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ABSTRACT

To reduce clock power, we present a novel timing-driven incre-
mental multi-bit register (MBR) composition methodology for de-
signs that may be rich in MBRs after logic synthesis. It identifies
nearby compatible registers that can be merged without degrad-
ing timing, and without reducing the “useful clock skew” poten-
tial. These registers are merged providing the MBR placement
can be legalized according to the proposed simplified physical con-
straints. A new integer linear programming (ILP) formulation min-
imizes the total number of registers in the design. It significantly
reduces register count and clock capacitance, without adding any
timing/routing/placement violations and without increasing the
total wire-length of the designs, as shown by experimental results
on industrial benchmarks.

1 INTRODUCTION

Reduced power consumption is a key design criterion for modern
circuit designs, to extend battery lifetime, reduce packaging and
cooling costs, and permit higher device performance. Low-power
design starts at the architectural level, with techniques such as
clock gating which disables the clock signal propagation to the
inactive parts of the circuit, and continues through implementa-
tion. The challenge in implementation is to create, optimize, and
verify the physical layout so that it meets the power budget along
with timing, performance, and area goals. In this context, clock
power optimization is one of the most important objectives, as
clock power can contribute 20% to 40% of the dynamic power con-
sumption for a synchronous digital design [1].

The dynamic power consumption is mostly due to switching
of capacitances and it is equal to 0.5f CVd2 PL for a capacitance C
(dis)charging between 0V and supply voltage V4 with switching
frequency f. Clock gating reduces the switching frequency. Plac-
ing registers together in clusters reduces the wire capacitance load
on the clock network [2, 3]. Merging registers to multi-bit registers
(MBR) further reduces the switching capacitance.

Multi-bit register (MBR) composition reduces the complexity of
the clock tree by reducing the number of clock sinks, which in turn
minimizes the clock tree’s wire length and as a result reduces the
wire capacitance. By sharing clock circuitry within the cell, MBRs
also present a smaller pin capacitance load on the clock tree, com-
pared to separate single-bit registers. Not only does this reduce the
clock switching power at the leaf-level of the tree, but the reduced
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clock load allows a smaller clock tree to be used, with fewer and
smaller clock buffers, further reducing the clock power.

Compatible registers that can be either single-bit flip flops or
latches, or MBRs composed during logic synthesis, are grouped to
larger MBRs with the goal to reduce register count and effectively
achieve a lower clock tree power. To be compatible, they must be
clocked by the same clock signal, including any clock gating logic.
They must also be of the same register functional type. If the scan
connectivity is internal to the MBR, they must also be in the same
scan partition to be on the same scan chain.

Moving registers from their original locations to the location of
the new MBRs may degrade timing slack, wire length, or routing
congestion. Therefore, MBR merging should carefully select which
registers to merge to ensure that potential degradations in slack,
wire-length, or congestion do not offset the power benefits of a
lighter clock tree.

The proposed approach targets incremental MBR composition,
after global or detailed placement, with the goal to (a) minimize the
total number of registers in a design, (b) reduce clock power and (c)
simplify subsequent clock-tree synthesis (CTS). The proposed MBR
composition methodology equally applies to circuits that initially
have only single-bit registers or that are rich in MBRs identified
earlier in the design flow [4]. The design’s initial physical imple-
mentation provides a good estimate of the timing slacks to help
determine the best groupings for MBR composition, while there
is still room to apply further aggressive timing optimizations. By
composing MBRs from registers with similar input/output slacks,
we ensure that there is good opportunity to use “useful skew” clock
arrival timing offsets to fix timing violations [5].

Related work focuses mostly on MBR composition using heuris-
tic algorithms on designs that initially have only 1-bit or at most 2-
bit registers. In most cases, MBR composition is applied deeper in
the physical design flow, after detailed placement [6-11] or post-
CTS [12]. A few approaches have introduced MBR composition
earlier in the flow [4, 13]. The late application of MBR composition
narrows the design space to identify candidate MBRs, and each
new choice requires incremental legalization and rebuilding the
clock tree if after CTS. This results in long runtime and can cause
timing hotspots with the disturbance of the clock sink points. Too
early application of MBR composition misses critical placement
and timing information that affects the final result.

Therefore, we argue for an incremental MBR composition that
can be applied in various phases of the design flow to increase the
effectiveness of MBRs. In this work, we target industrial designs
which already have many MBRs after logic synthesis and apply on
them a novel MBR composition methodology with the following
properties:

e MBR composition merges only registers that are compati-
ble in terms of functionality, timing, and placement. Addi-
tionally, the registers replaced by an MBR exhibit similar



input/output slacks, thus enabling the application of the
same useful clock skew after CTS.

e MBR allocation uses a new weighted integer linear pro-
gramming (ILP) formulation that offers significant reduc-
tion in the total number of registers with reasonable run-
time. The weights assigned to each MBR candidate corre-
spond to new simplified physical constraints that facilitate
MBR placement legalization.

e Incomplete MBRs, where some D/Q pin pairs are left tied-
off/disconnected, are allowed for the first time. This op-
tion tackles the granularity limitations regarding the bit-
width of MBRs in typical standard cell libraries. It further
reduces the register count, without negatively affecting
the area or leakage power.

The rest of the paper is organized as follows. In Section 2, we will
first discuss the compatibility criteria that determine which regis-
ters can be composed into MBRs. Section 3 details the methodol-
ogy for enumerating MBR candidates and introduces the ILP for-
mulation that minimizes the number of registers. Then in Section 4,
we specify the placement and mapping of the assigned MBRs to
specific cells of the library. Section 5 presents the experimental
results, and conclusions are drawn in Section 6.

2 REGISTER COMPATIBILITY

Our first goal is to identify the registers in the design that could
be replaced by an equivalent MBR. A single or multi-bit register
can be replaced by a larger MBR only if there is one in the library
with equivalent functionality. For example, a register with a reset
pin can be replaced only if an MBR with a reset pin is in the library.
Similarly, scan flip-flops can be replaced only if scan-enabled multi-
bit versions are available.

Although a group of registers (or latches) have an equivalent
MBR in the library to replace them, they cannot be arbitrarily merged
to new and larger MBRs. A group of registers can be merged to a
larger MBR if the registers are compatible in terms of functionality,
scan chain organization, placement, and timing profile.

Registers are functionally compatible when their control pins,
such as reset or scan-enable, are driven by the same nets of the cir-
cuit, and they share the same clock gating enable conditions. Many
papers erroneously assume that any registers in the netlist are
functionally compatible, maximizing the opportunities for MBR
composition, but this is far from true for real industrial designs.
Quite a few of the registers may have no logically equivalent multi-
bit version, or they may have been specified as fixed or size-only
by the designer, and thus cannot be composed to MBRs.

Scan compatibility dictates which registers are compatible based
on the scan chain definitions. Registers must be in the same scan
partition, i.e. allowed on the same chain. MBRs may either have
a single scan-in and scan-out pin, or multiple independent scan
in/out pins (the scan enable pin is still shared). In the first case, if
the scan pins belong to the same scan partition and moving scan
pins across different scan chains is allowed, then no additional
constraints are imposed because of the scan chain definitions. If
there are scan chain order constraints, then new compatibility con-
straints are introduced. For registers that belong to ordered scan
sections, they may only be composed to a single MBR with an inter-
nal scan chain that preserves the same scan order within the MBR.
In the second case, where MBR cells with separate scan pins per
D/Q pair are used for composition, no restrictions are imposed as

several scan chains with different constraints can cross the same
MBR providing they have a common scan enable signal.

For cells in the same functional class, placement compatibility is
checked similar to [9]. For each register, a timing feasible place-
ment region is identified by transforming the positive timing slack
of the input D and output Q pins to an equivalent distance that it
can move without causing a timing violation. Nearby registers are
placement compatible if their regions overlap, providing a shared
region where the MBR can be placed. This is checked on a placed
design to give a rough but realistic sense of the relative placement
and distance between the registers under consideration. If the tim-
ing slack is negative, the feasible region is limited to the intersec-
tion of the bounding boxes of the violating pins with the feasible
regions of the rest of the D and Q pins of the same cell. Even if a
negative slack does not permit the cell to move, it is not left out
of compatibility checking, since it still creates a timing feasible re-
gion that matches its footprint, where other registers with positive
slack can move.

After placement compatibility, timing compatibility is checked
so that if multiple registers are replaced by a functionally-equivalent
MBR, the resulting MBR to have similar input D-pin slacks and
similar output Q-pin slacks. We should not compose cells that
have positive D/negative Q slack with cells that exhibit negative
D/positive Q slack. This composition could create opposite forces
during the useful clock skew assignment to the MBR. A register
with negative D slack favors increasing the clock arrival time to the
MBR, while another with negative Q slack will be satisfied when
the clock arrival time is reduced.

Even if the D/Q slack signs of two cells are the same, timing
compatibility is preserved only if the magnitude of the observed
slacks is similar. We should not merge registers with a large differ-
ence in timing criticality, because it increases power when a timing
critical signal forces the MBR to be upsized, unnecessarily for the
other signals. We also must avoid very different clock useful skew
values as only one can be realized for a given MBR and the differ-
ence will degrade useful skew opportunities for other timing paths
to/from the MBR.

3 MULTI-BIT REGISTER COMPOSITION

The functional, timing, physical and scan compatibility of the regis-
ters is represented by the compatibility graph G. The graph nodes
are the registers, whether single bit or pre-existing MBRs, and the
edges of G reflect the compatibility between cells. An example
compatibility graph is shown in Fig. 1. A MBR can be formed only
by grouping together compatible cells. Therefore, the cells that can
be merged to a new MBR form a clique in G. For instance, the 4-
node clique {4, B, C, D} and the 3-node clique {B, C, F} can each be
mapped to a 4-bit MBR.

By enumerating all the cliques of G we can determine the set of
candidate MBRs that can be examined during MBR composition.
To enumerate all maximal cliques of G we use the Bron-Kerbosch
algorithm [14]. For each maximal clique we enumerate all the valid
sub-cliques following the possible sizes of the MBR library cells us-
ing a dynamic programming approach. The runtime complexity of
maximal clique identification is O(3"/3), which is not computa-
tionally tractable for large graphs. Hence, G is partitioned to a set
of connected components which are further decomposed to a set
of subgraphs using K-partitioning. The partitioning is driven by
the position of the register clock pins to maximize the clock tree
power reduction obtained by MBR composition. Each subgraph



Figure 1: A compatibility graph of six registers. The com-
patible registers (nodes of the graph) are connected with an
edge. Each register has a name and a size: A1 is a single-bit
register, while E4 is a 4-bit MBR inserted during logic syn-
thesis.

cannot exceed 30 nodes. Trying smaller bounds resulted in signif-
icant QoR (Quality of Results) loss in terms of composed registers,
especially when the bound became smaller than 20 nodes. Increas-
ing the bound further did not help either, as the additional runtime
could not be justified by the slight QoR gains.

During clique enumeration, a clique is considered valid as long
as the number of register bits involved matches the size of at least
one MBR in the cell library. For example, for a cell library that
consists of 1, 2, 3, 4, and 8-bit MBRs, the 3-node clique {4, C, E} that
involves 6 register bits is invalid, since a 6-bit MBR is not available
in the library. The clique {A, C, E} would be valid if we allow it to
map to an 8-bit MBR. The 8-bit MBR would be incomplete since
only 6 out of the 8 D/Q bits would be connected.

Incomplete MBRs may seem a waste of area and leakage since
the circuit contains unused parts. In practice, it can still be advan-
tageous, since MBRs allow for significant sharing of the control
pins of the otherwise independent registers. For example, group-
ing 7 single bit registers, with common reset and clock signals, to
an 8-bit MBR that uses one shared reset and clock wire saves at
least 12 wire segments, even if one D/Q pin pair out of 8 are dis-
connected. However, MBRs with internal scan may not be suitable
for this — at the least, the first bit scan-input pin and the last bit
scan-output pin must be properly connected to a scan chain.

Allowing incomplete MBR cells gives additional freedom to the
MBR composition to minimize the total number of registers. How-
ever, to keep the area and leakage overhead under control, we con-
sider an incomplete MBR as a valid candidate for MBR composition,
only when the area per bit of the incomplete MBR is lower than the
average area per bit of the underlying registers.

3.1 ILP Formulation

After the enumeration of all valid MBR candidates that are derived
from the cliques of G, we need to assign the compatible registers
to as few MBRs as possible. This is done using an integer linear
programming formulation.

The candidate MBRs define a set M = {Mp, My, ..., M} } where
each element M; is a valid MBR candidate. Each compatible reg-
ister participates in various MBR candidates. This attribute is de-
clared via binary variables a;; € {0,1}, where a;; = 1 if cell j
participates to MBR M;, otherwise a;j = 0.

The ILP should identify which candidate MBRs M; will be se-
lected at the end to replace the compatible registers of the design.
To distinguish which M; is actually selected from the other can-
didates, we introduce an additional binary variable x; € {0, 1};
x;j = 1 when MBR M; is assigned to replace the constituent com-
patible registers, else x; = 0. When the register j is grouped in
MBR M;, and the corresponding MBR is selected, then both x; and

a;j should equal one. Thus, the total number of registers is mini-
mized by solving the following integer linear program:

|IM]|
minimize Z WiXi
i=1
|M]|
subject to V register j : Z ajjxi =1, ajj,x; € {0,1}
i=1

The constraint added for each register j guarantees that each
register will be part of only one MBR. The cost function of the ILP
does not treat all MBR candidates equally. Each candidate MBR M;
is associated with a weight w;; the smaller the weight w;, the more
favorable the choice of M;.

3.2 Weights to limit wire-length & congestion

By weighting MBR candidates, we limit the increase in routing con-
gestion and wire-length during MBR composition. Without this,
both routing congestion and wire-length can significantly increase.
Experimental results in Section 5 show that this weighting heuris-
tic keeps them both under control.

The weight assigned to each candidate MBR is based on the rel-
ative placement of the compatible registers that will be merged to
this MBR. The most favorable MBR candidate, with the smallest
weight, is the one that avoids any other closely-placed compatible
registers that do not participate to the examined clique and could
belong in another composed MBR. In this way, we limit the prob-
ability that the nets of the two new MBRs cross each other, thus
keeping routing utilization under control.

For each MBR candidate (a clique in the compatibility graph),
we define a polygon by the corners of the participating registers.
The polygon defined by the nodes of the clique under examination
should define a contiguous area. We use the convex hull formed
by the outer corner points of the registers under examination.

Fig. 2 illustrates the test polygon that corresponds to the 4-node
clique {A, B, C, D} or the 3-node clique {A, B, C}, which produce re-
spectively a 4-bit and a 3-bit MBR candidate. All registers of the
{A, B,C, D} clique are part of the test polygon and no other com-
patible register lies in the same region, so this choice is the most
favorable and receives the minimum weight. The 4-bit MBR can-
didate has a clear area to be placed physically separate from any
other MBR. The empty space, which will be available after remov-
ing the participating compatible cells, roughly defines the room
to place the MBR. Even though this white space is not contiguous
as required to place the MBR, placement legalization is simplified
because no other register will be placed in the same area. It also re-
duces the displacement of non-register cells that exist in the same
area — registers are larger and often have higher placement pri-
ority, so smaller movement of fewer registers helps minimize the
placement disturbance.

For the composition of a 3-bit MBR from {A, B, C}, we observe
in Fig. 2 that the polygon defined by the corners of A, B, and C
includes register D. The composition of this 3-bit MBR is less fa-
vorable since register D may end up merging with another MBR
that will be closely placed with the 3-bit MBR and increase locally
the utilization of the routing resources.

Therefore, by weighting appropriately each candidate MBR M;
we promote the composition of large MBRs, when the region de-
fined by the constituent compatible registers is clean of other reg-
isters. In contrast, when there are many intervening registers, we
promote the selection of smaller but clean MBRs. This two-faceted
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Figure 2: This shows the initial placement of registers in the
Fig. 1 compatibility graph. The size of each register corre-
sponds roughly to its bit width (number of D and number of
Q pins). To improve routability after mapping to MBRs, we
check inside the surrounding polygon of the clique for the
presence of other register. The fewer intervening registers,
the more favorable the candidate MBR.

goal is achieved with a heuristic weight w; for each candidate MBR
M; as follows:

1

b ni =0
w; = bi2ni,

oo, nj>b;

b; is the number of bits of the registers that will be merged to MBR
M;, and n; is the number of other registers that block the convex
polygon defined by the outermost corners of the registers replaced
by M;. A register counts as a blocking register for M; if its center
is inside the corresponding test polygon and it is not a constituent
register of M;. For the example shown in Fig. 1, clique {A, B, D}
has {b;,n;} = {3,0} = w; = 1/3 since it is not blocked by any
other register in Fig. 2, whereas, the clique {4, B, C} has {b;, n;} =
{3,1} = w; = 6 as the center of D is inside the polygon defined
by the outmost corners of {A, B, C}.

When the test polygon for each candidate M; is free of any other
registers, the weight promotes the selection of larger MBRs. For

instance, the weight of a clean 8-bit MBR is %, which is smaller

than the weight of two clean 4-bit MBRs, i.e., % + zlL’ needed to
cover the same number of bits.

When there are obstacle registers the selection of large MBRs
is penalized relative to the selection of more smaller MBRs. Large
MBRs reduce the register count but can create routability problems
when placed close to other MBRs and their large area can signifi-
cantly increase the placement difficulty. Assume for example the
case of an 8-bit MBR candidate that has one obstacle register, i.e.,
{bi,n;} = {8,1}. In this case, the weight of this candidate would
be w; = 16. The equivalent choice with two smaller 4-bit MBRs
would be to have one clean MBR with {b;,n;} = {4,0} = w; =
1/4, and another 4-bit MBR that includes the intervening register,
{bj,nj} = {4,1} = wj = 8. The total cost of the second option
would be equal to 8.25 that would make the ILP select the two 4-bit
MBRs relative to the one 8-bit MBR. In this way, it is more likely
that the two 4-bit MBRs can be placed without competing for rout-
ing resources with the intervening register.

The weights that correspond to all MBR candidates of the com-
patibility graph of Fig. 1 and their placement shown in Fig. 2 is sum-
marized in Fig. 3. When no incomplete MBRs are allowed {B, F}
and {A, C, D} are mapped to 3-bit MBRs, while cell E is kept sepa-
rate. This reduces the initial six registers to three. When incom-
plete MBRs are allowed the same final register count is achieved

0<n,—<bi

MBR candidates and their weights

Original 2-bit 3-bit 4-bit 5-bit 6-bit

1.00| AB | 0.50| BF | 0.50 |ABCD 0.25| AE 0.20 | AEC 0.17
1.00| AD ' 0.50| CF | 0.50 BCF 8.00
1.00 | AC | 0.50 | ABD  0.33
1.00 | BC | 4.00 | BCD 0.33
1.00 | BD | 0.50 | ABC  6.00
1.00 [ CD | 0.50 | ADC | 0.33 |

Mapped to an 8-bit
incomplete MBR

mmoolm >

Incomplete MBRs disabled ___Incomplete MBRs enabled

| 4bit E | 8bit
[t aco | Picp |
|3bit BF | ] | i — |

Figure 3: The weights of the candidate MBRs and the se-
lected solution. The 5-bit and 6-bit MBRs can be mapped
only to an 8-bit incomplete MBR.

with a different final outcome. Both choices minimize the cost
function of the ILP, and allow the three final MBRs to be placed
in distinct regions without intersecting with one another. Before
placement legalization, the composed MBRs may overlap with other
non-register cells in the region defined by the surrounding poly-
gon of the corners of the participating compatible registers, but
the weights assigned to each candidate reduce the chance of over-
lapping with neighboring MBRs. Please note that this example
highlights on purpose the possibility of using incomplete MBRs. In
reality, incomplete register AE would have been rejected since its
area is significantly larger than the are of the registers it replaces.

4 MBR MAPPING AND PLACEMENT

The placement-aware ILP selects from the set of candidate MBRs
those that minimize the total number of registers of the design and
that are less intertwined in the layout. For each MBR, the ILP has
selected just its bit width and the functional class of cells it belongs
to. Two further steps are needed for a valid MBR assignment: MBR
mapping and placement.

4.1 MBR Mapping

At this step, we need to map the assigned MBR to a specific MBR
cell of the library. From the compatibility checks performed ear-
lier, there is certainly a functionally compatible MBR in the library.
From the available MBRs, we should select the one that fits best in
the timing and the drive resistance profile of the registers that it
replaces. With drive resistance we refer to a linear model approxi-
mation of the register’s delay as drive resistance multiplied by load
capacitance, with some additional fixed “intrinsic” delay in the reg-
ister. A cell with low drive resistance can drive more capacitance
with less delay. In practice, we use accurate CCS standard cell li-
brary timing models.

The drive resistance of the selected MBR should match the min-
imum drive resistance of the registers that will be replaced by the
MBR. This avoids degrading the timing of the design, albeit with
some possible area overhead. The extra area paid depends on the
difference of the drive resistance between the composed registers
versus how many control pins are shared by the MBR. From the
MBR library cells that match closely the drive resistance of the
registers to be replaced by the MBR, we select the MBR with the
lowest clock pin capacitance to minimize clock power.



Due to the large variety of MBR cells in modern libraries, if the
drive resistance and the clock pin capacitance are not selected ap-
propriately, they may cancel the benefits of MBR composition by
creating significant timing problems or diminishing the clock tree
power reduction.

Additionally, register mapping ensures that the scan chain def-
initions encoded as scan compatibility constraints are preserved
with the lowest possible cost. MBRs with multiple scan in/out pins
may seem attractive as their area and power are typically smaller
compared to their counterparts with internal scan chain. In real-
ity, MBRs with multiple scan in/out pins have the extra cost of the
external scan chain which consumes significant routing resources.
For this reason, MBR library cells with external scan chains are
penalized during MBR selection. They are typically selected only
when there is no other alternative, to map registers which are non-
consecutive but belong to an ordered scan section.

4.2 MBR Placement

After mapping to the assigned MBR, we need to identify the sug-
gested location for the new cell. We target the position that min-
imizes the length of the connected wires on the D and the Q pins
of the MBR, using a linear-programming approach.

The new MBR should be placed in the common timing feasible
placement region of the compatible cells. For each D/Q pin of the
compatible cells that will be replaced, we identify their fan-in and
fan-out pins. Each MBR pin connects to some of those identified
pins, respecting the connectivity of the original registers.

For each pin of the MBR and its connections, we create a bound-
ing box assuming the coordinates of the pin of the MBR as un-
known. For each pin we don’t create a separate set of unknown
variables, but we reference each pin’s coordinates relative to the
coordinates of the MBR’s lower corner plus some offset in both di-
mensions (dx;, dy;) depending on the pin’s location inside the cell.
Thus, only the cell corner’s coordinates need to be found.

For the bounding box that corresponds to the input or output
connections of each pin, we use the half-perimeter wire-length es-
timator to approximate the wire-length of the new wires. For each
bounding box, the approximate wire-length is

wl; = (max(xp, x + dx;) — min(x;, x + dx;)) +
(max(yp, y + dy;) = min(y;, y + dyi)) ,

where (xp, x7, yp, y;) are the coordinates of the box boundaries for
each pin, and (x,y) are the coordinates of the MBR’s corner. We
use a linear program to minimize the wire-length of the D/Q pins

of the MBR as follows:
|M|
minimize Z wl;
i=1

subject to (x,y) € MBR’s timing feasible region

The max and min functions in the objective are removed by the
use of extra helper variables. For example, max(xp,x + dx;) is
transformed to two inequality constraints xj, < zand x +dx; < z,
while the opposite inequality is used for the min function.

5 EXPERIMENTAL RESULTS

The MBR composition methodology has been tested on five 28nm
industrial benchmarks that are rich in MBRs after logic synthesis.
Our incremental methodology aims to reduce the register count
and clock tree capacitance, with only marginal disturbance to tim-
ing, wire-length, and routing congestion. Table 1 shows the initial

characteristics of the designs after placement and optimization in
the rows labeled ‘Base’. From the total number of registers (col-
umn ‘Total-Regs’) only a small subset can be composed to larger
MBRs (column ‘Comp-Regs’), because some registers (a) are speci-
fied as non-modifiable by the designer, (b) have no logically equiva-
lent MBR in the library or (c) represent already the largest possible
MBR in their functional-equivalence class.

Placement & MBR MBR Useful
Optimization Composition Skew
|
Cell Clock Tree
Legalization Synthesis

Figure 4: The implementation flow with MBR composition.

The implementation flow applied is shown in Fig. 4. After place-
ment and optimization, MBR composition and optimization are
performed, incrementally on MBRs already introduced after syn-
thesis. Then, useful skew is applied to the new MBRs, benefiting
from their timing compatible smaller counterparts. Useful skew
improves the worst slack in each new MBR, broadening the solu-
tion space that can be examined by MBR sizing. As a result, both
MBR area and clock pin capacitance are further reduced. Incom-
plete MBRs are also allowed, provided that each incomplete MBR,
does not impose more than 5% area overhead relative to the area of
the registers that it replaced. The obtained results are summarized
in rows ‘Ours’ of Table 1.

The proposed methodology greatly reduces the total number of
registers. Total register count drops by 29% on average (each MBR,
independent of its size, counts as one register). Counting only the
composable registers where MBR composition can be applied, the
average reduction is 48%. Clock tree capacitance is reduced by 6%
and buffer count is reduced by 4%, giving a similar reduction in
clock power. The wire-length of the design is also reduced, due
both to fewer registers and the wire-length minimization driven
MBR placement. Note that in designs rich in MBRs, the clock
wire-length is a smaller percentage of the total wire-length. With
respect to runtime, the new proposed steps of MBR composition
and optimization account on average for 60 min CPU time on Intel
Haswell server @ 2.7GHz with 512 GB RAM.

O1-bit O2-bit O3-bit W4-bit M 8-bit

;

D1 D2 D3 D4 D5

Figure 5: Bit widths of MBRs before & after MBR composi-
tion.

D1 D2 D3 D4 D5

Although we perform significant circuit restructuring, we don’t
increase the timing violations, as highlighted by the TNS and the
number of failing timing endpoints. Routing congestion is also not
degraded. On average, failing endpoints are about 38% of the total
endpoints for these designs. The difference in overflow edges [15],
without and with our MBR composition methodology, is marginal



Table 1: Industrial design characteristics before and after MBR composition.

Wirelength Total i MBR
. Area Total | Comp (mm) Clk Clk TNS Failing Ovfl. Exec.
Design Cells (um?) Regs Regs Bufs Cap (ns) El?d_ Edges Time
Clk Other Points .
(ph (min)
Base 485350 870621 29416 | 18332 231 14240 1202 66 41232 18285 7
D1 Ours 470158 868102 18137 | 7050 216 14110 1088 60 41732 16138 2 45
Save 3.1% 0.3 % 38% 61% | 6.0% | 1.0% 9.5% 9.0 % -1.0 % 11.7 % 71 %
Base 853869 1228380 | 37401 | 27992 276 16430 1512 75 120895 53458 53
D2 Ours 839457 1220290 | 22857 8853 261 16390 1218 64 93430 39959 52 68
Save 1.7 % 0.7 % 39% 68% | 5.0% | 0.2% 19 % 15 % 22.7% 25 % 2.0 %
Base 665369 1473670 | 34519 | 21880 395 23490 2138 90 70122 29350 519
D3 Ours 652389 1470650 | 25453 7954 380 22840 1956 83 59653 28329 239 76
Save 2.0% 0.2 % 26 % 34% |1 3.0% | 27% 8.5% 8.0% 15 % 3.0% 54 %
Base 1992432 | 3283820 | 50392 | 22017 | 1094 | 63680 6873 251 734379 271047 182
D4 Ours 1980261 | 3284100 | 42535 | 16529 | 1083 | 63540 7040 252 684138 260053 164 40
Save 0.6 % 0% 15 % 25% | 1.0% | 02% -2.0% 0% 6.8 % 4.0 % 10 %
Base 695944 1473600 | 34519 | 21879 315 24850 1059 73 2990 50133 525
D5 Ours 683008 1470780 | 22992 | 10076 295 24620 1014 66 2851 50087 467 80
Save 2.0% 0.2 % 33 % 54% | 6.0% | 1.0% 4.0 % 10 % 4.6 % 0% 11 %

due to the placement-aware weight selection for candidate MBRs
in the ILP formulation.

Fig. 5 shows the breakdown of the various MBR bit widths of
all the registers of the design, before and after applying the pro-
posed MBR composition methodology. More 8-bit MBRs are used
up to a point where they don’t create routing utilization problems.
MBR composition in designs that already contain a large number
of 8-bit MBRs, like D4, doesn’t provide significant reduction in the
clock tree capacitance. The clock tree capacitance in these cases
is dominated by those 8-bit MBRs that were skipped during MBR
composition and sizing. To optimize such designs, we plan in the
future to consider the decomposition of the initial 8-bit MBRs and
their recomposition using the proposed methodology, instead of
skipping them completely, as done in this work.

For completeness, we compare the proposed ILP-based method-
ology with a heuristic-algorithm-based approach, similar to that
performed in [8] and [12]. As shown in Fig. 6, the ILP gives better
results for all designs, achieving 12% savings on average.

EILP

O Heuristic

Figure 6: Normalized number of total registers when compo-
sition is performed using an ILP formulation and a maximal
clique identification and MBR mapping heuristic.

6 CONCLUSIONS

Applying MBR composition on industrial benchmarks requires a
balanced restructuring approach that, besides the reduction of the
number of registers and clock tree capacitance, should keep the
potential degradation in slack, wire-length and congestion under
control. In this paper, we present for the first time a placement-
aware ILP-based approach that satisfies the balanced restructuring
approach, and can be applied incrementally both after global and

detailed placement. The combined effect of the new rules that de-
termine register compatibility, the weighted selection of the best
MBR candidates, and the allowance of incomplete MBRs, gives sig-
nificant reductions in register count and clock tree capacitance.
This approach has been integrated into Mentor’s Nitro place-and-
route tool, achieving good results in an industrial design flow on
modern designs.
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