
Dynamic-Priority Arbiter and Multiplexer Soft

Macros for On-Chip Networks Switches

Giorgos Dimitrakopoulos

Electrical and Computer Engineering Dept.

Democritus University of Thrace, Xanthi, Greece

Emmanouil Kalligeros

Information and Communication Systems Eng. Dept.

University of the Aegean, Samos, Greece

Abstract—On-chip interconnection networks simplify the inte-
gration of complex system-on-chips. The switches are the basic
building blocks of such networks and their design critically
affects the performance of the whole system. The transfer of data
between the inputs and the outputs of the switch is performed by
the crossbar, whose active connections are decided by the arbiter.
In this paper, we design scalable dynamic-priority arbiters that
are merged with the crossbar’s multiplexers. The proposed RTL
macros can adjust to various priority selection policies, while
still following the same unified architecture. With this approach,
sophisticated arbitration policies that yield significant network-
throughput benefits can be implemented with negligible delay
cost relative to the standard round-robin policy.

I. INTRODUCTION

Large systems-on-chip (SoCs) and chip multiprocessors

(CMPs), incorporating tens to hundreds of cores, create a

significant integration challenge. Designers react to these chal-

lenges mostly with architectural solutions either at the switch

or the network level [1]. Often, switch architecting takes for

granted the characteristics of the main building blocks of the

switch and without any modifications, tries to re-organize them

in a more efficient way [2], [3], [4]. Although such pure

high-level design has produced highly efficient switches, the

question on how better the switch would be if better building

blocks were available remains to be investigated.

In this paper, we try to partially answer this question

by explicitly targeting the design from scratch of new RTL

soft macros that can handle concurrently arbitration and

multiplexing and, hence, simplify the design of low-latency

and high-radix switches. The proposed design is based on a

generic architecture for a dynamic priority arbiter (DPA) and

multiplexer, as shown in Fig. 1. It consists of the arbitration

logic, the pointer update logic and the per-output multiplexer.

Apart from resolving any conflicting requests for the same

resource, it should guarantee that this resource is allocated

fairly to the contenders [5]. Fairness is achieved by changing

appropriately the priority of each input at runtime. The width

of the priority state associated with each input depends on the

complexity of the priority selection policy. A single priority bit

per input is enough for simple round-robin policy [6], while

for more complex weight-based policies [7], multi-bit priority

state is needed.

Both simple round-robin as well as more complex weight-

based selection policies that offer much better throughput [7]

can be implemented following the proposed unified hardware

Arbitration
Logic

Priority

Update

Priority
State

Requests Grants

M
U
X

Data#1

Data#N

DataOUT

AG

Enable

Fig. 1. The block diagram of a generic DPA that controls a multiplexer.

Fig. 2. The ogranization of the proposed two-step arbtration logic.

architecture. Practically, the transition from simple round-robin

to much more efficient weight-based policies, such as first-

come-first-served or shortest packet first, is achieved with

insignificant cycle time overhead.

II. UNIFIED DESIGN APPROACH FOR DPAS

The unified approach for the design of DPAs that employ

either round-robin or more complex weight-based selection

policies is based on a two-step algorithm that is graphically

depicted in Fig. 2. The first step transforms the requests and

the corresponding input priority state to a new reduced request

vector that involves only equal-priority requests. The second

step involves a fixed priority arbiter (FPA), i.e., a priority

encoder, that operates on the reduced request vector granting

the first active request.1

A. Round-robin arbiters

Round-robin arbitration logic scans the input requests in a

cyclic manner beginning from the position that has the highest

priority. The priority vector P that indexes the request with the

highest priority, consists of N bits that follow the thermometer

code. For example, in the case of an 8-port round-robin arbiter,

1In an FPA, the request of position 0 (rightmost) always has the highest
priority and the request of position N -1 the lowest.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

if position 3 has the highest priority, vector P is equal to

11111000 (MSB-to-LSB). The priority is diminishing in a

cyclic manner to positions 4,5,6,7,0,1,2, giving to input 2 the

lowest priority to win a grant. As shown in the example of

Fig. 3, the priority vector splits the input requests in two

segments. The high-priority (HP) segment consists of the

requests that belong to high priority positions where Pi = 1,
while the requests, which are placed in positions with Pi = 0,
belong to the low-priority (LP) segment. The operation of the

round-robin arbiter is to give a grant to the first active request

(scanning right to left) of the HP segment and, if not finding

any, to close the cycle by giving a grant to the first active

request of the LP segment.

We can avoid this cyclic search by treating each input

request Ri and the corresponding priority bit Pi as a 2bit

unsigned number with value equal to 2Ri + Pi (the request

Ri is assumed to be the most-significant bit of the two). An

example of such arithmetic symbols for a request and priority

vector are shown in Fig. 3. From the 4 possible arithmetic

symbols, the symbols that represent an active request are either

3 (for the HP segment) or 2 (for the LP segment). On the

contrary, symbols 1 and 0 denote, respectively, an inactive

request and thus they are both mapped to symbol 0.

According to round-robin arbitration policy and the example

priority vector of Fig. 3, the arbiter should start looking for

an active request from position 3 and grant the one that

lies on position 4, which is the first (rightmost) request of

the HP segment. This operation is equivalent to granting the

first maximum symbol found when searching from right to

left. Therefore, the introduction of the arithmetic symbols

practically transformed the cyclic round-robin arbitration to

an acyclic sorting operation.

Position

Requests

Priority

7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0

1 1 1 1 1 0 0 0

HP segment LP segment

Arithmetic
Symbol

3 3 1 3 1 2 2 0

Active
Arithmetic
Symbol

3 3 0 3 0 2 2 0

Map symbols 1 to 0

Search order

Fig. 3. The translation of the request and the priority vector to the
corresponding arithmetic symbols that removes the cyclic priority trasnfer.

The request on position 4 needs to fight for a grant only with

the requests with equal maximum symbols. Therefore, our first

goal is to generate a reduced request vector that involves only

the requests that are associated with the maximum arithmetic

symbol. The requests that correspond to smaller weights

should be filtered out. The reduced request vector for the

arithmetic symbols 33030220 of the example of Fig. 3 would

become equal to 11010000, having a 1 only in the positions

that correspond to symbol 3, which is the largest. Then, using

an FPA driven by the reduced request vector, as shown in

Fig. 2, suffices to identify the rightmost active request.

Max
Symbol

Ri Pi

 0 0

 0 1

 1 0

 1 1

Symbol

 0

 0

 2

 3

Thermometer

 0 0

 0 0

 0 1

 1 1

RiPi

AND

thermometer

(a)

Position

Requests

Priority

7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0

1 1 1 1 1 0 0 0

Arithmetic
Symbol

3 3 0 3 0 2 2 0

Thermometer
1 1 0 1 0 0 0 0

1 1 0 1 0 1 1 0

1

1

OR

OR

== == == == == == == ==

Reduced Requests
1 1 0 1 0 0 0 0

2
2

XOR

(b)

XOR

OR

Fig. 4. The computation of the maximum weight and the derivation of the
reduced request vector that contains only equal maximum-priority requests.

From the implementation viewpoint, the bottleneck opera-

tion is the transformation of the input requests and the priority

vector to a reduced request vector that would be later handled

by the FPA. This transformation involves finding first the

maximum weight and then marking the positions that have

a weight equal to the maximum. Maximum symbol identifi-

cation can be easily performed if we encode the symbols as

thermometer codewords [see Fig. 4(a)]. Then, the maximum

symbol is the one with the largest number of consecutive 1s.

Therefore, in our case, we need two N -input OR gates

to compute the maximum arithmetic symbol as shown in

Fig. 4(b). Then, we identify the positions that have the

same priority as the maximum symbol, by employing a 2-

bit equality comparator at each position. The output of each

2-bit comparator corresponds to a bit of the reduced request

vector that is later passed to the FPA.

B. Dynamic priority arbiters with arbitrary weights

Arbiters with more complex selection policies, such as

backlog-aware policies, or first-come-first-served (FCFS) [7],

can be designed following the same two-step approach used

for simple round-robin. In these cases, each input is associated

with a weight that denotes the input’s priority relative to the

rest inputs. Although the maximum value of the weights can

be chosen arbitrarily, in most cases it suffices to be equal to the

number of input ports. The operation of the arbiter is to find

the requests with the largest weight and then to select among

them the one that appears first in a fixed order. Consequently,

the arbiter’s implementation is similar to that presented for

the round-robin policy, if the weights are thermometer coded

(otherwise, an additional code-conversion step is required)..

The arbitration policies are differentiated only by the way

the weight of each input is updated at each cycle. For example

in FCFS, the priority of the currently granted client is set to

the lowest priority, while the priorities of all the requesting

clients not yet been granted, are increased by one. In every

case, the implementation of the priority update logic should

not be a problem since it runs in parallel to multiplexing.

III. MERGED FPA AND MULTIPLEXER

The proposed arbitration logic ends up in an FPA, whose

grant signals drive a multiplexer. In order to speedup the

overall implementation, we aim to merge these two final steps

of FP arbitration and multiplexing in a new combined circuit.

This merging can be achieved if we treat the request signals of

the FPA as numbers with values 0 and 1, and the fixed priority

arbitration as a sorting operation on these numbers. Practically,

the selection of the rightmost 1 as dictated by the FPA, can

be equivalently described as the selection of the maximum

number that lies in the rightmost position.

CMP

1 1

CMP

R 1

CMP

0 1

R 1

CMP

0 0

R 0

CMP

0 0

R 0

CMP

R 1

CMP

R 0

1L

Reduced Requests

Fig. 5. Fixed-priority arbitration (priority encoding) as a sorting problem.

The proposed sorting-based FPA can be implemented as a

binary tree with N − 1 comparison nodes that all implement

the same operation. Such a tree is shown in Fig. 5 for an 8-

port FPA. Each node receives 2 single-bit numbers as input

and computes the maximum of the two, along with a flag,

that denotes the origin, left or right, of the maximum number.

In case of a tie, when equal numbers are compared, the flag

always points to the right according to the FPA policy. Note

though that when both the numbers under comparison are

equal to 0, the direction flag is actually a don’t care value

and does not need necessarily to point to the right.

In every case, the winning path that connects the winning

input with the output is defined by the direction flags of the

CMP nodes. Thus, if we use these flags to switch the data

words that are associated with the input numbers (requests),

we can route at the output the data word that is associated

with the winning request. This combined operation can be

implemented by adding a multiplexer next to each CMP node,

as shown in Fig. 6.

Each CMP should identify the maximum of the two single-

bit inputs, denoted as SL and SR, and declare via the direction

flag F if the largest number comes from the left (F = 1) or
the right (F = 0). The first output of the CMP node, that is the

maximum, can be computed by the logical OR of SL and SR.

The other output of the CMP node -flag F - is asserted when

the maximum is the left number SL. Therefore, F should be

equal to 1 when (SL, SR) = (1, 0) that translates to F = SR ·

SR in boolean algebra. However, we have already seen that we

can also assert the flag when (SL, SR) = (0, 0) since they both
represent inactive requests and their order is irrelevant. So, if

CMP

MUX

CMP

MUX

CMP

MUX

CMP

MUX

CMP

MUX

CMP

MUX

CMP

MUX

D7 R7 D6 R6 D5 R5 D4 R4 D3 R3 D2 R2 D1 R1 D0 R0

D6
D4

D4

D4

D3 D1

D3

1 1 0 1 0 0 0 0

1 1 0 0

1 0

1

SR

ORINV

F

CMP node

SL

max

Fig. 6. The proposed merged arbiter multiplexer.

we embed the second case to the assertion of the direction

flag, F becomes equal to SR without changing the operation

of the FPA. The OR gate and the inverter that implement the

CMP node are shown in the right side of Fig. 6.

Finally, the AG signal that declares if any input was actually

granted, is connected to the maximum output of the root node

of the tree. If the maximum symbol produced is equal to 0, it

means that no input request was actually granted.

A. Grant signal computation

The merged arbiter multiplexer, besides transferring at the

output the data word of the granted input, should also return in

a useful format the position of the winning request (or equiv-

alently the grant index). The proposed maximum-selection

tree, shown in Fig. 5, that replaces the traditional FPA, can

be enhanced to facilitate the simultaneous generation of the

corresponding grant signals via the flag bits (F) of the CMP

nodes. The generation of the grant signals in weighted binary

representation, as well as in onehot code is shown in Fig. 7.

Please notice that, contrary to Fig. 5, when the symbols under

comparison are both equal to 0, the direction flag is equal to

1 following the optimized implementation of the CMP node

that was shown in Fig. 6.

Observe that, if we replace the invert-AND gates of Fig. 7(b)

with OR gates, the outcome would be a thermometer-coded

grant vector instead of the onehot code. In this way, with

minimum cost, we cover all possible useful grant encodings,

thus alleviating the need for additional translation circuits in

the pointer update logic.

IV. EXPERIMENTAL RESULTS

In this section we present the results gathered after per-

forming various sets of experiments that helped us quantify

the benefits of the proposed RTL macros. In all cases, the

designs were implemented in a 65nm CMOS technology using

a standard-cell based design flow.

In the first set of experiments, we compared the proposed

merged round-robin arbiter-multiplexer against a standalone

round-robin arbiter driving a multiplexer. The fastest approach

for the latter pair involves the parallel-prefix arbiters of [8]

along with the AND-OR implementation of the multiplexer.

For both the compared designs, the whole switch allocator and

CMP

1

AND AND

CMP

AND AND

CMP

AND AND AND AND

1 01

1

Reduced requests

1 1

1

0 1

0 1 1 00

0 0 1 0

(b) onehot grant signals

1 1 1

CMP

0

CMP

CMP

0 00

0 0

0

1
MUX

CMP

1

CMP

CMP

1 10

1 1

1

0
MUX

CMP

1

1
MUXMUX

(a) weighted binary grant signals

0 110

10

001 Position 4

Position 1

Reduced requests

Fig. 7. The grant generation circuits that run in parallel to the CMP nodes.

320 340 360 380 400
3

3.2

3.4

3.6

3.8

4

Delay (ps)

E
n

e
rg

y
 (

p
J

)

4x4 switch

RR arbiter & multiplexer

Proposed RR
merged arbiter & multiplexer

400 450 500 550 600 650 700
7

7.2

7.4

7.6

7.8

8

8.2

8.4

Delay (ps)

E
n

e
rg

y
 (

p
J

)

RR arbiter & multiplexer

8x8 switch

Proposed RR
merged arbiter & multiplexer

Fig. 8. The energy delay curves for the the case of round robin (RR) arbiters
and multiplexers.

crossbar for a N ×N switch was implemented, including also

for each arbiter the corresponding priority state and priority

update logic shown in Fig. 1. Both the input data and the

input requests are registered. The same also holds for the data

outputs of the switch. These output registers practically put

switch and link traversal in different cycles.

From the derived energy-delay curves of Fig. 8 we observe

that the two designs consume nearly the same amount of

energy, with the proposed one being slightly better, while, in

terms of speed, the parallel-prefix structure is slightly faster

4 8 16
0

100

200

300

400

500

600

700

Number of inputs−outputs

D
e

la
y

 (
p

s
)

Proposed Round−robin

Proposed FCFS

Fig. 9. The delay of the proposed switches implementing FCFS and standard
round-robin arbitration policies.

(4% in average). These results lead us to the conclusion that,

although the proposed design is based on a generic architecture

that targets more complex weight-based selection policies and

computes the grant signals in multiple formats, it offers, even

for the simple round-robin policy, an implementation that is

as good as the most efficient round-robin-only design. Note

that such specific designs do not provide any obvious way of

extending their functionality to other selection policies.

The last set of experiments measures the delay overhead

imposed by a sophisticated weight-based policy, namely FCFS,

relative to the best delay achieved by the simple round-

robin implementation. From the bars of Fig. 9, it is obvious

that the aforementioned delay overhead is negligible (6% on

average) and is diminishing with increasing the size of the

switch. This is probably the largest advantage of the proposed

macros; they can be directly utilized for implementing more

efficient selection policies that yield significant throughput

benefits at the network level [7], while, at the same time,

these performance benefits are not compromised by the clock

frequency of the switches, since the latter are only slightly

slower than those of the standard round-robin case.

V. CONCLUSIONS

On-chip network switches that can significantly benefit by

the adoption of the introduced RTL soft macros. The proposed

circuits adapt efficiently to simple and more complex arbitra-

tion policies under a unified architecture, and, at the same time,

they offer area/energy/delay efficient implementations due to

their merged arbitration and multiplexing structure.

REFERENCES

[1] W. J. Dally and B. Towles, Route Packets, Not Wires: On-Chip
Interconnection Networks, DAC, 2001.

[2] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga, ”Prediction
router: Yet another low latency on-chip router architecture,” HPCA, 2009.

[3] Anh T. Tran and Bevan M. Baas, ”RoShaQ: High-Performance On-Chip
Router with Shared Queues,” ICCD, 2011.

[4] J. Kim, ”Low-cost router microarchitecture for on-chip networks”,
MICRO-42, 2009.

[5] S. S. Mukherjee, et al. ”A comparative study of arbitration algorithms
for the alpha 21364 pipelined router,” ASPLOS-X, 2002.

[6] P. Gupta and N. McKeown, ”Design and implementation of a fast crossbar
scheduler,” IEEE Micro, 1999.

[7] M. Pirvu, L. Bhuyan, and N. Ni, ”The Impact of Link Arbitration on
Switch Performance”, HPCA, 1999.

[8] G. Dimitrakopoulos, N. Chrysos and K. Galanopoulos, ”Fast arbiters for
on-chip network switches”, ICCD, 2008.

