
CrossOver: Clock Domain Crossing under
Virtual-Channel Flow Control

Michalis Paschou∗, Anastasios Psarras∗, Chrysostomos Nicopoulos† and Giorgos Dimitrakopoulos∗
∗Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

†Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

Abstract—Technology scaling, process variations, and/or 3D
integration make the design of fully synchronous Systems-on-
Chip (SoC) a challenging task. Partitioning the SoC into Globally
Asynchronous, Locally Synchronous (GALS) islands – aka clock
domains – partially alleviates the difficulties in clock distribution.
Such partitioning of the SoC is also necessary when supporting
Dynamic Voltage and Frequency Scaling (DVFS) across parts
of the system to minimize power consumption. The Network-
on-Chip (NoC) is an inherently distributed architecture that is
physically spread over the entire chip; thus, it should readily
support communication across multiple asynchronous clock do-
mains. In this paper, we generalize the fundamental properties
of Virtual-Channel (VC) flow control across asynchronous clock
domains. A new set of flow control rules is presented, which
lead to efficient and deadlock-free communication, while still
respecting the properties of traditional (synchronous) VC-based
flow control. The derived flow control policy, called CrossOver,
opens up a new design space, which is quantitatively explored
in this paper. The goal of this investigation is to identify the
configuration that maximizes throughput with the least cost, in
terms of buffering requirements.

I. INTRODUCTION

The number of components on a single chip is rapidly
growing, due to increasing levels of integration and shrink-
ing transistor geometries. Complex Systems-on-Chip (SoC)
typically involve a variety of components that should easily
be integrated at design-time, and efficiently communicate at
run-time. The Network-on-Chip (NoC) plays a key role in
satisfying both requirements.

From an application perspective, NoCs are expected to: (a)
parallelize communication, (b) possibly provide Quality-of-
Service (QoS) guarantees, and (c) enable system partitioning.
Resource separation within the NoC is typically facilitated
by assigning different message classes to different Virtual
Channels (VCs) [1]. This separation is also instrumental for
the correct operation of higher-level protocols (e.g., cache co-
herence), which require isolation between the various message
classes to avoid protocol-level deadlocks [2].

Modern SoCs implemented in deeply scaled technologies
face slow wires and Process/Voltage/Temperature (PVT) vari-
ations. These challenges make the synchronous abstraction
increasingly untenable over large chip areas, thereby requiring
immense design effort to achieve timing closure. A fully
asynchronous approach [3] would eliminate many of the clock-
ing/variation issues, but current design tools and IP libraries
rely heavily on the synchronous paradigm. Thus, asynchronous
NoCs tend to be very complex to design and validate.

Alternatively, the Globally Asynchronous, Locally Syn-
chronous (GALS) design methodology mitigates the difficulty
of global timing closure. The SoC comprises local islands
of fully synchronous designs (called clock domains), with

different blocks of the system operating asynchronously to
each other [4, 5]. Such partitioning is also required in Dy-
namic Voltage and Frequency Scaling (DVFS) architectures.
The voltage and frequency of certain portions of the system
change (independently) according to the workload, in order
to minimize power consumption [6, 7]. Asynchronous clock
domains can have arbitrary frequency and phase relationships.
Signals that cross these clock-domain boundaries – called
Clock Domain Crossing (CDC) – have to be synchronized
before they can be used in the receiving domain [8].

Synchronization is usually achieved by: (a) synchronizer
library cells (i.e., brute-force synchronizers, typically used for
single-bit signals); (b) req/ack handshaking – in parallel to data
buses – which suffers from throughput loss, due to the latency
overhead incurred by the handshaking protocol; and (c) by
using FIFO synchronizers, which achieve full-throughput data
transfers after appropriate FIFO buffer depth selection [8].

A GALS and/or DVFS NoC implementation can take many
forms. In one scenario, all logic in the NoC operates syn-
chronously on a dedicated clock, while the connecting IP
blocks operate asynchronously in a different clock domain.
The decoupling between the IP and NoC clocks is performed
at the network interface. However, providing a single clock
reference to all NoC components is challenging, since the NoC
is a distributed architecture physically spread over the chip.
A more flexible approach would enable asynchronous CDC
in any part of the NoC. In this case, the NoC itself would
be composed of different sectors operating within completely
asynchronous clock domains. This is achieved by allowing
any point-to-point link between any two routers in the NoC
to belong to different clock domains.

CDC using FIFO synchronizers includes some form of flow
control to enable lossless data transfers [9, 10]. While the
Xon/Xofff (aka stall/go, or ready/valid) scheme is directly ap-
plicable to FIFO synchronizers, it is inefficient when applied to
CDC with VC buffers. The mismatched asynchronous clocks
on either side of the boundary necessitate the use of dynamic
thresholds for the initiation and termination of transmission, in
order to ensure lossless data transfers. Since the mismatch in
clock frequencies can vary, the Xon/Xoff thresholds are differ-
ent for each combination of sender/receiver clock frequencies.
Hence, the VC buffers must be large enough to absorb all
in-flight data, covering the worst-case clock difference, which
could become prohibitively expensive.

On the other hand, credit-based flow control is lossless,
by construction, and can operate with arbitrarily small VC
buffers, irrespective of the worst-case frequency mismatch
across the clock boundary [1]. The buffer slots (per VC) and
the clock frequency mismatch only determine the throughput

of data transfers. Therefore, credit-based flow control is the
best-suited policy for implementing asynchronous CDC across
VCs. Despite the large volume of work in synchronization and
GALS for NoCs [5, 11, 12], existing work does not include
VC flow control, or credits. A few industrial papers [13–15]
have dealt with asynchronous CDC under credit-based VC
flow control, but they provide very little detail pertaining to
their implementation. On the contrary, VC flow control across
mesochronous interfaces, where clock frequency and phase re-
lationships are known [16], is more clearly examined [17, 18].

In this paper, our goal is to elucidate the intricacies of
CDC in VC-based NoCs employing credit-based flow control.
The proposed approach, called CrossOver, leverages existing
asynchronous FIFO synchronizers to provide deadlock-free
communication across asynchronous clock domains, by tack-
ling the protocol-level implications of VC flow control in an
asynchronous CDC environment. In the case of bidirectional
interfaces, CrossOver enables consolidated structures that can
jointly synchronize data and credits transferred across routers.
This approach enables a single point of synchronization in
each clock domain for all signals, thereby increasing reliability
and simplifying the verification of CDC.

To the best of our knowledge, this work is the first to
analyze the implications of asynchronous CDC on the
flow control policy of VC-based NoCs. The CrossOver flow
control policy and its hardware implementation open up a
new design space that involves various micro-architectural
features and buffer-sizing choices. The quantitative analysis
presented in this paper reveals the interplay between the micro-
architectural knobs and their effects on the area and throughput
of the design. More importantly, CrossOver’s novel micro-
architectural features – including a new credit accumulation
scheme – yield very cost-efficient hardware implementations.

II. VC FLOW-CONTROL SYNCHRONIZATION INTERFACE

To divide a physical channel into V VCs, the input queue
at the receiver must be separated into as many independent
queues as the number of VCs. To implement VC flow control
using credits, the sender keeps a credit counter for each
downstream VC. A new flit that belongs to the ith VC can
be sent on the channel, as long as creditCount[i] > 0, i.e.,
there is at least one empty slot in the downstream buffer for
the ith VC. Since the state of each VC is kept at the sender, the
receiver only needs to send backwards a credit-update signal,
including a VC ID, which indexes the VC that has one more
available credit for the next cycle. On a credit update referring
to the jth VC, the corresponding credit counter is increased.

With credits, lossless operation is guaranteed, irrespective
of VC-buffer depth, since no flit can be in-flight if it has not
consumed a credit beforehand. The number of buffer slots per
VC merely determines the throughput of data transmission.

When the sender and the receiver of a VC flow-controlled
link belong to the same clock domain, all data transfers
and credit updates occur synchronously on the positive (or
negative) edge of the clock. In the case that the sender and
the receiver belong to different clock domains, as shown in
Figure 1, the forward data signals launched by the sender
should be synchronized to the receiver’s side, while the credit-
update signals that are transferred in the opposite direction
should be synchronized to the sender’s clock domain.

data/vc_id

full

Receiver's clock domain

input VC buffers

credit
counters

Sender's clock domain

push

data/vc_id

empty

pop

empty

Credit
FIFO

clk_snd clk_rcv

pop

credit/vc_id

full

push

credit/vc_id pop_vc
credit

update

clk_snd clk_rcv

Data
FIFO

output
port

Fig. 1. The organization of an asynchronous VC flow-controlled link, where
the sender and the receiver belong to different, unrelated clock domains.
The signals exchanged (data and credit updates) are synchronized to the
receiving domain using a dual-clock FIFO. FIFO synchronizers are always
read (popped), as long as they are not empty.

To achieve this goal, two FIFO synchronizers (i.e., dual-
clock, or bisynchronous FIFOs) are added, one in each di-
rection, as depicted in Figure 1. A new flit, together with its
VC ID, is written into the data sync FIFO first (shared across
VCs), and then – after a finite amount of time – it moves
to the corresponding VC buffer downstream. In the opposite
direction, a credit returned by the receiver is written into the
credit sync FIFO and extracted by the sender later on.

Write
Control

full

push

data_w

brute-force
synchronizers

wd

wa

empty

pop

rd

ra

data_r

clk_W RAM

clk_W clk_R

write
pointer

Read
Control

read
pointer

Fig. 2. The internal organization of the dual-clock FIFOs.

Both FIFO synchronizers of Figure 1 follow the organiza-
tion depicted in Figure 2. Lower latency FIFO synchronizers
could also be utilized [10]. New incoming data is written
using the sender’s clock (write clock) into the position indexed
by the write pointer. New data is read out of the FIFO in
the receiver’s clock domain (read clock) by extracting the
data stored in the address indexed by the read pointer. The
determination of the state of the FIFO (full, or empty) requires
the synchronization and comparison of the read and write
pointers. Synchronization of the read and write pointers is
performed using brute-force synchronizers, provided that the
pointers are gray-coded, so that any synchronization error does
not disrupt the pointer location by more than one increment.
Brute-force synchronizers do not eliminate the possibility of
metastability; they can only reduce it to a negligible value.

Dual-clock FIFOs introduce extra latency compared to
a synchronous design, due to the latency incurred by the
brute-force synchronization of the gray-coded read and write
pointers. Two cycles are spent for pointer synchronization
(assuming a 2-stage brute-force synchronizer), and 1 cycle for
the read/write operations in each domain. Increasing the depth
of the brute-force synchronizers to reduce failure rates would
incur a higher latency. Overall, the latency includes 3 cycles of
the write clock domain, and 3 cycles of the read clock domain.
If the dynamically-changing clock frequencies between the
two clock domains can become equal (i.e., each read cycle
costs, in time, as much as a write cycle), then a 6-slot deep

FIFO should be used to provide 100% throughput; 6 slots
are enough, since they fully cover the 6-cycle (3+3) latency
of each domain. However, if the ratio between the two clock
frequencies cannot reach the worst case of one (i.e., one clock
domain is always faster), then shallower FIFO synchronizers
are enough to sustain full throughput.

One alternative to the organization shown in Figure 1 is to
use multiple parallel FIFO synchronizers (each VC buffer is
an independent dual-clock FIFO). However, there are three
compelling reasons why such an approach is sub-optimal:
(1) implementing multiple CDC points across a single clock
boundary is an ill-advised design practice, which significantly
increases the verification effort; (2) such static VC segregation
prohibits the use of VC buffer sharing, which is a highly de-
sirable feature (it optimizes and maximizes buffer utilization)
in modern NoC designs [19]; (3) the hardware cost is quite
high, since, as already shown, each FIFO synchronizer must
be deep enough (6 slots at least) to account for the worst-
case clock frequency ratio. Therefore, using a common FIFO
synchronizer for all VCs before the input VC buffers is the
preferable choice. The area savings achieved by this approach
and the interplay between VC buffer depth and throughput are
presented in Section IV.

clock domain Bclock domain A

empty
pop

data_AB

credit_AB

full
push

data_BA

credit_BA

clk_A clk_B

credit
data

FIFO

credit
update

output port

input port

credit
update

output port

input port

credit_AB

data_AB

full
push

empty
pop

clk_A clk_B

credit
data

FIFO

data_BA

credit_BA

Fig. 3. Bidirectional consolidated CDC interfaces, which merge the synchro-
nization of credit and data in opposite directions.

The majority of NoC topologies include bidirectional links
across connected routers. Bidirectionality is typically facil-
itated using a pair of uni-directional links. In this case,
illustrated in Figure 3, both routers can exchange data and
credits in opposite directions. For example, router A receives
the data sent by router B (and written into A’s VC buffer),
and the credit updates sent by router B (referring to B’s
VC buffers). The opposite occurs in the other direction. For
maximum design safety and ease of verification, the data
and credits that flow from router A to B (and vice versa)
should be consolidated and synchronized at one entry point
at the inputs of B (and A, respectively), as a merged entity.
In each direction, a consolidated FIFO synchronizer carries
both the data and credits that need to be synchronized across
the two clock domains. Each entry of the consolidated FIFO
synchronizer can carry a new flit, or a returning credit, or both,
in the same cycle. Consequently, the consolidated credit and
data FIFO synchronizers have the same size.

III. THE CROSSOVER FLOW CONTROL POLICY

VC flow control between two asynchronous clock domains
requires a new set of rules, both in the forward and the
backward directions. Said rules would allow for deadlock-free
communication across the clock boundary.

A. Flow-Control Rules of the Forward Data Path

The ith VC at the sender side is eligible to send a new flit,
as long as: (a) creditCount[i] > 0, and (b) the data FIFO
synchronizer is not full. When both conditions are satisfied,
the flit is released from the sender, it is written to the data
FIFO synchronizer, and the ith credit counter is decremented.

Since the credits consumed by each flit refer to the VC
buffers of the receiver, and not to the buffer slots of the
data FIFO synchronizer, it is certain that a flit remains in
the data FIFO synchroniser temporarily. At some point in
time, the receiver will read out the contents of the data
FIFO synchronizer and place the corresponding flit into the
appropriate VC buffer.

Even if the flits of potentially all VCs are serialized inside
the data FIFO synchronizer, it is impossible for an older flit to
perpetually block a newer flit of the same – or of a different
– VC, since every flit written to the data FIFO synchronizer
will eventually be read out (as previously explained). How fast
this sinking happens would depend on the clock frequencies
of the two connected domains. Therefore, the data FIFO
synchronizer merely acts as a delay element to the channel,
without creating any true dependencies across VCs, even if it
can become full at some point in time and block the transfer
of flits. This condition holds, as long as credit updates return
to the sender without any complication. The implications of
this requirement will be discussed in Section III-B.

It is important to note that, even though the data FIFO
synchronizer is structurally shared across VCs, it must not
be considered as a shared buffer for the receiver’s VC buffers,
i.e., none of the available credits should refer to the buffer
slots of the data FIFO synchronizer. If such functionality is
required (i.e., the FIFO synchronizer being part of the regular
VC buffer space of the receiver), the FIFO synchronizer should
then be able to read out a flit, even if it is behind the head-
of-line position. This would be mandatory, in order to avoid
introducing deadlock-inducing dependencies among VCs.

To understand this problem, let us consider a simple exam-
ple, where 2 VCs on the receiver side – each one with 3 buffer
slots – receive data through a 3-slot FIFO synchronizer. The
FIFO synchronizer’s 3 slots are considered as extra shared
buffering for the two VCs. Let us also assume that VC#0,
which cannot currently dequeue a flit at the receiver, has used
all 3 of its private buffer slots, and 2 of the 3 slots of the
data FIFO synchronizer (separate credits are dedicated to these
shared buffer slots). At this point, a flit for VC#1 (which is
empty) arrives and wishes to move to its dedicated buffer.
However, for this to occur, the flit of VC#1 must first be placed
at the back of the data FIFO synchronizer (behind the flits of
VC#0), and it will be forced to stay there until VC#0 dequeues
all of its flits from the FIFO synchronizer. The shared FIFO
synchronizer is now full, blocking any other flits from arriving
at the receiver, thereby introducing a dependency between VCs
#0 and #1. In order to release this dependency, the flit of
VC#1 at the back of the FIFO synchronizer should bypass
the other two flits of the data FIFO synchronizer and move to
the VC#1 buffer. Such necessary bypass capability, however,
would endanger the CDC safety properties and the validity
of the synchronized data. Such situations should certainly be
avoided to safeguard against metastability problems.

B. Backward Path: Credit Update and Accumulation
In a synchronous VC flow-control implementation, the

receiver is obliged to update the sender about the availability
of a new credit, as soon as a flit is dequeued from the receiver’s
input VC buffers. After one cycle (or multiple, when the links
are pipelined), the sender is informed about this credit update,
and it can immediately reuse it to send a new flit.

On the contrary, when the sender and the receiver are placed
in different clock domains and decoupled via FIFO synchro-
nizers, the receiver should include additional functionality so
that credits are not lost. The problem arises when the credit
FIFO synchronizer becomes full, as a result of the sender
operating at a lower frequency than the receiver. In such
cases, the receiver cannot send more credit updates to the
sender (due to the full credit FIFO synchronizer), even if the
receiver has generated new credit updates (new flits have been
dequeued from the receiver’s VC buffers). Thus, proper actions
are required, in order to guarantee that credits are not lost and
the status of the VC buffers is correctly maintained.

The pessimistic solution to the credit-update problem arising
in VC flow control across asynchronous clock domains is to
select the size of the credit FIFO appropriately, so that it
never gets full (irrespective of the sender and receiver clock
frequencies). The size of the credit FIFO synchronizer can be
bounded, by recognizing the fact that the number of credit
updates that can ever be produced cannot be greater than the
number of all VC buffer slots. Therefore, in a pessimistic
approach, the credit sync FIFO depth cannot be smaller than
the total number of buffer slots at the receiver, Btot. If each
VC at the receiver has a fixed depth (i.e., no shared buffering
technique is employed), then the total number of buffer slots
at the receiver is Btot = V × D, where V is the number
of VCs per port, and D is the buffer depth per VC. Hence,
by selecting a credit sync FIFO with depth equal to Btot,
we are certain that the credit sync FIFO will never be full
and that the receiver can always send the generated credit
updates backwards using the same protocol as in the case of
synchronous VC flow control. Note that if consolidated FIFO
synchronizers use this pessimistic approach, Btot buffer slots
would be required to hold both credits and data bits, thus
leading to a prohibitively expensive solution.

Alternatively, when the size of the credit FIFO synchronizer
is smaller than the total number of buffer slots at the receiver,
Btot, the credit FIFO may temporarily become full, thereby
prohibiting the receiver from sending the necessary credit
updates backwards. In this case, we choose to accumulate the
generated credits at the receiver, and send them to the sender
once the credit FIFO synchronizer has space.

To support credit accumulation, the receiver must include
V credit accumulators, each one gathering the unsent credits
for each VC. When a flit is dequeued from the ith VC buffer,
it causes an increment in the ith credit accumulator. When all
credit accumulators are zero and the credit FIFO synchronizer
is not full, credit accumulation is bypassed and the credit
released is written directly to the credit FIFO synchronizer.
On the contrary, when the credit FIFO synchronizer becomes
full for a certain period of time, the fast receiver accumulates
all the produced credit updates. Once the credit FIFO synchro-
nizer is again not full, the receiver has four choices in sending
the accumulated credits backwards:

(b) One VC / Many credits

vc_id

+X

(c) Many VCs / One credit (d) Many VCs / Many credits

V X
+1

+1

+X

+X

V

vc_id+X

Credit
FIFO

Credit
FIFO

Credit
FIFO

dataData
FIFO

credit
accumulators

Credit
FIFO credit

data

credit

Receiver's clock domainSender's clock domain
input VC buffersoutput port

credit counters

arb

(a) One VC / One credit

vc_id

+1

Credit
FIFO

vc_id

credit
accum.

credit
accum.

credit
accum.

credit
accum.

arb

Fig. 4. The organization of the four credit update/accumulation policies.

• One VC / One Credit: Select one VC, i.e., the ith one,
with at least one accumulated credit, and send backwards
only one credit update. This action would increment the ith
credit counter at the sender and decrement the ith credit
accumulator at the receiver.

• One VC / Many Credits: Select one VC, i.e., the ith
one, with at least one accumulated credit, and send all the
accumulated credits backwards in the same cycle This action
would increase the ith credit counter at the sender by the
number of accumulated credits, i.e., X , and decrease to zero
the ith credit accumulator at the receiver.

• Many VCs / One Credit: Send only one credit update
from each and every VC that has at least one accumulated
credit. Since multiple increments are sent backwards in the
same cycle, it means that multiple credit counters (accu-
mulators) at the sender (receiver) should be incremented
(decremented) in the same cycle.

• Many VCs / Many Credits: Send backwards all the accu-
mulated credits of all VCs in the same cycle. All credit ac-
cumulators are zeroed at once, and multiple credit counters
are incremented by their corresponding received credits.
The credit-update paths for the four possible discussed

choices are depicted in Figure 4. In the first two choices,
arbiter and (de)multiplexing modules are required to select
which credit accumulator/counter should be enabled. In the
remaining two options, credit update signals involve all VCs
simultaneously, thus the multiplexing logic is not involved.

C. Deadlock Freedom
The presence of FIFO synchronizers in both directions of

a VC flow-controlled link (i.e., the forward data path, and
the backward credit-update path) form a cyclic dependency
chain, which is not present in a synchronous implementation.
However, a deadlock cannot occur, provided that: (a) each flit
consumes a credit referring to the downstream VC buffers,
before leaving the sender, and (b) the data FIFO synchronizer
does not constitute a shared extension of the VC buffers at the
receiver (i.e., a position in the data FIFO synchronizer does
not refer to any of the available credits).

On any link with Btot credits, Btot items can be present
either in the form of real flits (credit consumers), or in the
form of real credits (credit producers/updates). These items
can be placed in any of the three buffers situated between
the sender and the receiver: (1) the normal VC buffers at
the receiver (of size Btot buffer slots), (2) the data FIFO

synchronizer, or (3) the credit FIFO synchronizer. Provided
that the FIFO synchronizers have a non-zero depth, the total
number of empty slots is always greater than Btot. Therefore,
at least one empty slot is present in the loop of buffers, which
prevents the formation of deadlock and prohibits any item (flit,
or credit) to be permanently blocked.

IV. ANALYSIS & EXPERIMENTAL RESULTS

In this section, we analyze the operation of CrossOver,
and derive the minimum buffering requirements for full
throughput. Comparisons to other closely related solutions
are also made. Next, we evaluate the behavior of the credit
update/accumulation policies using NoC-level simulations.

A. Buffering and the Asynchronous Round-Trip Time
Achieving 100% throughput and uninterrupted transmission

over a link requires that the receiver owns enough buffer slots
to cover the Round-Trip Time (RTT). The RTT is defined as
the number of elapsed cycles from the instance the sender puts
a flit on the link, until the sender is notified that the receiver
has successfully extracted it from its buffer. When the sender
and the receiver belong to different clock domains, the RTT –
aptly called asynchronous RTT (aRTT) – is calculated as the
sum of elapsed #snd cycles + #rcv cycles. Normalizing
aRTT to the fastest of the two domains, we get aRTT =
mCSND + mCRCV , where CSND = fSND

max(fSND,fRCV) and
CRCV = fRCV

max(fSND,fRCV) are the relative speed ratios, and
m represents the latency – in cycles – in the forward (data)
and backward (credit update) paths. Parameter m depends on
the synchronization latency of the dual-clock FIFO, and the
latency in data writing and credit-update launching.

As analyzed in Section II, each dual-clock FIFO imposes a
3-cycle latency to both the sender and the receiver domains:
2 cycles are spent for pointer synchronization and 1 cycle for
the read/write operations. Outside the dual-clock FIFOs, one
cycle is spent in the forward path for writing incoming data
into the VC buffers, and one for launching the credit update
in the backward path. Overall, aRTT = 4CSND + 4CRCV .

In asynchronous CDC, the clock frequencies of the two
domains may change dynamically and can assume any value.
The aRTT value is dependent on the ratio of the clock
frequencies across the two domains. Figure 5(a) depicts the
value of aRTT as a function of the normalized clock-frequency
ratio between the sender and the receiver, CSND/CRCV . The
aRTT reaches its maximum value when the sender and the
receiver employ equal clock frequencies, and diminishes fast
when the difference in clock frequencies becomes larger. The
maximum aRTT in the proposed configuration is 8.

The minimum buffering required to achieve peak (100%)
throughput – regardless of the traffic distribution across the
VCs and the clock-frequency ratio across domains – is equal
to the maximum value of the aRTT, i.e., at least 8 slots
per VC should be provided. This result is verified by the
throughput measurements presented in Figure 5(b). This figure
depicts the achieved throughput as a function of the clock
frequency ratio between the sender and the receiver, for various
VC buffer depths. The FIFO synchronizers are 6-slot deep
to ensure that they are not limiting throughput in any way.
The results in Figure 5(b) assume that all traffic is directed to
a single VC at the receiver. Such skewed traffic behavior is

(a) (b)

0

1

2

3

4

5

6

7

8

4/1 3/1 2/1 1/1 1/2 1/3 1/4

R
e
q
u
ir
e
d
 B

u
ff

e
ri
n
g

Clock frequency ratio (Csnd/Crcv)

aRTT

0

0.25

0.5

0.75

1

4/1 3/1 2/1 1/1 1/2 1/3 1/4

T
h
ro

u
g
h
p
u
t

Clock frequency ratio (Csnd/Crcv)

VC Buffers=8
VC Buffers=6
VC Buffers=4
VC Buffers=3

Fig. 5. (a) The aRTT as a function of the clock frequency ratio between the
sender and the receiver. (b) The impact on throughput of VC buffer depth,
assuming the traffic is skewed toward one VC at the receiver.

more meaningful for this experiment, due to the high buffering
demands. Instead, when the traffic is uniformly distributed to
all VCs, the buffering requirements (for full throughput) are
less demanding. The credit-update policy follows the Many
VCs / One Credit rule explained in Section III-B.

Note that, in CrossOver, the 8 slots of bufferring per VC
are not required to be assigned statically to each VC. Instead,
the VC buffer space can be efficiently shared to significantly
lower the total buffer area. For example, each VC can be
statically assigned with a single buffer slot (to avoid starvation
and protocol-level deadlocks), and the remaining slots can be
shared among all VCs. As long as each VC has access to at
least 8 buffer slots (private+shared) when it has to absorb all
the traffic, then full throughput is still guaranteed [19].

4 VCs 6 VCs 8 VCs

50

40

30

20

10

0

ParallelPessimisticCrossOver

FIFO sync part

B
u
ff
e
ri
n
g

Fig. 6. The worst-case buffering requirements to allow for 100% throughput,
when using (a) one dual-clock FIFO per VC (“Parallel”), (b) a single
pessimistically-sized FIFO synchronizer (“Pessimistic”), and (c) the proposed
“CrossOver” architecture. All cases assume possibly equal clock frequencies
in the two domains, i.e., a worst-case aRTT is possible.

Figure 6 illustrates the total number of buffer slots required
in the FIFO synchronizers and the VC buffers at the receiver,
for three possible implementations: (a) a CDC interface that
employs one dual-clock 6-deep FIFO per VC (“Parallel”);
(b) a CDC interface with a single pessimistically-sized FIFO
syncrhonizer (“Pessimistic”), i.e., a FIFO synchronizer depth
equal to the total number of buffer slots at the receiver; and
(c) a CrossOver interface that merely covers the aRTT using
a single 6-deep FIFO synchronizer. All setups achieve 100%
throughput, while the (b) and (c) organizations employ VC
buffer sharing [19], which is prohibited in the (a) case. In
Figure 6, it is assumed – without loss of generality – that
the clock frequencies of the two clock domains can become
equal, which dictates the worst-case buffering requirement
(since the aRTT value is maximized). In all cases shown in
Figure 6, CrossOver requires the least bufferring, with the
savings ranging from 22% to 56%. The savings are facilitated
by CrossOver’s flow control policy, which allows VC buffer
sharing (as opposed to “Parallel”), while also ensuring that the

size of the FIFO synchronizers is independent of the number
of VCs (as opposed to “Pessimistic”).

B. Credit Update/Accumulation Policies
To evaluate the behavior of the credit update/accumulation

policies, we employ cycle-accurate simulations on a 4×4 2D-
mesh NoC, where each link supports 2 VCs. Networks with
more VCs have been tested with indistinguishable results. The
network is split in two parts (north-south), with each one oper-
ating on a different clock frequency. The CrossOver interfaces
are inserted across the clock domain boundaries in the X-axis
bisection. Consolidated bidirectional interfaces are used in all
cases, while the buffer sizes in all CrossOver interfaces are
selected to cover the worst-case aRTT of possibly equal clock
frequencies, i.e., 6-deep consolidated FIFO synchronizers and
8 slots/VC for the input VC buffers are used. We present
simulation results for synthetic uniform random traffic. Other
traffic patterns have been tested and give similar results. Packet
lengths follow a bimodal distribution, with half the packets
being 1-flit long, and the other half being 5-flit long.

(a) (b)

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8

#
A

c
c
u
m

u
la

te
d
 C

re
d
it
s
 /

 #
C

re
d
it
 U

p
d
a
te

s

Load (Flits/Node/Cycle)

1.5/1
1.75/1

2/1

0.5

0.75

1

1.25

1.5

0 0.2 0.4 0.6 0.8

A
v
e
ra

g
e
 A

c
c
u
m

u
la

to
r

V
a
lu

e

Load (Flits/Node/Cycle)

1.5/1
1.75/1

2/1

Fig. 7. (a) The average percentage of credits that get accumulated at the
clock boundaries, rather than being immediately returned to the sender. (b)
The average number of accumulated credits in all CrossOver interfaces.

Our goal is to highlight the behavior of credit accumulation
by measuring: (a) the percentage of all credit updates –
generated on the NoC links – that are not returned (i.e., they
get accumulated), as a function of input injection load, and
for various clock frequency ratios across the clock domains;
and (b) the average number of credits being accumulated in
the whole network, under the same conditions.

Figure 7(a) depicts the average percentage of credits that
are accumulated (and not returned directly to the sender side
of the clock boundary), over the total number of generated
credit updates, across all CrossOver links. Three clock fre-
quency ratios are measured, while the input injection load
corresponds to the load assumed by the slower domain. All
four credit return scenarios of Figure 4 have been investigated.
All policies exhibit identical behavior in terms of how many
credit updates get accumulated overall, without experiencing
any other difference in terms of network performance, i.e.,
latency vs. injection load. As expected, the percentage of
credit updates that are actually accumulated increases with
the input injection load. The rate of increase diminishes when
network saturation is reached. The obtained values are also
dependent on the clock frequency difference between the two
clock domains. As long as the speed of the fast clock domain
increases, the need for credit accumulation becomes larger.

Even if credit accumulation has been shown – in Figure 7(a)
– to occur regularly, the average value of the credits actually

accumulated is, in fact, very low. As depicted in Figure 7(b),
the average value of accumulated credits is between 1 and
1.5, irrespective of the clock frequency ratio. Again, all four
possible credit-return strategies have been tested, and they
exhibit indistinguishable behavior. This result leads us to the
conclusion that credit-update strategies aiming to return credits
in batches do not actually offer any benefits. Instead, the
strategies that return one credit to one VC, or to multiple VCs,
are much more attuned to the network’s behavior. The main
reason for this is that, even if multiple credits can be returned
to the sender at once, the slow sender cannot send/transmit to
the fast receiver more than one flit per cycle.

V. CONCLUSIONS

This paper has identified and analyzed the intricacies in-
volved in the careful and deadlock-free application of VC flow
control across asynchronous clock domains. The generaliza-
tion of credit-based VC flow control requires several changes
to the rules of the traditional (synchronous) version, which
involve efficient credit accumulation policies and correct usage
of the FIFO synchronizers’ buffers. For the first time, to the
best of our knowledge, the design space of CDC under VC
flow control has been explored analytically and quantitatively,
leading to novel efficient hardware implementations for the
synchronization interfaces. In the future, we plan to derive
cost-efficient plesiochronous and mesochronous VC-based in-
terfaces, by taking advantage of the a priori knowledge of the
clock frequency and phase relationships of the clock domains.

REFERENCES
[1] W. J. Dally, “Virtual-Channel Flow Control,” in ISCA, 1990, pp. 60–68.
[2] M. Martin, “Token coherence,” Ph.D. diss., Univ. of. Wisconsin, 2003.
[3] A.Ghiribaldi, D.Bertozzi, and S.Nowick, “A transition-signaling bun-

dled data NoC switch architecture for cost-effective GALS multicore
systems,” in Proc. of DATE, 2013, pp. 332–337.

[4] W. J. Dally, C. Malachowsky, and S. W. Keckler, “21st century digital
design tools,” in Proc. of DAC, 2013.

[5] G.Campobello and et al., “GALS networks on chip: a new solution for
asynchronous delay-insensitive links,” in DATE, 2006, pp. 160–165.

[6] U.Ogras and et al., “Voltage-frequency island partitioning for GALS-
based networks-on-chip,” in DAC, 2007, pp. 110–115.

[7] E.Beigne and et al., “Dynamic voltage and frequency scaling architecture
for units integration within a GALS NoC,” in NoCS, 2008, pp. 129–138.

[8] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Design
& Test of Computers, vol. 28, no. 5, pp. 23–35, 2011.

[9] R.Apperson and et al., “A scalable dual-clock FIFO for data transfers
between arbitrary and haltable clock domains,” IEEE Trans. on VLSI,
pp. 1125–1134, 2007.

[10] B.Keller, M.Fojtik, and B.Khailany, “A pausible bisynchronous FIFO
for GALS systems,” in Proc. of ASYNC, May 2015, pp. 1–8.

[11] T.Jain and et al., “Asynchronous bypass channels for multi-synchronous
nocs: A router microarchitecture, topology, and routing algorithm,” IEEE
Trans. on CAD, pp. 1663–1676, 2011.

[12] Z. Lu, “Cross clock-domain tdm virtual circuits for networks on chips,”
in Proc. of Int. Symp. on NoCs, May 2011, pp. 209–216.

[13] J. Bainbridge, S. Hamilton, and N. Wingen, “Synchronizer with a timing
closure enhancement,” Patent US 0 239 842, Dec., 2013.

[14] J. Philip, J. Rowlands, and S. Kumar, “Multiple clock domains in NoC,”
Patent US 0 376 569, Dec., 2014.

[15] J. Howard and et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS3,” in ISSCC, 2010, pp. 58–59.

[16] D. Verbitsky and et al., “Starsync: An extendable standard-cell
mesochronous synchronizer,” Integration, no. 2, pp. 250–260, 2014.

[17] S. Saponara and et al., “LIME: A low-latency and low-complexity on-
chip mesochronous link with integrated flow control,” in Euromicro
DSD, 2008, pp. 32–35.

[18] Y. Hoskote and et al., “A 5-GHz mesh interconnect for a teraflops
processor,” IEEE Micro, pp. 51–61, 2007.

[19] C. Nicopoulos and et al., “Vichar: A dynamic virtual channel regulator
for network-on-chip routers,” in Proc. of MICRO, 2006, pp. 333–346.

