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Abstract—Machine-learning applications have garnered
widespread adoption over the last several years. Graph Neural
Networks have been proposed as an extension of machine-
learning models to graph-structured data. The training and
inference tasks on graph neural networks involve graph
convolution operations that can be equivalently expressed
as three-matrix multiplications. In this work, we propose
FusedGCN, a custom systolic architecture that computes in a
fused, i.e., combined, manner the product of three matrices.
FusedGCN supports compressed sparse representations and
tiled computations, which allow the design to adapt to the
available input/output bandwidth without losing the regularity
of a systolic architecture. The experimental results show that
FusedGCN achieves lower execution times than the current
best-performing state-of-the-art architecture for computing
representative GCN applications. Most importantly, this result
is achieved by consuming only marginally more area/power than
a traditional systolic array used for two-matrix multiplications.

I. INTRODUCTION

Machine learning applications have become ubiquitous over
the last few years. Graph Neural Networks (GNNs) have been
widely adopted in applications that use graph-structured data,
such as social networks [1] and recommendation systems [2].
GNNs are able to learn graph-related representations, where
nodes represent objects and edges represent the relationships
between them, thereby solving graph classification, node clas-
sification, and link prediction problems [3]. In this work, we
focus on Graph Convolutional Networks (GCNs) as some of
the first and most effective processing models for GNNs [4].

In GCNs, each node of the graph is accompanied by a
feature vector. Updating the features of each node involves
the aggregation of the features of neighboring nodes and their
combination to obtain a new feature vector. Each layer of the
GCN updates the features based on the nodes that are one hop
away. To facilitate updates involving more distant nodes and
their connections, a multi-layer GCN is required, as the one
shown in Fig. 1.

Aggregation over the entire graph can be expressed as a
matrix multiplication H̃ = S Hk−1, where S = D1/2ÃD1/2

represents the normalized adjacency matrix, derived from Ã =
A+ I , i.e., the adjacency matrix A with added self loops, and
D, which is the degree matrix of A [4]. Also, Hk−1 represents
the output features of all nodes of layer k − 1 of the GCN.

The aggregated features of all nodes H̃ are linearly trans-
formed using the weight matrix W k of the kth layer, and
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Fig. 1. The dataflow and the computations involved in each layer of a 2-stage
GCN for an example 5-node graph.

passed through a non-linear activation function σ, such as
ReLU, to compute the output features of the kth layer.

Hk = σ
(
H̃W k

)
= σ

(
SHk−1W k

)
(1)

The last layer of a GCN predicts the labels of the nodes using
a softmax classifier on the elements of H of the last layer.

State-of-the-art GCN accelerators compute the double ma-
trix product of (1) in two phases [5]. The first phase (aka ag-
gregation) involves a multiplication with the normalized adja-
cency matrix, while the second phase (aka combination) refers
to the multiplication with the weight matrix. Aggregation is
a sparse×dense matrix multiplication, while combination is a
dense×dense matrix multiplication.

In this work, to speedup GCN convolution, we follow
a different approach and propose a new systolic architec-
ture, called FusedGCN, which computes in a combined/fused
manner the product of the three matrices. The operation of
FusedGCN can be fully, or partially, unrolled by following a
tiled organization that depends on the size of the input and
output features of graph nodes, and the available input and
output bandwidth. Graph size and sparseness do not affect
the hardware complexity, but only the execution time. Sparse
blocks of input features found in some applications are also
supported.

FusedGCN is evaluated in executing the inference of real-
world applications based on two-layer GCNs. In all cases,
FusedGCN reduces execution times relative to the current best-
performing state-of-the-art accelerator [6] that computes the
aggregation and combination phases separately. Most impor-
tantly, FusedGCN can achieve these reductions in execution
time by incurring only a small hardware overhead (less than
4% in area and around 8% in power), as compared to the
classic systolic array that computes a two-matrix product.



II. A SYSTOLIC FUSED THREE-MATRIX MULTIPLIER

In this work, our goal is to design an efficient systolic
architecture that would compute the triple matrix multiplica-
tion S Hk−1 W k of Equation (1) in a fused manner, while
also handling the sparseness of matrix S. For simplicity, we
henceforth remove the layer indices from matrices H and
W and denote the targeted three-matrix multiplication as
H∗ = S HW .

A. Enabling fused three-matrix multiplication

Let us denote the matrix product HW as C. Then, each
element cjq of C can be written as the dot product of the jth

row of H , rowj(H) and the qth column of W , colq(W ), i.e.,
cjq = rowj(H) · colq(W ). The final output can be computed
using C as H∗ = S C. For every element of H∗, it follows
that h∗

iq =
∑N−1

j=0 sijcjq. Substituting the value of cjq , we get

h∗
iq=

N−1∑
j=0

(sij rowj(H)) · colq(W )=

N−1∑
j=0

I−1∑
k=0

sijhjkwkq (2)

i ∈ [0, N − 1] and q ∈ [0, O − 1]

To compute Equation (2) we follow two main principles:
(a) we completely compute the ith row of the output before
moving to the next one; (b) each element of the ith row of S is
read only once. To compute all elements h∗

iq of the ith output
row, we need to access all elements of the same row of S, i.e.,
sij . According to Equation (2), for each element, we should
select an associated row of H . The association is performed
using the column index of the corresponding element of S,
e.g., s24 is associated and multiplied with row4(H). The
multiplications between the elements of S and the associated
rows of H are the same for all elements of the same output
row of H∗, and, thus, they can be reused. The only difference
between the two outputs of the same row of H∗ is the selected
column of the weight matrix W .
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Fig. 2. The CSR format of an example normalized adjacency matrix.

In practice, matrix S is sparse. Therefore, it is stored in
a compressed storage format, where only non-zero elements
are indexed. Specifically, the Compressed Sparse Row (CSR)
format uses three arrays for storing a sparse matrix. Fig. 2
depicts an example graph, its normalized adjacency matrix S,
and the CSR representation of said S matrix. Array S_val
stores the values of the non-zero elements of S in row-
wise order. The S_col array stores the corresponding column
indices of each non-zero value, and S_pos contains pointers
to the start of each row in S_col.

for (i = 0; i < N; i++) //temporal
for (p = 0; p < I; p++) //spatial parallel
for (q = 0; q < O; q++) //spatial parallel
for (j = S_pos[i]; j < S_pos[i+1]; j++) //temporal
h_star[i][q] += (S_val[j] * h[S_col[j]][p]) * w[p][q];

Fig. 3. The fused three-matrix multiplication kernel for a sparse normalized
adjacency matrix encoded in CSR format.

Fig. 4. The elements involved in the fused three matrix multiplication.
Computing the 2nd output row requires all non-zero elements of the 2nd row
of S, the corresponding columns of H , and all columns of W .

Fig. 5. The weight-stationary FusedGCN systolic array that facilitates fused
three-matrix multiplication. The datapath is reused for many cycles until all
rows of the output have been computed. The weights of W are preloaded into
the systolic array and reused for all elements of S and H .

To transform the fused three-matrix multiplication to op-
erate directly on CSR representation, we need to replace the
instances of sij with the corresponding CSR representation of
the non-zero elements of S. The fused three-matrix multipli-
cation kernel for a CSR-encoded matrix S is shown Fig. 3.
The elements associated for computing one output row of the
result are highlighted in Fig. 4.

The outer loop passes through all the rows of matrix S (each
node of the graph is visited once). The non-zero elements of a
selected row of S (row 2 in the example of Fig. 4) with value
S_val[j] are multiplied with all the elements of the row of H
that corresponds to the column S_col[j]. The product derived
for each non-zero element is multiplied with all columns of
W to produce a complete row of the output. Since S is sparse,
only selected rows of H are fetched: the ones that correspond
to the columns of the non-zero elements of S. The same steps
are performed in parallel for all elements that belong to the
same output row, using the systolic array of Fig. 5.

B. Supporting Arbitrary Input Feature Sizes
The basic FusedGCN systolic architecture of Fig. 5 assumes

that a row of matrix H (consisting of I elements) can be
fetched as a single entity. This approach is practical and
feasible for small values of I , but it does not scale with



Fig. 6. A tiled version of FusedGCN using a 3 × 3 systolic array for
the computation of the tiled fused three-matrix multiplication. The non-zero
elements of S arrive serially and index the corresponding row of H . The row
is fetched in blocks of three words each. The output row is also computed in
blocks using an appropriate tile of weights in each cycle (recycled from the
weight buffer).

increasing numbers of input features. More realistically, a row
of H would be fetched in multiple segments/partitions, over
consecutive clock cycles. The same limitation exists on the
output side, i.e., when trying to write in memory a computed
row of the output H∗. In most practical cases, the computed
row would be stored in multiple segments.

The computation engine should match this read/write
throughput limits to avoid underutilization. Fig. 6 depicts a
3×3 systolic array used to compute in tiles the fused product of
a GCN layer with I=9 input features and O=6 output features
per node, respectively. Even if the computation evolves in
more steps to facilitate the limited input-output bandwidth,
the basic rule of the operation of FusedGCN does not change:
one output row is first fully computed before moving to the
next one.

1) Dense Input Features: Each non-zero element of S
indexes the associated row of H , based on its column index.
The selected row arrives in blocks of K words and the
computation associated with it evolves in I/K phases. In
each phase, we compute a partial result for the same output
row using the blocks of the input features H for multiple
cycles, and by recycling the tiles of the weight matrix. Fig. 7
highlights which elements of row(H) and the weight matrix
are involved in each computation step, assuming that row(H)
is partitioned in three blocks/segments. Following the fused
matrix multiplication principle of Equation (2) to compute the
jth output row of H∗, we need to fetch all non-zero elements
of the same row of S, i.e., sij , together with their associated
rowj(H). Each sij is fetched once and waits to be multiplied
with all blocks of rowj(H). Each element sijhjk of this
intermediate vector should be multiplied with all wkq for all
columns of the weight matrix.

In the example shown in Fig. 7, the intermediate vector pro-
duced for ‘Block0’ should be multiplied (inner product) with
all elements of the first three rows of W . Since the systolic
array does not have more than three columns, the weights of
the first three rows are partitioned in tiles A and B. The systolic
array first uses the weights of tile A, and then the weights of
tile B, both for ‘Block0’ of the input features. The partial result
computed for the columns of tile A at the output accumulators

Fig. 7. The non-zero elements of S and the blocks of its associated row of H
are multiplied with the tiles of the weight matrix to produce the corresponding
partial output result. The example here assumes 9 input features and 6 output
features per node, organized in blocks of three elements.

should be kept and reloaded when computation is performed
in weight tiles C and E. To enable this functionality, each
column of W has its own dedicated buffered accumulator.
When the corresponding column is activated, its buffered
accumulator value is loaded into the appropriate accumulators
of the systolic array. Once the partial computation is finished,
the partial result of the running accumulator is stored back into
the buffered accumulator. Similar to the rewind of the partial
output results, the tiles of weights are reloaded from the local
weight buffer.

2) Sparse Input Features: In many applications, as the ones
used in the experimental results [7], the input features of
the first layer of the GCN, H0, are also highly sparse. The
remaining layers are mostly dense. To take advantage of this
characteristic – and without altering the fundamental operation
of FusedGCN – we would like the computation process to skip
the blocks of a row of H that consist of only zero elements.

For instance, following the example of Fig. 7, if we know
beforehand that ‘Block1’ of rowj(H) is an all-zero vector, i.e.,
H[j][3]=H[j][4]=H[j][5]=0, then we can completely skip
that block and let the systolic array operate only on‘Block0’
and ‘Block2’. To completely skip an all-zero block, we need
to encode the blocks of the input features matrix in a CSR
format, as the one shown in Fig. 8.

Fig. 8. Encoding in CSR format the non-zero blocks of the input features
matrix H of the first layer.

Since only the non-zero blocks of each row of H would
be fetched, each block should use its block ID to determine
which tiles of the weight matrix would be activated. For a
dense matrix H , all the tiles of weights are used and always
used in the same order (e.g., A → B → · · · → E → F , for
the example of Fig. 7). On the contrary, for a sparse matrix H ,
only the tiles that correspond to non-zero blocks are needed.
The block’s ID determines which groups of rows of W are
used per block.



(a): Cora (b): Citeseer (c): Pubmed (d): Nell (e): Reddit
Fig. 9. The execution time of various 2-layer GCN applications on the proposed FusedGCN design with varying size of systolic arrays, as compared to the
performance of the GCNAX state-of-the-art architecture [6].

III. EVALUATION

Having presented and analyzed the underlying concepts and
the salient micro-architectural details of the FusedGCN design,
we now proceed with a thorough evaluation of its performance
and hardware cost.

A. Application characteristics
Table I summarizes the key characteristics of the 2-layer

GCN datasets used in our evaluations. The first notable ob-
servation is that, in all applications, the number of input and
output features between the first and the second (hidden) layer
of the GCN are highly asymmetric. The input features of the
first layer of the GCN (denoted as ‘#Inp. Features’ in the table)
are two, or even three, orders of magnitude larger than the
input features of the second layer (i.e., the outputs of the first
layer, denoted as ‘#Output Features’).

TABLE I
THE KEY CHARACTERISTICS OF THE 2-LAYER GCN APPLICATIONS USED

IN THE EVALUATIONS.
Cora Citeseer PubMed Nell Reddit

#Nodes 2708 3327 19717 65755 232965
nnz 13264 12431 108365 331899 114848857

Density of S Matrix 0.18% 0.11% 0.028% 0.0077% 0.21%
#Inp. Features H0 1433 3703 500 61278 602

Density 1.27% 0.85% 10% 0.11% 51.6%
#Hidden Features H1 16 16 16 64 64
#Output Features H2 7 6 3 186 41

Secondly, in all applications, the normalized adjacency
matrices (i.e., S matrices) are very sparse, with their density
ranging roughly from 0.0077% (Nell) to 0.21% (Reddit).
Sparseness is also high in the input features of the first layer
of all GCNs. For instance, in the Cora and CiteSeer datasets,
the number of input features of the first GCN layer is 1433
and 3703, respectively. From those input features, only 1.27%
and 0.85% in each case, respectively, are non zero.

B. Execution time comparisons
The proposed FusedGCN architecture is compared against

GCNAX [6], which is the most recent state-of-the-art GCN
accelerator that exhibits the lowest execution time relative to
other highly efficient approaches [8], [9]. The GCNAX design
computes aggregation and combination in two separate phases,
which take advantage of the sparseness of the normalized
adjacency matrix and the possible sparseness of the input
features of the first layer of the GCN. GCNAX takes advantage
of this attribute in a fine-grained manner, whereas FusedGCN
employs a coarser-grained approach; it only skips blocks of

the input rows that consist of all zero elements, as previously
described in Section II-B2.

The FusedGCN architecture was fully implemented in C++
and synthesized to Verilog RTL using Catapult HLS. The re-
sulting RTL Verilog implementation was validated and verified
to ensure functional correctness against the C++ testbench.
The execution times reported here were derived after cycle-
accurate RTL Verilog simulations of the GCN applications
under investigation. The execution times for GCNAX are taken
verbatim from [6].

Fig. 9 reports the obtained execution times for the investi-
gated 2-layer GCN applications of Table I. For FusedGCN,
execution times are provided for varying sizes of systolic
arrays. Only the first dimension of the systolic array is varied,
because the performance of FusedGCN is sensitive to the
number of blocks with all-zero elements in the input features.
For Nell and Reddit, we use larger array sizes, because these
applications have very large datasets with larger feature sizes
in the hidden layer (as shown in Table I). For each application,
the execution latency of GCNAX – as reported in [6] – is
illustrated as a straight line.

It is evident in Fig. 9 that GCNAX outperforms the proposed
FusedGCN design in systolic arrays with a small-size first
dimension (corresponding to the input features). This is due to
the above-mentioned fine-grained capitalization of sparseness
enjoyed by GCNAX. Instead, the block-based approach of
FusedGCN is not as effective in taking advantage of sparseness
when the input-feature dimension of the systolic array is small.
However, as the size of the first dimension of the systolic array
increases, FusedGCN overtakes GCNAX in performance.

C. Hardware complexity analysis
To evaluate the hardware complexity of FusedGCN, we

compare it against a regular weight-stationary systolic ar-
ray [10] that computes a standard matrix multiplication of two
dense matrices. Structurally, FusedGCN consists of a regular
systolic array and an extra column of multipliers at its west
input (the green multipliers on the left side of Figs. 5 and 6).
To quantify the area/power overhead of the extra multipliers
for various configurations, we mapped the Verilog RTL of both
designs to a 45 nm standard-cell library using the Oasys logic
synthesis tool, assuming a target clock frequency of 1 GHz.

Power was estimated after logic synthesis using the Power-
Pro power analysis and optimization tool. Switching activity
information was gathered after simulating each design using
the same random input matrices H and W . To have a fair
comparison, we set matrix S equal to the identity matrix, on
purpose. Hence, even though FusedGCN computes SHW , it
effectively produces the two-matrix product HW .



For each implementation, we examined two different sys-
tolic array sizes (16×16 and 32×32), and two different floating
point datatypes: ‘fp32’ for single-precision floating point for-
mat and ‘bfloat16’. In both designs under evaluation, Catapult
HLS derived efficient pipelined floating-point datapaths.

(a) (b)
Fig. 10. The (a) area and (b) power cost of FusedGCN, as compared to
an equal-size regular Systolic Array (SA), for two different floating point
datatypes and two different array sizes.

The goal is to highlight the logic overhead of the extra
multipliers in the proposed FusedGCN architecture. Therefore,
for both designs, we assume that each PE stores one weight
of the same width as the input data using a local register.
The obtained area/power results are depicted in Fig. 10. In
all examined cases, the complexity of the fused systolic array
closely tracks the complexity of the regular systolic array. Due
to the extra multipliers, FusedGCN introduces a small area
overhead, in the range of 1.2% to 3.6%, as compared to a
weight-stationary regular systolic array (see Fig. 10(a)). The
average power overhead of FusedGCN, as compared to the
regular systolic array, is 8% in all examined cases (Fig. 10(b)).

IV. RELATED WORK

One of the earliest works on GCN acceleration,
GraphACT [11] implements a GNN accelerator in a hybrid
CPU-FPGA platform. The forward and backward passes of
the GNN are computed on the FPGA, while the loss gradients
and activation functions are computed on the CPU. Similarly,
HyGCN [8], consists of separate aggregation and combination
modules. Aggregation utilizes a set of SIMD cores in com-
bination with a sampler and a sparsity eliminator, whereas
combination is implemented with a standard systolic array.
GNNerator [12] follows a similar approach and optimizes the
data flow between the dense matrix engine and the graph
engine. Zhang et al. in [13] focus on accelerating GCN training
on FPGAs. By sampling parts of the adjacency matrix and
input features in each training epoch, they show that they can
achieve similar quality of results with lower computational
complexity.

EnGN [14], inspired by CNN accelerators, treats graph
convolution as a concatenated matrix multiplication of feature
vectors, adjacency matrices, and weights. Similarly, Auten et
al. in [15] combine existing accelerator modules designed for
DNNs with graph-specific function accelerators.

Other approaches focused more on restructuring the com-
putation involved in GCNs. AWB-GCN [9] removes the work-
load imbalance introduced by the irregular non-zero distribu-
tion in the adjacency matrix, using three workload balancing
functions. Also, combination is computed first as a means to
reduce the operations needed during the aggregation phase.
BoostGCN [16] relies on data reorganization and tiling across
all dimensions, i.e., vertices, edges, and input features, to

improve memory accessing and increase utilization. Finally,
DyGNN [17] dynamically skips vertices and edges that are
considered redundant, thus saving computation time without
reducing the quality of results.

V. CONCLUSIONS

This work introduces for the first time – to the best of our
knowledge – a systolic array architecture that can multiply
three matrices in a fused manner to accelerate graph con-
volutions. The proposed FusedGCN architecture can readily
support the inherent sparseness of the graph adjacency matrix
and the possible sparseness of the first layer of input features.
The structure of the systolic array and the corresponding flow
of data can be fully, or partially, unrolled to adapt to the input
and output bandwidth constraints.

Most importantly, even though FusedGCN has targeted the
acceleration of GCN-related operations, it is, fundamentally,
a generic three-matrix multiplier. Hence, by appropriately
placing the data in matrices S, H , and W , or by setting any
of the three matrices equal to the unitary matrix, FusedGCN
can implement arbitrary two-matrix multiplications, covering
both sparse×dense and dense×dense cases.
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