2D ECC RTD implementation as well as the 
SECDED ECC are evaluated in terms of their impact on the 
salient metrics of delay (timing), area and power. 

The mux-columns in the bit-slices are implemented using 2-
input NAND-NOR trees as in [8]. The evaluated 2D ECC RTD 
design uses two-bit horizontal logical-interleaving and its 
RTCP-columns are built using 2-input XOR trees. The SECDED 
designs, depending on the number of data bits, use different Odd-
Weight columns generate and check matrices as in [9]. The 
checker produces the syndrome using 2-input XOR parity trees 
and each syndrome output bit is decoded using 2-input 
NOR+NAND trees.  Numerous designs are evaluated with 
different number of rows (4,8,16,32,64,128) and columns 
(2,4,8,16). To search the design space fast we use the analytical 
methodology in [10] and estimate area, delay and power figures 
expressed as equivalent gates in this work as follows: 

      Table 3: Area, power and delay figures in terms of equivalent gates 
Gate Area,Power Delay 
Not 0.1 1 
2-input Nand/Nor 0.2 1.5 
2-input Xor 0.6 2.5 
F/F cell 1 N/A 

First-order analytical models are defined for the area, delay and 
power for each array design we evaluate. We have validated the 
models by comparing normalized trends against three RTL 
implementations of a 64x64 F/F-based array; with no protection, 
only row-parity protection and an RTD design as in Fig. 1.b. The 

 
Fig. 2: Bit-slice with a column of F/Fs and a mux tree 
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arrays are implemented in System Verilog. The designs are 
validated at the RTL level for functional correctness, synthesized 
to a commercial low-power 45nm standard-cell library under 
worst-case conditions (0.8V, 125C), and placed-and-routed with 
the Cadence digital implementation flow for minimum delay. 
The maximum error observed in timing is 4.5% and in area 5.3%. 

B. Evaluation 

Fig. 4 reports the normalized (to SECDED) area and delay 
analysis for different array sizes being the number of rows in the 
x-axis and the number of columns in the line colors. Clearly, 
2DECC+RTD outperforms in terms of delay SECDED in any 
configuration with 8% to 24% improvement. This is the direct 
benefit of using RTD. On the other hand, the area overhead of 
2D-ECC+RTD is considerable (12% to 53%), especially for a 
small number of rows. In addition, the power overhead is 
substantial 21% to 42% (not shown in Fig. 4 for clarity). We note 
that our findings are specific to the designs evaluated and the 
methodology used. The cost and benefits from RTD may depend 
on many parameters including port topology and technology. 

Overall, RTD is not free, and a designer will need to weigh 
the return-on-investment from RTD’s potential to shorten access 
time and facilitate post-silicon validation (Sec. VI), against the 
area and power costs RTD entails. Such trade-off is difficult to 
quantify, as it requires intimate familiarity with design cycles 
and manufacturing, and it is beyond the scope of this work. Our 
main goal is to introduce the RTD approach as a design option. 

VI. RTD TO SPEEDUP BUG LOCALIZATION 

Bug localization during post-silicon validation can be quite 
taxing, as it may require months to complete [11], delaying the 
launch of a product. What makes bug localization so challenging 
is the potentially large time window between a bug activation 
and its manifestation to an observable error, a vast expanse that 
needs to be covered to root-cause the bug. For instance, consider 
a situation where a very rarely occurring bug corrupts an array 
entry. Without any form of protection (No-Protection), the bug 
manifestation will be detected after the specific entry is read and 
the faulty value causes some abnormal behavior (e.g., an illegal 
address exception), or it leads to a wrong output that is detected 
by comparing against a golden reference. If the array employs a 
protection scheme that is not real time (nRTD), the error can be 
detected when the faulty entry is read. Although nRTD can 

reduce the error-detection latency, as compared to No-
Protection, the time gap between the error cause and the error 
detection by nRTD can be arbitrarily long, e.g., more than a 
billion cycles. Consequently, even with nRTD, the root-causing 
procedure remains exceedingly hard and time consuming. The 
RTD approach virtually eliminates the detection latency.  

VII. RELATED WORK 

Previous work has proposed using 2D ECC for caches [5]. 
The main difference of our work is that to maintain the column 
parity we do not require a read-before-write that competes for a 
read port needed for regular reads as we add - in-situ in hardware 
- an extra read port for each write-port. Moreover, previous work 
requires a very expensive (in terms of cycle count) correction 
procedure to determine the columns with errors. We circumvent 
this by employing another port that tracks the RTCP. 

VIII. CONCLUSIONS 

RTD is a hardware technique for detecting faults in arrays 
immediately after they happen, instead of after they are read. 
RTD relies on in-situ array hardware for tracking in real-time the 
column-parity. We show how to use RTD to design a 2D ECC 
scheme. An evaluation comparing the 2D ECC RTD against a 
SECDED design for arrays with F/Fs, reveals that RTD can 
reduce access time at area and power cost. The code strength of 
the two schemes is comparable. RTD can also help reduce the 
time to root-cause bugs during post-silicon validation. 
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Fig. 4: SECDED vs. 2D-ECC RTD area and delay 
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Fig. 3: Bit-sliced SECDEC (left) Bit-sliced 2D ECC RTD (right) for an array 
with 4-data columns. Green columns are new in-situ logic to support RTD. 
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