Error-Shielded Register Renaming Sub-system for a
Dynamically Scheduled Out-of-Order Core

Ron Gabor*, Yiannakis Sazeides?, Arkady Bramnik*, Alexandros Andreou?, Chrysostomos Nicopoulosi,
Karyofyllis Patsidis", Dimitris Konstantinou’, Giorgos Dimitrakopoulos'
*Intel Israel Design Center, Haifa, Israel
YUniversity of Cyprus, Nicosia, Cyprus
tDemocritus University of Thrace, Xanthi, Greece

Abstract—Emerging mission-critical and functional safety ap-
plications require high-performance processors that meet strict
reliability requirements against random hardware failures. These
requirements touch even sub-systems within the core that, so
far, may have been considered as low-significance contributors
to the processor failure rate. This paper identifies the register
renaming sub-system of an out-of-order core as a prime example
of where cost-efficient and non-intrusive protection can enable
future processors to meet their reliability goals. We propose two
hardware schemes that guard against failures in the register
renaming sub-system of a core: a technique for the detection
of random hardware errors in the physical register identifiers,
and a method to recover from the detected errors.

Index Terms—Register renaming, Micro-architectural depend-
ability, Mission-critical, Functional safety

I. INTRODUCTION

Customers expect correct operation from computing hard-
ware, with some market segments — such as large-scale
compute infrastructures and automotive — having very strict
functional safety requirements [1][2]. A hardware fault can
cause data corruption or execution of wrong operations, which,
in turn, can result in an application or system crashing, or,
even worse, producing a wrong output without any warning.
Random hardware failures are due to unpredictable events
that follow a probability distribution [3], like Soft Errors
(SE) [4] and Hard Errors (HE) [5]. Hardware vendors limit
random hardware failures by employing a variety of techniques
at different design levels: manufacturing, circuit, and micro-
architecture.

Even though state-of-the-art processors protect against ran-
dom errors within a very large fraction of the area of modern
out-of-order (OOOQO) cores [6], it is still unknown if and how
various core sub-systems (consisting of small arrays, latches,
and logic) are protected. This work concentrates on one such
structure: the Register Renaming sub-System (RRS) [7] of an
OOO core. The RRS serves a vital role: it enforces correct
dataflow, while eliminating false dependences and enabling
00O execution. An error in the RRS can devastate the pro-
gram execution by causing, among other things, an instruction
to hang, or execute using incorrect operands.

The RRS is smaller as compared to a Level-1 cache, but
its size has been growing in recent high-end cores to increase
performance [8]. Fig. 1 underlines this trend by illustrating the
growth in the size of the instruction window and the number
of integer and floating-point physical registers in recent cores
from one hardware vendor (there is about 15% and 6% growth
per generation, respectively). A bigger instruction window

64 400 =

g
g% E7-8893,......p57 2 0 g
o) E7-8895v3 . o o Bigoum| 300 S
Q16 E7-8895v2 , ..o e 8180M ~
O " | e *. 250 £
5 |E5-2690 . E

- 8 ¢ 200
3 2
-g 4 150 L
2 e Cores _ . 100 2
2 INT+FP Physical Registers o
Instruction Window 50 o
1 0o »

2012 2013 2014 2015 2016 2017
Year
Fig. 1. Prevailing trends with technology scaling for the Intel core micro-

architecture [10] and Intel Xeon processors.

and physical register file translate to bigger memory arrays
inside the RRS. Moreover, fault-injection analysis of the RRS
shows it to have substantial sensitivity to faults. In [9], it is
shown that the set of arrays and latches related to renaming
is one of the largest contributors of SEs. Another study [10]
observes that two renaming arrays, the register alias table and
the free list, have high vulnerability to errors: 50% and 85%,
respectively. This vulnerability is much higher than what is
typically reported for other small core structures [11][12].
What is more, also shown in Fig. 1, is that the number
of cores found in recent high-end processors is increasing
exponentially. Assuming that the failure contribution per bit in
the RRS is not scaling down at a faster rate than the product
of the growth rates of the RRS size and the number of cores,
then the combined effect of the trends in Fig. 1 is an increase
in the failure contribution from the arrays in the RRS with
each new processor product.

Commonly known techniques, such as parity and error
detection and correction codes [13] used to protect caches,
TLBs, and register files, can also be employed to detect errors
in small unprotected arrays, and, in some cases, correct them.
However, these techniques are not free; they increase area and
power and may increase cycle time or cycle latency and hurt
performance. The timing issue is particularly acute for the
unprotected arrays at the heart of a modern OOO pipeline,
such as those in the RRS. Such small arrays often reside in
time-critical paths and a large area growth, when combined
with the error detection/correction logic on read/write paths,
will very likely have negative effect on the processor cycle
time and performance. More holistic approaches [14][15][16]
can provide comprehensive coverage against errors, including
the RRS, but these entail higher overheads and require per-

vasive changes. The choice for an error protection technique
is clearly driven by Return-On-Investment (ROI) versus over-
head. Consequently, there is a value for cost-effective schemes
that can target the protection of a specific core sub-system, as
we propose for the RRS in this paper.

Motivated by the error criticality of the RRS and its
area/timing criticality, this work introduces (i) a scheme for
detecting the corruption of the physical register specifiers
(Pdsts) that register renaming is responsible to manage, and
(i) a method for recovery from Pdst corruption caused by
random hardware errors. What is unique and novel with the
proposed schemes is that they leverage fundamental RRS and
design properties to enable low-cost and effective protection
against errors. The paper discusses the error detection strength
and recovery coverage of the proposed schemes, as well as
their area, energy, and timing overheads, using RTL and micro-
architectural simulation-based analysis. The results establish
the advantages of the proposed techniques over traditional
array protection techniques.

II. BACKGROUND: REGISTER RENAMING, FAULTS, AND
TRADITIONAL ARRAY ERROR PROTECTION

A. Register Renaming

Register renaming is a technique that enables OOO ex-
ecution by eliminating false register dependences between
instructions. There exist several alternative implementations of
register renaming [17][18]. In this work, we evaluate register
renaming with a merged register file. In such implementation,
the results of operations are stored in a single physical register
file that combines architectural and speculative state [19].

Register renaming with a merged register file uses a large
pool of physical registers and translates the logical destination
register of each instruction that produces data to a physical
register. Typically, each instruction consists of a logical des-
tination register (i.e., an architectural register that is part of
the Instruction Set Architecture), and two logical source (or
input) registers. During register renaming, each instruction’s
logical register specifiers are replaced with corresponding
physical register specifiers, i.e., Pdst (physical destination) and
Psrc (physical source) specifiers. Register renaming can be
performed on either a single instruction at a time (in scalar
processors), or on multiple instructions simultaneously (in
superscalar processors).

Fig. 2 shows the RRS assumed in this work (for simplicity
the RRS of a scalar processor is drawn) that consists of the
following hardware arrays:

Free List (FL): is a FIFO where Pdsts are initialized each
time a core is powered on. A free Pdst is allocated to rename
the logical destination register of an instruction. The Pdst
is sent to the Reservation Station (RS) where the renamed
instruction waits to execute. When the instruction executes, it
updates the physical register pointed by its Pdst.

Register Alias Table (RAT): is a table with the most recent
mapping of each logical register specifier to a Pdst. It is
used to rename the input (i.e., source) logical registers of an
instruction. The renamed Pdsts are forwarded to the RS of the
instruction to determine when the instruction can execute.

Re-Order Buffer (ROB): is a FIFO with an entry allocated
per instruction. Each ROB entry has a field to hold the Pdst that

is evicted from the RAT by the instruction (if the instruction
writes to a register). The Pdst is freed when the instruction
retires. Checkpoint Table (CKPT): is used to regularly take
snapshots of the RAT.

Register History Table (RHT): is a FIFO used to log the RAT
changes per instruction, i.e., the logical destination register (if
any) for an instruction and its allocated Pdst.

During processor operation, the CKPT and RHT buffers
are useful for expediting the restoration of the RRS state
following pipeline flushes. First, the RAT is restored with
the closest previous checkpoint to the offending instruction.
Then the RHT is used to perform a (positive) walk to update
the RAT with information logged between the RHT entry
associated with the restored checkpoint and the RHT entry
of the offending instruction. The restoration process also
performs another (negative) walk of the RHT to return to the
FL all the Pdsts allocated after the offending instruction.

In addition to restoring the state of the arrays, the tail
pointers of the RHT and ROB must be restored to the position
corresponding to the flush-causing instruction. The FL head
pointer is not restored, since the wrong-path Pdsts are written
back to the FL during the negative walk using the FL tail.

B. Random Hardware Errors

This work considers only faults that corrupt the Pdsts while
stored in the arrays of the RRS. The corruption can either
be a single bit-flip (SBU), or multiple bit-flips. The multiple
flips may occur in the same Pdst (SMBU) and across different
Pdsts (DMBU) in different array entries. Such fault behaviors
are representative of faults caused by SEs in arrays [20]
with a clear trend of MBUs becoming increasingly a larger
contributor to SEs with smaller manufacturing technologies.
MBUs contribute about 15% of upsets at 22 nm for the circuits
examined in [21]. A fault that causes a Pdst corruption can
have grave consequences on functional correctness, as it can
lead to dataflow violations and even data corruption.

Hard errors can also cause Pdst corruptions, but these faults
tend to manifest first as intermittent and eventually as hard
faults, as compared to SEs that are transient. Manufacturing
faults in arrays are captured during testing and do not usually
escape in the field. Corruption due to both soft and hard errors
can also occur in RRS latches and logic.

C. Detecting Pdst Corruption: Traditional Approaches

One straightforward way to detect Pdst corruption is to
add a parity bit per Pdst in each RRS memory array (a
technique henceforth called Traditional Parity, TP). Each
array is treated as an independently-parity-protected memory
macro, without any knowledge of the sub-system in which
it operates. Every time an entry is updated with a Pdst, the
parity of the Pdst is computed and then written together with
the Pdst in the entry. When an entry is read, the parity of its
Pdst value is computed and compared against the parity stored
in the entry. In the case of a mismatch, an error is detected.

This traditional parity-based approach (TP) is illustrated in
Fig. 2, where ‘G’ and ‘C’ circles denote the parity generation
and parity check logic, respectively, per array. Although this
approach can detect a single-bit random error in any Pdst, it
has some key limitations: (i) the parity generation logic lies

input logical
destination (Ldst)

input logical
sources (Lsrc)

f/\ , Input Interface
o
e
ke
© FL CKPT

G: generate parity logic
C: check parity logic
[l Parity

Output Interface

output physical
destination (Pdst)

output physical
sources (Psrc)

Fig. 2. Register renaming with a merged register file with Traditional Parity
(TP) protection. Generate and check logic is required in all major components
as indicated by the ‘G’ and ‘C’ circles.

on the write critical path, (ii) each array needs distinct parity
generation and check logic modules that are used each time
a write and read occurs (see the ‘G’/‘C’ circles before/after
all main components in Fig. 2), and (iii) it does not offer any
detection for the non-array components of the RRS.

For the CKPT table, there is no parity generate or check
logic, since a checkpoint contains the entire RAT, including
the parity bits. This requires extending the bus between the
RAT and CKPT by one bit per Pdst. Errors that occur while
a Pdst is stored in the CKPT are detected when the corrupted
Pdst is restored in the RAT, and it is subsequently read.

The TP technique can detect an odd number of bit errors,
but it is unable to detect even number of errors in a Pdst.
One way to overcome this is to use parity interleaving [22]
and employ two parity bits per Pdst, one to protect even Pdst
bit positions and the other for the odd. This guarantees the
detection of all MBU bursts of up to three bits in a Pdst.

Finally, if it is possible to accommodate extra protection
state and additional encoding and correction logic in the
write/read paths, then an ECC code can be employed instead
of parity. This enables correcting the Pdst corruption when
the ECC strength is not exceeded. In this vein, an earlier
work [9] proposed the use of Register File Pointer ECC:
each register file pointer, i.e., Pdst, is accompanied with ECC
to enable correction of detected Pdst errors. However, Pdsts
are typically small and adding ECC incurs overhead and
can put pressure on critical paths. To demonstrate this, we
have designed and evaluated a variation of the technique. If
ECC checking is spread in multiple cycles to avoid timing
violations, performance would be certainly penalized.

III. CIRCULAR PARITY: DETECTION

The novelty of the protection techniques proposed in this
work lies in the underlying exploitation of some fundamental
properties and invariant operational characteristics of the RRS.
The proposed Circular Parity (CP) technique is a small but
effective variation of the TP scheme. Parity is generated only
once, during the initialization of Pdsts, and checked only at the

outputs of the RRS sub-system, which returns new source and
destination identifiers. The proposed CP protection scheme is
exemplified with the help of Fig. 3. As compared to Fig. 2
(that illustrates the traditional TP scheme), the proposed CP
mechanism removes all write-path encoding logic, ‘G’, except
at initialization (i.e., parity generation is performed only once).
CP also reduces the check logic, ’C’, to only when a Pdst is
allocated from the FL to rename a logical destination register,
or when a Pdst from the RAT is used to rename a source
logical register (i.e., parity checking is performed at only two
locations). Consequently, the ‘G’ and ‘C’ circles in Fig. 3 are
significantly reduced, as compared to Fig. 2.

input logical
destination (Ldst)

input logical
sources (Lsrc)

"“;"('j"" [T T T T T T T T T T Cinput interface
RO
Pdst Initialization
= FL RA LKP
C > G: generate parity logic
& RH ; c;::i:‘l;parity logic
____________ = ____________%_Oi‘p_“‘_'”fiaie_

output physical
destination (Pdst)

output physical
sources (Psrc)

Fig. 3. The proposed Circular Parity (CP) protection scheme. Parity genera-
tion (‘G’) is performed at only one location (during initialization), and parity
checking (‘C’) at two locations (at the output of the RRS).

The operation of CP leverages three basic invariances of the
RRS operation to overcome some of the TP limitations:

o Pdsts come from a small, known at design-time, finite set
of values.

o Pdsts circulate in the RRS during program execution.

o A Pdst affects functional correctness when it is used to
rename the logical register destination of an instruction,
and when it is used to rename the logical register sources
(in both cases, the renamed info is sent to a RS where
instructions wait to execute).

The first invariance enables to compute the parity of each
Pdst only once, at the initialization time of the RRS. There-
after, based on the second invariance, the CP will propagate
and store a Pdst with its parity bit without ever generating a
parity on the write path to any array. Furthermore, a Pdst gets
checked only when it is used to rename a logical destination
or a logical source, instead of every time a Pdst is read
from an array (third invariance). Therefore, the combination
of parity generation only at initialization and check-on-need
help overcome limitations (i) and (ii) of TP (Section II-C).
Additionally, as a Pdst flows between arrays through the
various buses in the RRS, it can get corrupted. This corruption
is detected by the proposed scheme when the Pdst is used again

for renaming purposes, thereby alleviating limitation (iii) of
the TP scheme.

CP with Interleaving (CPI): CP can be extended, like TP,
with logical interleaving to enable detection of MBU in a Pdst.

All proposed detection mechanisms have 100% strength, i.e.,
they always detect a corrupted Pdst when it gets checked, as
long as the error does not exceed the code detection strength
(e.g., 1-bit error for parity, and up to 3-bit consecutive errors
for 2-way logical interleaving).

IV. RECOVERING FROM PDST CORRUPTION (RPC)

This section describes a method that — upon the detection
of a corrupted Pdst due to a soft error — can correct it for
the vast majority of the time, and resumes correct execution.
For the few cases where a detected error cannot be corrected,
or it is a hard error, the execution will halt. The following
discussion assumes a CP error detection scheme, but the
scheme is also applicable to CP with interleaving. The basic
idea of the recovery approach is to leverage the following RRS
invariances:

o The RHT and CKPT buffers hold redundant copies of
Pdsts that can be used to repair corrupted Pdsts in other
arrays.

 The processor and system support an event sequence to
cause initialization of the RRS with the Pdsts.

For CP, a Pdst corruption is detected in two locations: when
a Pdst is allocated from the FL, and when a Pdst is read
from the RAT to rename an input logical register (see points
labeled with ‘C’ in Fig. 3). The proposed RPC scheme reacts
differently depending on the location of the error detection.

If the Pdst corruption is detected when renaming a logical
source from the RAT, a pipeline flush to the oldest instruction
in the core is triggered in the hope that the redundant state
in the RHT and earliest CKPT are not corrupted. When this
is the case, after the pipeline flush the RAT corruption gets
repaired and execution resumes normally. It is possible that an
error is contained in the earliest available checkpoint, in which
case error recovery may be infeasible when the corrupted
checkpoint is used. This will not lead to silent corruption of
the program output, but to many failed attempts after which
the recovery procedure is aborted and an uncorrectable error
signal is generated [23]. Such a scenario is unlikely to occur,
because it requires a corrupted CKPT to become the oldest
checkpoint, and, at that time, a recovery to be needed and
the corruption not to get masked by the RHT positive walk.
One other (also unlikely) scenario for which correction is not
possible is when a CKPT becomes corrupted through an error
that occurs in the RAT and that gets checkpointed afterwards
in the CKPT buffer. Subsequently, that checkpoint becomes
the oldest, and then the corrupted RAT entry gets read.

In the case where corruption is detected when a Pdst is
allocated from the FL (renaming an output logical register),
the offending instruction initiates an RRS initialization event
sequence. It is useful to note that a corruption in the FL cannot
be repaired through a pipeline flush, since the corrupted Pdst
— once it enters the FL — does not have a corrupt-free copy
in any other RRS array. Therefore, the only recovery option
is through RRS initialization.

A possible sequence for RRS initialization that can be used
is the following: (a) when an instruction detects a corruption
in its allocated Pdst, it initiates an interrupt to put the core in
a sleep state (e.g., C6). The interrupt prevents the corrupted
Pdst from getting used to corrupt architectural state. Signals
for powering off cores are already available in many processors
to help reduce power. (b) The core is interrupted, the system
saves the state of the process running on the core, and the
core is powered off. (c) The operating system notices a core
sleeping while a process is pending and wakes up the core,
initializes it, and executes a pending process on it. As part of
the waking up of the core, the Pdsts in the FL are initialized
and, therefore, any Pdst corruptions are removed.

A subtle point about the corruptions detected when re-
naming from the RAT is that the initialization option is not
applicable. Therefore, RAT corruptions can only be recovered
with a flush. This is because the current mappings in the RAT,
including the corrupted Pdst, are used to save the architectural
register state (see step (b) above of RRS initialization), and,
since there is a corruption in a Pdst, the system saves a
corrupted program state.

The outlined technique can repair transient errors like SEs.
A Pdst with an HE will persist and cause repeated interruptions
that can trigger further actions [23].

Recovery from redundant state costs 10s of cycles (similarly
to a pipeline flush), whereas initialization is slower (millisec-
onds). The initialization recovery is slower, but it piggybacks
on an available functionality that puts cores to sleep. A slow
recovery latency is acceptable, from a performance point of
view, as SEs are very rare events.

V. EXPERIMENTAL RESULTS

The experimental results are used to analyze the recovery
coverage of RPC and to measure the hardware overhead of
the proposed detection mechanisms, as compared to other
traditional array error-detection approaches. Without loss of
generality, the investigated RRS supports 128 physical regis-
ters, which determines the size of the RHT and FL (i.e., 128
entries each), and it includes a 96-entry ROB, a 32-entry RAT,
and 4 RAT checkpoints.

A. RPC Coverage Analysis

A micro-architectural simulation-based SE fault injection
campaign is performed to determine the fraction of Pdst errors
detected by CP that RPC can recover from. A modern four-
wide OOO core is evaluated. The simulator is an augmented
version of an execution-driven simulator [24] extended to
model a merged register file and OOO branch resolution.
The analysis is performed in representative regions of the
19 SPEC CPU 2006 benchmarks that exhibit deterministic
behavior (repeated fault-free runs produce exactly the same
memory and register state at the end of the simulation). The
benchmark determinism is a requirement for the analysis, since
the architectural state of a fault-free run is used as a golden
reference to classify error behavior.

For each injection campaign, one of the RRS arrays is
injected with a single transient bit-flip in a random entry at
a random Pdst bit position. Note that multi-bit upsets are not
evaluated in this paper — they are left as future work. The

single bit-flip injection is performed in a random cycle in
a window of 0.5 million cycles, after 0.5 million cycles of
warm-up have elapsed. Each benchmark is simulated for 2
million instructions (unless some anomalous behavior, defined
below, is detected that ends the simulation prematurely). Two
hundred injections are performed for each of the RRS arrays
per benchmark (close to four thousand injections per RRS
array).

The simulation analysis tracks whether a system call is
performed between the error injection cycle and the time an
error is detected. Such event is classified as causing a Silent
Data Corruption (SDC), since it is possible for the error to
corrupt system state and become user-visible [25].

The simulator monitors for anomalous behavior that leads
to early termination [26]. This includes illegal load and store
addresses and a watchdog timeout (30,000 cycles elapsing
without an instruction getting committed). We classify all such
events as Detectable Unrecoverable Errors (DUE) [25]. If,
between the error injection cycle and the DUE detection, there
is a system call, the error is, instead, classified as SDC.

All runs that do not terminate early, but have a corrupted
state, are classified as SDCs, otherwise they are classified as
masked (MSK). For the state comparison, the CRCs of the
memory, register content, and Pdsts are compared with the
corresponding normal-exit CRCs. Our SDC classification is
pessimistic since it is possible for an error to get masked after
the end of our 2 million instruction simulation window.

Without any protection, we observed that the fault-injection
experiments result in SDC, DUE, and MSK outcomes. When
CP is used, we never observed SDC or DUE. Recall that CP
detects an error in a Pdst when it is read from the FL and
RAT, and this is sufficient to prevent corruptions that happen
in any RRS array to propagate to the output as SDC or DUE.

W FL
60 u RAT

% of Errors Detected
and Unrecoverable

% of Errors Detected % of Errors Detected

and Recoverable

Fig. 4. Detection and recovery coverage of the proposed CP technique.

Analysis of the RPC — shown in Fig. 4 — reveals that the
scheme can recover correctly from 96.2% of the CP error
detections. The remaining 3.8% detections are uncorrectable
and terminate execution abruptly. More specifically, the results
show that 16% of the error detections occur when renaming
from the RAT, and the remaining 84% when allocating a Pdst
from the FL. As explained in Section IV, all FL detections
are correctable through initialization. However, not all errors
detected from the RAT are correctable. The results show that
76% of the errors detected from RAT renaming are correctable.
The remaining 24% are uncorrectable, due to corruption in the
earliest checkpoint used to recover the RAT.

(a) Minimum Achievable Delay
@ease @ T @cp Jtr @cP

700

600
500
< 400
>
[
o 300
a
200
100

1 Way

2 Way

(b) Power @ 1GHz
@Base @ @cp (JTP @cP

35

4 Way

1 Way

2 Way

Fig. 5. Delay and power consumption for 1-way, 2-way, and 4-way register
renaming, i.e., renaming and retiring 1, 2, and 4 instructions per clock cycle,
respectively.

B. Hardware Analysis

All discussed proposed techniques are evaluated in terms
of hardware cost, i.e., their impact on the salient metrics of
delay (timing), area, and power. We investigate 1-wide, 2-
wide, and 4-wide register renaming, i.e., 1, 2, or 4 instructions
can be renamed and retired per clock cycle, respectively.
In this way, we cover both scalar (single-issue) and super-
scalar (multiple-issue) microprocessor pipelines. All examined
protection techniques are implemented in SystemVerilog and
incorporated in a RRS. The RRS designs were synthesized
to a commercial low-power 45 nm standard-cell library under
worst-case conditions (low voltage 0.8 V, 125 °C), and placed-
and-routed using the Cadence digital implementation flow. The
RRS arrays are implemented as standard-cell-based memories,
using flip- flops, following an internal clock-gated organization
similar to [27]. The post-place-and-route results pertaining to
the hardware cost/complexity of all designs under comparison
are depicted in Fig. 5.

Fig. 5(a) reports the worst-case delay achieved by each
design, including a baseline RRS without protection (Base),
traditional parity protection schemes (TP and TP with Inter-
leaving, TPI), as well as the proposed CP and CP with Inter-
leaving (CPI) structures. Evidently, both TP schemes (simple
and interleaved) incur the worst delay overhead relative to a
baseline (no protection) design. On the contrary, the minimum
delay achieved by CP schemes is either the same, or slightly
higher, than the baseline, but always better than corresponding
traditional schemes. The CP technique hides effectively the
delay of parity checking, by performing the checks in parallel
to other operations in the RRS.

Parity interleaving helps reduce the delay overhead both
for the traditional and proposed schemes, due to the reduced
number of inputs in the error-checking logic (each of the two

parity tree checks half the bits). However, this delay gain
comes at the expense of additional area and power overhead,
due to the extra parity bits stored in each memory array. This
behavior is highlighted in Fig. 5(b), which reports the average
power consumption of each design, including both dynamic
and static power consumption. Area follows a similar trend.
Power measurements are taken when each design is optimized
for a 1 GHz clock frequency, which can be reached by all
designs under investigation.

CP and CPI provide better energy efficiency compared to
traditional approaches. Even though in the case of 1-way
renaming, the difference is marginal, in more realistic architec-
tures the efficiency increases with the increase in complexity.
In fact, CP uses 8% less energy than the TP scheme in the
2-way renaming scenario and 18% less energy in the 4-way
scenario. The corresponding numbers for the CPI and TPI are
8% and 13%, respectively. All these indicate that the efficiency
of the proposed techniques will continue to increase as the
dispatch window grows in future architectures.

The hardware results — not shown in a graph — for the
Register File Pointer ECC described at the end of Section II
reveal that the error correction functionality provided by
adding 5 extra ECC bits per 7 Pdst bits and associated ECC
logic adversely affects all salient metrics (delay, area, and
power). For instance, the parity-based designs (TP and the
proposed CP technique) can achieve a maximum operating
frequency that is as much as 50% higher than that of the
ECC-based design, highlighting the impact of ECC on delay.

VI. CONCLUSIONS

This work motivates the protection from random hardware
errors in the register renaming sub-system, as well as other
core sub-systems that are small contributors to failure, by
considering the strict reliability requirements from high-core-
count processors. The paper presents an RRS protection tech-
nique for detecting random corruption in Pdsts, and another
to recover from such errors. Micro-architectural simulation-
based fault injection analysis shows that the proposed recovery
scheme successfully repairs corruptions 96% of the time, and,
in the rest of the times, can report an unrecoverable error.
Hardware synthesis analysis is used to evaluate and compare
different schemes, and reveals the benefits and minimal over-
head of the proposed approaches. As part of future work,
we will quanitfy the significance of protecting small core
subsystems against errors and analyze the sensitivity of the
proposed RRS protection technique to more checkers, bigger
instruction window and larger physical register files.

ACKNOWLEDGMENTS

Part of this work has been performed during a sabbatical
of the second author at Intel Israel Design Center in Haifa,
Israel. The authors like to acknowledge Alex Gerber for his
valuable insights during the early stages of this work. The
work is partially supported by the EU Horizon 2020 project
Uniserver grant no. 688540 and the University of Cyprus.

REFERENCES

[1]1 Road vehicles - Functional safety (ISO 26262).
zation for Standardization, 2011.

International Organi-

[2]
[3]

[4]

[5]

[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

S. Siceloff, “Shuttle computers navigate record of reliability,” NASA,
Tech. Rep., June 2010.

“Random failure vs. systematic failure: Through the looking
glass,” https://www.kvausa.com/random-failure-vs-systematic-failure,
accessed: 1-9-2018.

R. C. Baumann, ‘“Radiation-induced soft errors in advanced semi-
conductor technologies,” IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, pp. 305-316, Sept 2005.

S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10-16, Nov 2005.

K. T. Nguyen, “New reliability, availability and serviceability (ras)
features in the intel xeon processor family,” Tech. Rep., 2017.

R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM J. Res. Dev., vol. 11, no. 1, pp. 25-33, Jan. 1967.
Intel, “Intel’s next generation microarchitecture code name skylake,”
Tech. Rep., 2015.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
Intern, Conf, on Dependable Systems and Networks, 2004, June 2004,
pp. 61-70.

V. Reddy and E. Rotenberg, “Coverage of a microarchitecture-level fault
check regimen in a superscalar processor,” in IEEE Intern, Conf, on
Dependable Systems and Networks With FTCS and DCC (DSN), June
2008, pp. 1-10.

X. Fu, T. Li, and J. A B Fortes, “Sim-soda: A unified framework for
architectural level software reliability analysis,” in Intern. Symp. on
Computer Architecture - Benchmarking and Simulation: Workshop on
Modeling, June 2006.

M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, and D. Gizopoulos,
“Accelerated microarchitectural fault injection-based reliability assess-
ment,” in Intern. Symp. on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS), Oct 2015, pp. 47-52.

R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147-160, April 1950.

T. M. Austin, “Diva: a reliable substrate for deep submicron microar-
chitecture design,” in Proc, of the ACM/IEEE International Symposium
on Microarchitecture, Nov 1999, pp. 196-207.

J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. Gonzélez, “End-to-
end register data-flow continuous self-test,” SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 105-115, Jun. 2009.

R. Nathan and D. J. Sorin, “Nostradamus: Low-cost hardware-only error
detection for processor cores,” in Design, Automation Test in Europe
Conference Exhibition (DATE), March 2014.

F. L. A. Gonzalez and G. Magklis, Processor Microarchitecture. An
Implementation Approach. Morgan & Claypool Publishers, 2011.

J. E. Smith and A. R. Pleszkun, “Implementing precise interrupts in
pipelined processors,” IEEE Transactions on Computers, vol. 37, no. 5,
pp. 562-573, May 1988.

K. C. Yeager, “The mips r10000 superscalar microprocessor,” [EEE
Micro, vol. 16, no. 2, pp. 28-41, April 1996.

A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in Intern, Reliability Physics Symposium, April 2011, pp. 5B.4.1-
5B.4.7.

N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Q. Shi,
R. Allmon, and A. Bramnik, “Soft error susceptibilities of 22 nm tri-
gate devices,” IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp.
2666-2673, Dec 2012.

J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization
of multi-bit soft error events in advanced srams,” in IEEE International
Electron Devices Meeting, Dec 2003, pp. 21.4.1-21.4.4.

Intel, “Mca enhancements in future intel xeon processors,” NASA, Tech.
Rep., 2013.

R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental
error in microprocessor simulation,” in Proc. of the Intern. Symp. on
Computer Architecture, ser. ISCA 01, 2001, pp. 266-277.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proc. of IEEE/ACM
Intern. Symp. on Microarchitecture, ser. MICRO 36, 2003, pp. 29-42.
M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software
and implications for resilient system design,” SIGOPS Oper. Syst. Rev.,
vol. 42, no. 2, pp. 265-276, Mar. 2008.

P. Meinerzhagen, S. M. Y. Sherazi, A. Burg, and J. N. Rodrigues,
“Benchmarking of standard-cell based memories in the sub-vidomain
in 65-nm cmos technology,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 1, no. 2, pp. 173-182, June 2011.

