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Abstract—The efficiency of modern Networks-on-Chip (NoC)
is no longer judged solely by their physical scalability, but also
by their ability to deliver high performance, Quality-of-Service
(QoS), and flow isolation at the minimum possible cost. Although
traditional architectures supporting Virtual Channels (VC) offer
the resources for flow partitioning and isolation, an adversarial
workload can still interfere and degrade the performance of
other workloads that are active in a different set of VCs. In this
paper, we present PhaseNoC, a truly non-interfering VC-based
architecture that adopts Time-Division Multiplexing (TDM) at
the VC level. Distinct flows, or application domains, mapped
to disjoint sets of VCs are isolated, both inside the router’s
pipeline and at the network level. Any latency overhead is
minimized by appropriate scheduling of flows in separate phases
of operation, irrespective of the chosen topology. The resulting
design yields significant reductions in the area/delay cost of the
network. Experimental results corroborate that – with lower
cost than state-of-the-art NoC architectures, and with minimum
latency overhead – we remove any flow interference and allow
for efficient network traffic isolation.

I. INTRODUCTION

The last decade has witnessed a fundamental paradigm shift
in digital system design: the transition to the multi-/many-
core realm. Naturally, the multi-core domain has elevated
the criticality of the on-chip interconnection fabric, which is
now tasked with satisfying amplified communication demands.
Owing to their scalability attributes, Networks-on-Chip (NoC)
have established their position as the de facto communication
medium in multi-core systems. To sustain system scalabil-
ity into the many-core domain (with potentially hundreds
of cores), it is imperative that the NoC’s hardware cost is
minimized, while not sacrificing network performance [1].

This objective is non-trivial, since the functionality expected
from the NoC continues to grow. For instance, multi-core
systems increasingly require some form(s) of isolation – or
separation – among the traffic flows of concurrently executing
applications. Such segregation attributes are desired due to (a)
Quality-of-Service (QoS), or real-time requirements, and/or
(b) restrictions imposed by higher-level protocols, e.g., cache
coherence in Chip Multi-Processors. Separation of flows is
typically achieved using Virtual Channels (VC) within the
NoC [2]. However, due to the widespread sharing of router
resources (ports, arbiters, crossbar, channels, etc.) among all
the VCs, non-interference between flows is not guaranteed. In
fact, VCs are, by construction, interfering, since multiple VCs
are eligible to compete for NoC resources at any given time.

In order to provide true QoS guarantees and performance
isolation between concurrent flows, there is an imperative need
for truly non-interfering VC-based router designs. Hence, the
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demand for a scalable NoC architecture that can support multi-
ple VCs and provide performance isolation (non-interference)
at low cost is highly relevant and pressing.

A very cost-effective approach to non-interference is Time-
Division Multiplexing (TDM), which isolates the flows in
time. In our context, however, TDM scheduling must be
performed at the VC level (not at the time-slot level), since the
aim is to provide isolation at the VC granularity. Once a static
schedule exists across VCs (or groups of VCs that belong to
the same application domain), the transfer of packets/flits in
the network is handled using normal flow control, arbitration,
and switching policies. Applying TDM-based scheduling at the
VC level calls for (a) an efficient static scheduling methodol-
ogy that does not incur any latency overhead, and (b) a router
design that can apply said scheduling, avoid interference,
and still cost substantially less – in terms of area/power
– than a conventional non-TDM-based architecture. If the
aforementioned two requirements are not both satisfied, the
decision to use TDM scheduling would be difficult to justify
from a performance-cost perspective.

Prior approaches to TDM-based scheduling in NoCs fail
to simultaneously satisfy both requirements. Numerous de-
signs perform TDM scheduling at the time-slot level [3–6].
When using such architectures, the scheduling is typically
performed offline (and assumes perfect a priori knowledge of
the applications expected to be running on the system), and
then statically applied to the entire NoC [6]. The resulting
hardware cost is quite low, but the latency overhead can
be quite substantial [7]. A recently introduced architecture,
called SurfNoC, employs optimized TDM scheduling – also
applied at the VC level – to minimize the latency overhead [8].
However, the required hardware cost is excessively expensive.
Achieving low-cost implementations with SurfNoC would
increase the latency overhead of static scheduling. Other, non-
TDM-based approaches provide QoS guarantees by controlling
flow rates [9, 10]. However, these solutions do not guarantee
non-interference among flows; they try to mitigate its effect.

Building on the fundamental premise of simultaneously
minimizing the latency overhead and significantly decreas-
ing the hardware cost (as compared to non-TDM designs),
we propose the PhaseNoC architecture, which ensures non-
interfering operation across domains. PhaseNoC’s ability to
provide performance isolation to multiple domains at an
extremely low hardware cost emanates not only from the
carefully choreographed phase propagation (i.e., the TDM
scheduling), but also from a novel and complete overhaul
of the routers’ micro-architecture and their internal pipeline
operation into a phase-amenable organization.

To the best of our knowledge, PhaseNoC is the first ar-
chitecture to employ a new type of pipelining (called explicit



pipelining), which is perfectly attuned to TDM-based schedul-
ing at the VC level.

The PhaseNoC approach is shown to be extremely versatile
and easily applicable to any topology and many router pipeline
depths. The design can support up to 10 domains (i.e., up to 10
VCs, or 10 groups of VCs per input port) in a single physical
network, while still guaranteeing perfect phase scheduling for
all domains. The handling of even larger numbers of domains
necessitates the adoption of multiple physical networks, which
constitute a very cost-effective and scalable solution to sup-
porting potentially any number of domains.

Hardware analysis using placed-and-routed designs verify
that PhaseNoC’s TDM-based scheduling at the VC level yields
substantial cost savings, as compared to traditional VC-based
router architectures. Moreover, the orchestrated propagation of
the active phases across the entire PhaseNoC network ensures
that the impact on performance (throughput and latency) – as
compared to non-TDM designs – can be kept to a minimum,
as demonstrated by extensive cycle-accurate network simula-
tions.

II. THE PHASENOC ROUTER ARCHITECTURE

The PhaseNoC router organizes the allocation and the
switching tasks executed per-packet and per-flit in phases,
ensuring that each phase deals only with a distinct set of virtual
channels. Every input port of the PhaseNoC router hosts V
virtual channels that are organized in D domains, where each
domain may contain a group of m VCs (m = V/D).

Packets entering the input VCs of their domain must find
their way to the proper output, after going through several
allocation/arbitration steps. The head flit of a packet first
calculates its output port through Routing Computation (RC).
It then uses it to allocate an output VC (i.e., an input VC in
the downstream router) in VC Allocation (VA). Once a head
flit has acquired an output VC, it tries to gain access to the
output port through Switch Allocation (SA). Winners of SA
traverse the crossbar during Switch Traversal (ST), and are
written in an output pipeline register. Finally, the flit moves to
the next router through Link Traversal (LT), and is written in
the downstream router’s input buffer (BW) [11].

Non-interference is guaranteed if, at any allocation or
switching step, the participating (competing) packets belong
exclusively to the same domain (group of VCs). Thus,
contention and interference can only arise between packets
and flits of the same domain. PhaseNoC guarantees non-
interference among all supported domains through its phased
operation, i.e., each phase – covering all inputs of the router
– deals exclusively with a single domain, and each phase
is completely isolated (in terms of utilized resources) from
other phases (and from other domains). The phase activation
process should be the same for all inputs of the router, thus
making it impossible for two different inputs to participate
in a router’s allocation/switching stage with packets/flits that
belong to different domains.

When a router is pipelined, it may operate simultaneously
on many application domains, by selecting the appropriate
phase for each allocation/switching step. Care should be taken
to assure that two domains never simultaneously participate in
the same step. To ascertain this behavior, we let the router’s
pipeline operate in a predetermined (although programmable)
static schedule. For example, once the group of VCs belonging
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Fig. 1. (a) The PhaseNoC router architecture. Only a set of VCs (one domain)
is allowed to participate from each input in each allocation stage, and it is the
same set (domain) for all inputs. One multiplexer for each stage, controlled
by a TDM schedule, allows different domains to be served by different stages
of the router. (b) Cycle-by-cycle operation of a 4-stage pipelined PhaseNoC
router. In each cycle, all router parts are utilized, with each pipeline stage
serving (allocating or switching) a different domain (group of VCs).

to domain D0 perform VA, the group of VCs of domain D1
perform SA, while the winning flits of domain D2 pass the
crossbar (ST), and the flits of domain D3 are on the link
towards the next router. Therefore, in each cycle, the router is
fully utilized, but each part of the router works on a different
domain. This feature of PhaseNoC’s pipeline ensures that each
stage works on a different phase, and the flits/packets served
in each phase belong exclusively to a single domain. We term
this type of pipeline operation as explicit pipelining.

To achieve this behavior, each input port should own a
separate path to VA, SA, and ST, as shown in Figure 1(a) (only
the path to ST carries real data). Each input can send to each
part of the router the requests/data of a different domain (group
of VCs), provided that the select signals of the multiplexers
(that coordinate the phase propagation) never point to the same
domain. By setting the phase of each stage appropriately, all
of them may be executed in parallel, but each stage acts on
the packets/flits of a different domain. Care should be taken
so that all inputs see the same order of phase activation.

For zero-latency phase scheduling, a flit should always find
the phase of its current pipeline stage aligned to its domain,
and may move un-interrupted (unless it loses to another flit
of the same domain during arbitration). For example, if the
phase of VA in cycle 1 is serving domain 1, then the phase of
the SA stage in cycle 2 should be serving domain 1 as well.
This behavior is captured in Figure 1(b), which presents the
cycle-by-cycle activity of an input port’s pipeline stages. In
each cycle (columns), all of the pipeline stages (rows) operate
under a domain, whose ID is shown by the number in the
corresponding box. In the first cycle, RC operates in phase
0, so domain 0 is able to calculate its output port. In the
next cycle, it finds its phase in VA, and it is able to allocate
an output VC of its domain successfully, as flits of domain
1 perform RC. In cycle 2, domain 0 uses its allocated VC
to participate in SA, while the head flits of domain 1 try to
acquire an output VC. Whether this allocation is successful or
not depends only on the contention appearing between the flits
of domain 1 from all inputs; only domain 1 flits are allowed
to participate in VA in this phase. In cycle 3, the flits from
domain 0 that won in SA traverse the crossbar, and it is the
turn of domain 2 to perform VA.

Routers with fewer pipeline stages can be built by merging
the corresponding stages. However, due to the phased opera-
tion of PhaseNoC routers, merging two stages means that their
phase multiplexers should also be merged. For example, if SA



m:1

In
p
u
t 

#
0

m m:1 arbiters
per input port
Total: Nm m:1

m:1

In
p
u
t 

#
N

-1

Nm:1

Nm:1

m

m

m

m

O
u
tp

u
t 

#
0

V
C
 #

0

m Nm:1 arbiters
per output port
Total: Nm Nm:1

VA1 VA2

O
u
tp

u
t 

#
N

-1
V
C
 #

m
-1

m:1

In
p
u
t 

#
0

m:1

In
p
u
t 

#
N

-1

1 m:1 arbiter
per input port
Total: N m:1

N:1

O
u
tp

u
t 

#
0

O
u
tp

u
t 

#
N

-1

1 N:1 arbiter
per output port

Total: N N:1

N:1

SA1 SA2

(a) (b)
Fig. 2. PhaseNoC’s reduced allocators for the (a) VA, and (b) SA router
pipeline stages.

and ST are merged in the same stage, they should also share a
common phase of operation (and one multiplexer), thus letting
the router act on one less domain in parallel.

A. Structure of allocators
In an N -port router with D domains and m VCs per

domain, there exist a total of N × D × m input and output
VCs (recall that D × m = V , i.e., the total number of VCs
per input port of the router). The VA process between those
input and output VCs in a traditional router would require an
N ×D ×m : N ×D ×m allocator. However, in PhaseNoC,
in each clock cycle, only a single domain performs VA to a
group of m VCs per input. Thus, in the whole router, at most
N × m input VCs will try to allocate an output VC. Since
an input VC will never request an output VC outside each
domain, then at most N ×m output VCs will be requested.

Thus, for completing the VA process in PhaseNoC, a
simpler N ×m : N ×m VC allocator suffices, which serves
a different domain in each clock cycle. As illustrated in
Figure 2(a), VA is performed in 2 stages. In VA1, each input
VC of the domain matched to the current phase of the router
selects one available and possibly ready (i.e., has at least one
buffer slot) output VC. The selection is made by round-robin
arbiters that select one of the m active VCs of an output port
of the same domain. In VA2, each of the N ×m output VCs
is assigned through an N × m : 1 round-robin arbiter to at
most one input VC of the same domain. Baseline allocators
are also simplifed when serving groups of VCs of the same
domain. However, multiple arbiters are still needed to serve
all domains simultaneously.

Similar simplifications can be derived for the switch allo-
cator as well, which, again, involves 2 steps of arbitration, as
shown in Figure 2(b). The SA1 arbiter per input is reduced
from a V : 1 arbiter in a baseline implementation without
domains to an m : 1 arbiter in PhaseNoC, since local
arbitration involves only the input VCs of the domain currently
active in the SA stage. The SA2 stage, which selects the input
port that will access each output, cannot be simplified further,
and it still requires an N : 1 arbiter per-output.

Although both allocators are shared by different domains,
sharing is performed in time and, thus, it is impossible for
packets that belong to two different domains to compete for the
same resource in the same cycle. Additionally, to completely
eliminate any domain interference, all arbiters should use
D separate priority vectors, each one corresponding to the
active domain. The appropriate set is selected by the phase
of the allocation stage, ensuring that arbitration decisions are
completely separated across domains.

B. Buffering requirements
In a router configuration using credit-based flow-control, the

minimum buffer depth required for each input VC in order to
operate under 100% throughput is equal to the Round-Trip
Time (RTT). The RTT is the number of cycles that elapse
from the instance the downstream router sends a credit until
a flit (using that credit in the upstream router) arrives.

In PhaseNoC, a single input VC can only send a flit
whenever the router’s phase is aligned to its domain. In the
simple case of a TDM schedule cycling through all domains
in D cycles, the throughput of a single domain cannot exceed
1/D. Thus, less buffering than the RTT is required, without
changing the performance of the network. Other buffer cost
reduction techniques that rely on buffer sharing across input
VCs cannot be directly applied, unless sufficient buffering
space is statically allocated per VC. Dynamic sharing would
inevitably introduce interference across VCs; the buffering
space allocated to one VC effectively affects the throughput
seen by another VC [12].

III. APPLICATION-DOMAIN SCHEDULING AND MAPPING

The proposed router design guarantees non-interference
between different domains by time-multiplexing the allocators,
the crossbar, and the output physical channels in different
domains in each clock cycle. This time-multiplexing scheme
ensures that the latency and throughput of each domain is
completely independent of the other domain’s load.

An efficient time-multiplexing schedule for the supported
application domains should guarantee the propagation of the
flits of one domain in the network in a wave-like manner,
traversing many hops in consecutive cycles, without waiting
for the turn of their application domain to come. In this
way, non-interference is achieved with the minimum possible
latency of data transfer, since only the flits of the same appli-
cation domain experience contention throughout the network.

A. Zero-latency-overhead domain scheduling
Depending on the pipeline depth of the router, each router

is concurrently active on one, or many, different application
domains (groups of VCs). Therefore, once an application
domain performs RC in cycle t0, the same application domain
will proceed to VA in cycle t0 + 1, to SA in cycle t0 + 2, to
ST one cycle later, and it will eventually appear on the link
(LT) in cycle t0 + 4. Therefore, in order for the flits of this
application domain not to experience any latency overhead,
the router at the other side of the link should schedule the
start of the service of this particular application domain in
cycle t0 + 5; the first step is again RC. So, for experiencing
no latency between any two routers, the domain served in the
first pipeline stage of both routers connected with a forward
link should differ by P+1 cycles; P , due to the router pipeline,
plus one for the single cycle spent on the link.

This property is shown in Figure 3(a), where the first
pipeline stage of router B will reach the domain currently
served by the first pipeline stage of router A after P cycles.
At the same time, we should guarantee that this relationship
between any two neighboring routers also holds in the back-
ward direction, so that any traffic crossing router B towards
router A does not experience any latency either. The output
links of router B forward flits of domain D0 − 2P − 1 when
the first stage of router A is serving domain D0. Therefore, if
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we want router A to receive in-sync the flits coming from B,
then, in the next clock cycle, it should be able to serve their
domain in its first pipeline stage. In the next cycle, router A
would be in domain D0 + 1 mod D, which should be equal
to D0 − 2P − 1 mod D, where D is the number of domains.

This constraint is directly satisfied when the total number of
domains is equal to 2(P +1). Figure 4 depicts the assignment
of 4 application domains to network routers and, implicitly,
to the network links, for a 3 × 3 mesh. Figure 4(a) shows a
snapshot of the reset phase of the network, assuming single-
cycle routers (P = 1, and, thus, D = 4), which select the same
domain for all the inputs of the router. The number inside the
nodes and next to the links corresponds to the domain ID.
Then, each router independently increases its working domain
by one in each clock cycle and wraps around when the number
of domains is reached. Equivalently, Figure 4(b) shows the
schedule applied to 2-stage pipelined routers (RC-VA in one
cycle for one domain, and SA-ST in the next cycle for a
different domain) that can serve a maximum of 6 application
domains. All incoming links feed the first pipeline stage of
the router, and all output links are driven by the last stage.

The proposed schedule satisfies the constraint that all the
incoming links of each router serve the same application
domain. This is a simplifying feature for the router design,
and a requirement for offering isolation across domains, since
(on every allocation step or pipeline stage inside the router)
the same domain is active on all inputs concurrently.

The packets at the inputs of each router wait for the turn
of their application domain to come. Once this happens,
they follow all the allocation steps needed, contending only
with the packets/flits of the same application domain in each

stage. Subsequently, they move un-interrupted from router to
router until their final destination, without experiencing any
contention from other application domains. If a flit manages
to win all other flits of the same application domain, it will
reach its destination in exactly H×(P+1) cycles, independent
of the path that it follows. Turning, or staying in the same
dimension, does not differentiate the latency of each flit.

B. Perfect schedules on ring structures
The application of the proposed scheduling mechanism

to topologies that contain wrap-around links, such as rings
(hierarchical, or not) and tori, sets an additional constraint. As
depicted in Figure 3(b), two adjacent nodes may be connected
with a forward and a backward link using a wrap-around
connection in a k-node 1-D ring connection. In this case, and
assuming that the first pipeline stage of router A is serving
application domain D0, the output links of router B (at the
other end of the ring; k hops away) should be serving the
D0 − k(P + 1) + 1 mod D domain, in order for any flits
from B to A not to experience any latency. If a zero-latency
penalty is also required for the flits that cross the wrap-around
connection, then the domain currently being served by the
outputs of router B should be equal to the domain that the
first pipeline stage of router A will serve in the next cycle, i.e.,
D0 + 1 mod D. Thus, for allowing a perfect schedule when
wrap-around connections exist in the topology, we should
guarantee that (D0−k(P+1)+1) mod D = (D0+1) mod D.
This is satisfied when D = k(P + 1).

Therefore, although the wrap-around connections allow the
network to host more than 2(P+1) application domains under
a perfect schedule, the maximum number cannot be increased
and gets limited to 2(P + 1), due to the zero-latency over-
head required in the backward non-wrap-around connections.
However, accounting also for the scheduling constraint set by
the wrap-around links, then k (i.e., the number of nodes in
a ring connection) is required to be an even number, else
un-necessary latency is incurred in certain connections. An
example of applying the proposed schedule of 4 domains in a
6-node ring is illustrated in Figure 5.
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Fig. 5. Zero-latency schedule of 4 domains in a 6-node ring network.

C. Extended domain support with physical sub-networks
Such a perfect and un-interrupted schedule is offered to

the flits of different application domains, irrespective of the
topology used, when the total number of application domains
operating in an isolated manner is 2(P + 1) (roughly the
maximum is 10 for a 4-stage pipelined router). Despite the
fact that 10 domains (i.e., 10 VCs, or 10 groups of VCs in
each router input port) would be more than adequate for most
applications [13], a general methodology to support even larger
numbers of domains is also presented here for completeness.

Supporting more application domains with zero latency
overhead can be directly performed by increasing P , i.e.,
the pipeline stages seen between routers. Even if the NoC
achieves its desired clock frequency with a certain number
of pipeline stages, dummy pipeline stages could be added to
allow PhaseNoC to host even more application domains.



Alternatively, PhaseNoC can rely on multiple physical net-
works for extending the supported application domains. Each
physical sub-network follows a zero-overhead schedule, sup-
porting as many as 2(P+1) domains.Supporting B application
domains requires B/2(P+1) networks, with each one serving
an independent group of domains. For example, supporting
a total of 16 domains is possible in two ways: either with
4 physical sub-networks, each one built with single-cycle
routers and supporting a perfect 4-domain schedule, or 2 sub-
networks built with 3-stage pipelined routers and supporting
a perfect schedule of 8 domains. The first sub-network would
serve domains 1-8, and the other domains 9-16. With this
approach, every flit experiences serialization latency when
entering/exiting each sub-network, but it then traverses the
network un-interrupted, independent of the load in the other
domains, and independent of the path that it follows.

Multiple sub-networks become cost-effective when they
operate on a smaller flit width than the original network.
Under equal bisection bandwidth, the links of each sub-
network should be 2(P + 1) times smaller. In this case,
even if each sub-network follows a perfect schedule up to
2(P + 1) domains, the latency per packet is increased for a
larger number of application domains, due to the additional
serialization imposed by each sub-network using narrower
links. Nevertheless, we will demonstrate in Section IV that
the approach of multiple PhaseNoC sub-networks under equal
bisection bandwidth is a very cost-effective option when the
number of application domains is large.

IV. EXPERIMENTAL RESULTS

In this section, we show the flow isolation properties of
PhaseNoC and compare it with conventional VC-based NoCs
and the state-of-the-art SurfNoC architecture [8], in terms of
network performance and hardware complexity.

A. Network performance & traffic isolation
Network-performance comparisons were performed using

a cycle-accurate SystemC network simulator that models all
micro-architectural components of the router. An 8×8 2D
mesh network is assumed, with XY routing. The evaluation
involves uniform-random traffic. The injected traffic consists
of two types of packets to mimic realistic system scenarios:
1-flit short packets (just like request packets in a CMP),
and longer 5-flit packets (just like response packets carrying
a cache line). Two recent studies have performed detailed
profiling analysis of the network packets generated by real
multi-threaded applications in CMPs [13, 14]. Their conclu-
sion is that approximately 80% of the packets are single-flit.
In accordance with these studies, we assume in our latency-
throughput experiments that 80% of the packets are single-flit,
with the rest being 5-flit.

Figure 6(a) depicts the load-latency curves of PhaseNoC
(PhaseNoC-4-1), a baseline (Base-4), and SurfNoC [8] single-
cycle routers using 4 VCs (one VC per domain), under
uniform-random traffic. Baseline routers assume that each VC
is a virtual network, thus in-flight VC changes are prohibited.
Although PhaseNoC routers operate under a static TDM
schedule at the VC level, their zero-load latency is still very
close to that of the baseline designs, due to the efficient
network-level schedule that allows the domino-like propaga-
tion of flits without any additional latency (independent of the
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all domains, assuming an 8× 8 mesh network.

source and destination, the topology, or the routing algorithm).
In terms of saturation throughput, PhaseNoC offers 8% lower
overall throughput, due to the non-interfering operation ac-
cross domains, which reduces – in some sense – the choices for
flit interleaving. The behavior of SurfNoC [8] shows slighltly
higher latency at low loads and lower saturation throughput
for a 4-domain operation. This is a natural effect of the
wave propagation in SurfNoC, which adds additional latency
when moving from a south-east direction to a north-west one.
Further, in our experiments, SurfNoC was modeled without
input speedup [11], in order to have a fair comparison relative
to PhaseNoC and the baseline designs.

Similar conclusions can be drawn from Figure 6(b), which
compares an 8-domain (8 VCs) 3-stage pipelined PhaseNoC
router (PhaseNoC-8-1) with an 8-VC baseline router (Base-8),
and an 8-domain pipelined SurfNoC [8] with 8 VCs per input.

Using PhaseNoC, 8 domains can alternatively be supported
using two parallel sub-networks (having equal total bisection
bandwidth), with each one supporting 4 domains. This setup is
captured by the “PhaseNoC-4-1(x2)” curve in Figure 6(b). In
this case, the latency inside each sub-network decreases, due to
the single-cycle operation of the routers, but also increases at
the same time, due to the increased serialization of the packets.
The final latency and throughput observed at low loads is
close to the baseline, and better than the single-network case,
thus rendering this hybrid physical-virtual domain isolation
a promising choice. Although this is not an apple-to-apple
comparison, since single-cycle routers cannot reach the fre-
quency of their pipelined counterparts, the low-complexity of
PhaseNoC’s allocation, in conjunction with other low-delay
allocation strategies (such as combined allocation [11]) could
provide efficient single-cycle implementations.
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For testing the flow isolation properties of PhaseNoC,
we created a specific traffic scenario involving a 4-domain
network. Each domain has 1 VC, in both PhaseNoC and



a baseline network. In both cases, VC2 and VC3 serve a
constant load of 0.08 flits/node/cycle. The load on VC1 is
then progressively increased, and we observe the impact on
VC0’s throughput; the traffic on all VCs is uniform-random.
As shown in Figure 7, the load in VC0 of PhaseNoC is
completely immune to the changes in VC1’s load (as also
supported by SurfNoC). However, in the baseline case, as the
load in VC1 increases, the sustained loads in VC0 and VC1
converge to an equal value of 0.09 flits/node/cycle.

B. Hardware evaluation
The routers under comparison (using look-ahead RC) were

implemented in VHDL, mapped to a commercial low-power
45 nm standard-cell library under worst-case conditions (0.8
V, 125 ◦C), and placed-and-routed using the Cadence digital
implementation flow. The generic router models have been
configured to 5 input-output ports, as needed by a 2D mesh
network, while the flit width was set to 64 bits. The area/delay
curves were obtained for all designs, after constraining appro-
priately the logic-synthesis and back-end tools, and assuming
that each output is loaded with a wire of 2 mm.

In the first set of experiments, we evaluate the benefits
arising from the explicit operation of the router in phases,
which limits the allocation and switching operations to the
input/output VCs of a certain domain. Figure 8(a) depicts
the area-delay curves for a single-stage PhaseNoC router
supporting 4 domains with 2 VCs per domain (PhaseNoC-4-2),
versus a baseline router with 8 VCs (Base-4-2). Both routers
have equal buffering, necessary to cover the credit RTT inde-
pendently per VC. In every design point, PhaseNoC routers
require less area (up to 22%) and delay (up to 13%). The
reported savings come mostly from the complexity reduction
in the allocation units. PhaseNoC’s allocation is always limited
to the input VCs of one domain, which allows both sharing of
the arbiters, as well as the reduction of their logic depth. The
savings relative to SurfNoC are expected to be even larger,
since SurfNoC routers are already more costly than baseline
designs that do not isolate traffic flows [8].
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The second set of experiments refers to pipelined router
implementations, which serve more non-interfering domains
in the network. The derived results are shown in Figure 8(b).
PhaseNoC-8-2 corresponds to a 3-stage pipelined router that
operates in phases, serving a total of 8 different domains, with
each domain comprising a group of 2 VCs. The router sees
in its pipeline a sliding window of 3 domains in each clock

cycle. Base-8-2 is a baseline 3-stage router implementation
supporting the same total number of VCs per input (i.e., 16
VCs). Again, the proposed PhaseNoC router is both faster and
more area efficient than the baseline design, with up to 13%
delay savings and up to 11% area savings.

Finally, we evaluated the efficiency of applying the
PhaseNoC concept to parallel sub-networks. PhaseNoC-8-
2(x2), depicted in Figure 8(b), corresponds to the sum of
the area of two 3-stage pipelined PhaseNoC-8-2 routers, each
supporting 8 domains with 2 VCs per domain, but with a flit-
width of 32 bits (2× shorter than the other two designs). With
only a minor 5% area overhead, compared to the baseline at
its minimum delay point, PhaseNoC is able to support twice
as many as domains (i.e., 16 domains with 32 VCs in total),
providing a viable solution to increased domain requirements.

V. CONCLUSIONS AND FUTURE WORK

In addition to providing high performance and scalability,
modern NoCs are required to support additional functionality,
such as QoS provisioning and performance isolation among
domains. This paper introduces PhaseNoC, a cost-efficient,
truly non-interfering, VC-based interconnect architecture. The
new design relies on TDM scheduling at the VC-level, which
optimally coordinates the multi-phase propagation across the
network. PhaseNoC’s router microarchitecture facilitates strict
domain isolation and zero-latency flow propagation of flits.
Extensive evaluation verifies that PhaseNoC constitutes a low-
cost, non-interfering design, with no sacrifices in performance.

Future work will explore dynamic per-router application
domain selection, which will allocate more time slots to busy
domains than to ones with lighter traffic. Checking and com-
paring the state of all domains before deciding which one to
serve inevitably introduces some (implicit) interference across
domains. As a result, the ultimate scheduling decision will be
tackled in a programmable manner. When complete network
traffic isolation is a prerequisite, a strict TDM schedule should
be followed both at the router- and the network-level. Instead,
when some interference can be tolerated, dynamic scheduling
could be employed to reduce latency.
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