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Abstract

Subword permutations are useful in many multimedia and

cryptographic applications. Specialized instructions have

been added to the instruction set of general-purpose proces-

sors to efficiently implement the required data rearrange-

ments. In this paper, the design of a new energy-delay effi-

cient subword permutation unit is examined. The proposed

architecture has been derived by mapping the functional-

ity of one of the most powerful permutation instructions

(GRP) to a new enhanced linear sorting network. The in-

troduced subword permutation unit is fast and achieves sig-

nificant area and energy reductions compared to previous

implementations. Also its regularity and its reduced wiring

enables efficient VLSI implementations. The efficiency of

the proposed architecture has been validated using static

CMOS implementations in a standard performance 130nm

CMOS technology.

1 Introduction

General-purpose computing workload is increasingly

taken by multimedia applications [1]. One of the main

characteristics of multimedia applications is that they deal

with low precision data that exhibit high levels of data par-

allelism. In most cases, multimedia data are packed into

subwords of one or two bytes that are processed in paral-

lel in word-oriented processors of 32 or 64 bits, according

to the SIMD paradigm [2], [3]. Several new instructions

have been introduced and added to the instruction set of

modern microprocessors, in order to efficiently handle sub-

word operations and enhance the performance of software-

implemented multimedia algorithms.

Apart from subword-parallel arithmetic operations, the

subwords need to be efficiently rearranged inside the reg-

isters in order to enhance the computation and fully ex-

ploit the data parallelism available in multimedia appli-

cations. Efficient bit and subword permutations are also
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needed for the software implementation of cryptographic

algorithms [4]. The selection of new permutation instruc-

tions and the design of fast permutation units have recently

attracted a lot of interest [4]–[6]. Bit permutations are the

most difficult form of subword permutations. The difficulty

lies in the large number of distinct possible results, n! per-

mutations of a n-bit value are possible. When subword

permutations are considered, the problem is easier since

(n/b)! outcomes are possible, where b denotes the subword

size. Driven by application requirements most instruction

sets limit the use of more complex permutation operations

to the subword level, while only simpler shift and rotate

operations are supported at the bit level. In this way the

hardware implementation is simplified and the permutation

operations can be used in high-speed microprocessors with

single-cycle latency.

Several instructions and their hardware implementations

have been proposed to efficiently perform arbitrary permu-

tations [4], [7]. One of the most powerful instructions is

GRP [5]. It has a general functionality and its use is ver-

satile. It achieves significant speedup when used in cryp-

tographic algorithms, while its benefits when used in other

applications, such as subword sorting and the generation of

DCT coefficients has been analyzed in [7]. GRP RD, RS, RC

takes two source operands, the data and the control bits

stored in RS and in RC, respectively, and generates one re-

sult that is stored in the destination register RD. The instruc-

tion divides the bits of register RS in two groups according

to the values of the control bits of RC. If a control bit is

1, then the corresponding data bit of RS is put in the first

group. Otherwise, the bit of RS is put in the second group.

In the result the relative position of the bits in each group re-

mains unchanged. An example execution of GRP is shown

in Fig. 1.

In this paper a new hardware implementation of the GRP

instruction is proposed that is better suited for the most

practical cases of multi-bit subwords. The novel architec-

ture has been designed and simulated in a standard perfor-

mance 130nm CMOS technology. The derived designs are

fast and achieve significant area and energy reductions com-
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Figure 1. An example of GRP execution.

pared to the most efficient already presented architecture.

The rest of the paper is organized as follows. Section 2

gives a brief review of the previous GRP implementations.

Section 3 gives the main idea behind our work and Sec-

tion 4 describes in detail the proposed architecture and its

circuit implementation. Experimental results are given in

Section 5. Finally, conclusions are drawn in Section 6.

2 Prior Work

Three architectures have been proposed for the hardware

implementation of the GRP instruction [8], [9], [10]. In all

cases, data associated with different control bits were sep-

arately extracted from the input operand and aligned at the

output. The general form of the two-datapath architecture

followed is shown in Fig. 2. The left datapath is responsi-

ble for concentrating the data bits with a control bit equal to

one to the left side of the result register. In the same man-

ner, the right datapath that assumes complemented control

bits concentrates the rest data bits to the right side of the

result register. The partial results of the two extraction units

are unified with a logical OR operation. In order to allow

the OR unification at the output, the input data bits are first

masked with the corresponding control bits. After the mask-

ing operation the bits with a control bit equal to zero are also

set to zero. The two extraction units have almost identical

structure, since the concentration direction of the data bits

slightly alters their design. The difference of the already

presented architectures lies in the design of the two extrac-

tion units.

In the first implementation a recursive shifting approach

is followed [8]. At first, for the case of the left extraction

unit, groups of two bits are examined and those with a con-

trol bit equal to one are shifted to the left. Then the two-

bit groups are merged to form a correctly aligned group of

four bits where the bits with a control bit equal to one have

moved to the left side of the group. In order to merge the

two parts, the bits of the right group with a control bit equal

to one replace the bits of the left group with a zero control

bit. In parallel the number of zero control bits of the new

group is also counted. This is performed by adding the pre-

computed number of zeros of the two smaller groups. The

derived number, controls the shift-merge procedure of the

next level. This procedure of counting and merging contin-

ues recursively until a single group of n bits is derived.
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Figure 2. The two-datapath architecture for

the implementation of GRP.

The general functionality of recursively counting the

number of positions that a bit requires to be shifted to the

left, without altering its relative significance with the rest

bits with the same control bit, has also been used in the

second implementation [9]. The main characteristic of this

design is that the shifting amount for each bit is counted

in a carry-save fashion directly from the input control bits.

Then the carry-save representation of the shifting amount

is encoded in such a way, so as to correctly configure the

multiplexers of an inverse butterfly network that performs

the alignment of all the bits with a control bit equal to one.

The carry-save computation of the shifting amount and the

configuration of the routing network is partially overlapped

in time leading to faster solutions compared to the first ap-

proach [8].

The third approach [10] for the implementation of the

GRP instruction does not rely on counting the required

shifting amount. The computation of the control informa-

tion that rearranges the data, is performed in parallel with

the movement of the data bits to their correct position. The

design of [10] slightly resembles the architecture proposed

in this paper since the GRP operation is also viewed as a

sorting operation for the control bits. The datapath of [10]

that implements GRP, is a variation of bitonic sorters, where

the control bits are sorted and the data bits are moved to

the left using cascaded butterfly networks without altering

their relative significance. This design has been proven to be

more than 20% faster than the previous architectures [8], [9]

requiring almost the same amount of area. The main differ-

ences between the proposed approach and the fastest archi-

tecture presented in [10] will be clarified in the next section.

3 Main Idea

According to the definition of the GRP instruction, the

data bits, that have a corresponding control bit equal to one,

are concentrated to the left side of the output. This action

resembles a sorting operation for the control bits, where the
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Figure 3. (a) The linear odd-even transposi-

tion and (b) the bitonic sorting networks used
for the implementation of GRP.

largest bits, i.e., bits equal to one, are gathered to the left.

Therefore, the problem of designing a hardware unit that

would directly execute the GRP instruction is equivalent to

the design of a sorting network that would simultaneously

sort the control bits and exchange appropriately the posi-

tions of the corresponding data bits. The main problem that

arises is that apart from sorting the control bits, we must

also ensure that the relative position of the data bits remains

unchanged. This is the main constraint that complicates the

design of the circuit implementing GRP functionality. We

consider two cases of sorting networks [11], the linear odd-

even transposition network and the bitonic-sorting network,

shown in Fig. 3. Both sorters are composed of the compare-

and-exchange elements also illustrated in Fig. 3. The direc-

tion of the arrow denotes the final position of the maximum

element. When only two bits are compared, their maximum

is given by the boolean OR function, while the correspond-

ing minimum is given by the boolean AND function.

In the first case (Fig. 3(a)), i.e., the odd-even transposi-

tion network, only neighbor values are compared and the

number of levels required to perform a sorting operation is

equal to the number of input bits. At each level of the linear

network the ones move to the left side of the output, while

the zeros move to the right. The inputs of each compare

element are swapped whenever the most significant bit is 0

and the less significant bit is 1. Due to the topology of the

odd-even network a less significant bit cannot pass over a

more significant bit with the same value. Therefore when

the bits are appropriately sorted using the linear network,

their relative significance is preserved.

In the second case, the circuit is composed of appro-

priately connected subnetworks, called bitonic sorters [12].

A string of bits is bitonic when it has the form

111 . . . 00 . . . 011 . . . 1 or 00 . . . 01 . . . 1100 . . . 0. A bitonic

sorter is effectively a butterfly network that sorts bitonic

sequences. In order to construct a general bitonic sorting

network log
2
n stages of bitonic sorters are used. At each

stage, two bitonic sequences are merged and a new double

size bitonic sequence is produced. Bitonic sorting networks

cannot preserve at the output the relative significance of the

bits under comparison. Due to the butterfly structure of the

bitonic sorting networks the bits are recursively divided in

two independent halves. When a bit is put in one half be-

cause of a swap, it cannot regain its relative significance

compared to the rest bits with the same value that were

placed to the other half. As an example you can see the

two marked ones in Fig.3(b). Although they are correctly

sorted at the output (no zero bit exists in a more significant

position) the route that they followed, has altered their rela-

tive significance. Therefore, in case that the corresponding

data bits followed them while they were sorted, the data bits

would be in wrong order according to GRP.

Bitonic sorters have been employed for the GRP imple-

mentation in [10]. Additional circuitry has been added to

preserve the relative significance of the data bits with con-

trol bits equal to one. However it is impossible using a sin-

gle bitonic sorter to simultaneously preserve the relative sig-

nificance of the data bits with a zero control bit that need to

be placed to the right part of the result. This is the reason

why in [10] two extraction units (Fig. 2) are used. Since

GRP requires the relative significance of the data bits with

the same control bit to remain unchanged, the odd-even

transposition network is better suited for its implementa-

tion.

4 A Novel Sorter-Based GRP Unit

The proposed GRP unit is based on an enhanced odd-

even transposition network. The circuit accepts the data bits
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Figure 4. An 8-bit GRP unit based on the odd-
even transposition network.
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Figure 5. The circuit level implementation of
the proposed compare-and-exchange cells.

that need to be separated to two groups at the output, and

the corresponding control bits that denote, which data bits

should be selected for each group. The block diagram of the

enhanced linear transposition network is shown in Fig. 4.

The compare and exchange cells of Fig. 4 assume as input

two pairs of data and control bits. At the high output (H) of

the cell, the maximum of the two sorted control bits appears

along with the corresponding data bit. The opposite holds

for the low output (L) of the cell. The circuit level imple-

mentation of the proposed compare-and-exchange cells is

illustrated in Fig. 5. At each stage the control bits are sorted

using OR gates to select the maximum and AND gates to

select the minimum of the two bits. Whenever the left con-

trol bit CA is 0 and the right control bit CB is 1, then a swap

between the data bits DA and DB should take place. In all

other cases the control bits are already sorted and no data

exchange is needed. The exchange of the data is controlled

by the swap-enable signal SW which is equal to

SW = CA · CB (1)

where · and x denote the logical AND and NOT operations,

respectively. In the following, + denotes the logical OR

operation. The last level of the compare-and-exchange cells

is simplified since no extra control bits are required at the

output.

4.1 Subword-Oriented GRP Unit

By definition, GRP can directly support multi-bit sub-

word operations. This can be achieved if the bits that be-

long to the same subword have identical control bits. In this

paper, we investigate the case that the minimum supported

subword size b is larger than a single bit. In this case the

maximum number of subwords that exist in a n bit word are

equal to n/b. Therefore in order to separate the subwords

in two groups using GRP, n/b control bits are required. The

enhanced linear sorting network can be simplified when

used for multi-bit subwords. In each exchange operation,

according to the value of the derived swap-enable signal, b-

bit subwords need to be swapped. Therefore b 2-to-1 multi-

plexers are required in each compare-and-exchange cell that

are all controlled by the same swap-enable signal. The al-

ready proposed GRP units [8], [9], [10] can be simplified

in the same way, when they are designed to support a mini-

mum subword size greater than one bit.

In the sequel, the GRP unit of n bits that supports a min-

imum subword size of b bits is denoted as (n/b) × b GRP

unit. The design of a 8 × 8 GRP unit that functions on byte

subwords is exactly the same with the one shown in Fig. 4,

assuming that each Di represents an 8-bit quantity and the

multiplexers of the compare cells are 8-bits wide. The en-

hanced linear sorting network, when used for multi-bit sub-

word GRP operations has three main advantages over the

already presented solutions.

• A single sorting network can simultaneously separate

the data bits in two groups according to GRP defini-

tion. In this way the hardware complexity is roughly

reduced to half compared to the GRP units that use two

separate extraction units [8], [9], [10].

• All wires connect to neighbor cells thus increasing the

regularity of the design and reducing both the buffering

requirements and the size of the driving gates. This

is also supported by the fact that both the data path

(subwords) and the control path (sorted control bits) of

the circuit follow the same topology. This is not the

case for the GRP units of [8], [9].

• The number of stages n/b is not prohibitive and is al-

most the same with previous solutions for the most

common case of modern datapaths that support a min-

imum subword size of one byte.



These observations concerning the benefits of the proposed

architecture will be better substantiated by the experimental

results given in Section 5.

4.2 Fast Subword-Oriented GRP Unit

In the first version of the compare-and-exchange cells

(Proposed I), the swap-enable signal, which drives the sub-

word multiplexers, is computed via an AND gate with one

input inverted. A faster solution would be derived, if the

swap operation in each cell is controlled directly from the

input control bits and the multiplexers are replaced by sim-

pler gates. Such a modification is possible if we combine

the two-datapath architecture shown in Fig. 2 and the en-

hanced linear sorting network. In this case, the compare and

exchange cells should have four data inputs/outputs while

the number of control bits remains unchanged. Following

the architecture of Fig. 2, at first, the subwords are masked

with the corresponding control bits and their alignment at

the output is performed by the two extraction units. Be-

cause of masking, the bits of a subword D that assume the

same control bit C are equal to D · C for the left extraction

unit and D · C for the right extraction unit. The enhanced

linear sorting network can directly perform the functionality

of each extraction unit. In this case several simplifications

are possible.

Assume at first the case of the left extraction unit. The

data inputs of the compare cells are denoted as DA→L (left

input) and DB→L (right input). Following the multiplexing

function of each cell (Fig. 5) and Eq. (1), the data at the H

output DH→L and the L output DL→L are given by:

DH→L = DA→L · (CA · CB) + DB→L · CA · CB (2)

DL→L = DA→L · CA · CB + DB→L · (CA · CB) (3)

Since at the beginning the data bits of the left extraction

unit DA→L and DB→L have already been masked with the

control bits CA and CB respectively, equations (2) and (3)

that describe the high and low data outputs of each compare

cell can be written as follows:

DH→L = DA→L + DB→L · CA (4)

DL→L = DB→L · CA (5)

In the right extraction unit the H and L outputs are inter-

changed because of the opposite alignment direction and

the control bits are inverted. If again index A refers to

the left input and B to the right input of a compare cell,

then a swap is performed in the right extraction unit when

(CA, CB) = (1, 0) since data move gradually to right. This

is equivalent to the swap-enable condition of the left ex-

traction unit, i.e., (CA, CB) = (0, 1), already described by

Eq. (1). This fact allows us to share the same control net-

work between the two extraction units. Following this con-

clusion and Eq. (1) the data DA→R and DB→R are selected
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Figure 6. Optimized implementation of the

compare-and-exchange cell for an 8 × 8 unit.

at the H and L outputs of the right extraction unit as follows:

DH→R = DB→R · (CA · CB) + DA→R · CA · CB (6)

DL→R = DB→R · CA · CB + DA→R · (CA · CB) (7)

Since in this case DA→R and DB→R have already been

masked in the beginning by the complement of the control

bits CA and CB , the outputs of the compare cells can be

simplified as follows:

DH→R = DB→R + DA→R · CB (8)

DL→R = DA→R · CB (9)

The two partial results of the left and the right extraction

unit are unified with an OR operation. The modified cell

that implements the newly derived equations for the case of

an 8×8 GRP unit is shown in Fig. 6 (Proposed II). Without

increasing the area of the circuit we managed to make the

generation of the swap-enable signal unnecessary, and also

to equally split the fanout between CA and CB that guide in-

dependently the two sorting directions. Also the AND/OR

gates that sort the control bits are efficiently shared by the

two extraction units. Both extraction units are placed as a

single circuit using the topology of Fig. 4.

5 Experimental Results

The proposed architectures have been compared to the

fastest previous solution [10] using static CMOS implemen-

tations in UMC 130nm standard performance CMOS tech-

nology. All measurements were performed for the typical

process corner at a temperature of 70oC, assuming a nom-

inal supply of 1.2V (1FO4 ∼ 62ps). In order to explore

the energy-delay space for each design we performed gate

sizing for several delay targets, beginning from the circuit’s

minimum achievable delay. Optimization is performed with

MatLab and using the methodology presented in [13]. For

the derived gate sizes the energy and the delay of each cir-

cuit have been measured in HSpice. During optimization
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and measurements we assumed that the outputs of the cir-

cuit are loaded with a capacitance of 100fF that roughly

corresponds to a 350m metal-2 wire in our technology. In-

terstage wiring loads, both capacitance and resistance, have

also been taken into account, assuming for the design a bit

slice of 16 metal-1 tracks. In order to get reasonable delays

all compared solutions have been optimized assuming that

the maximum allowed input capacitance is less than 25fF.

Fig. 7 illustrates the energy-delay behavior of the two

variants of the proposed GRP unit and the architecture pre-

sented in [10] for an 8 × 8 configuration. The energy per

operation required by the proposed designs is significantly

smaller. For almost all delay values the new circuits achieve

energy reductions that range between 35% and 70%. The

subword-oriented design of [10] achieves a minimum delay,

which is only 0.4FO4 less than the minimum delay achieved

by the proposed permutation unit with two extraction units.

The first version of the proposed GRP unit is slower mostly

because of the higher fanout requirements and the increased

delay of the multiplexers compared to the AND-OR gates

of the second implementation. For larger ratios of output to

input capacitance more inverter stages should be added in

all circuits under comparison. In this case their delay and

energy is uniformly increased and does not alter the energy-

delay trend illustrated by Fig. 7.

For each one of the derived solutions the area-delay

tradeoff has been also investigated. Fig. 8 shows the area-

delay characteristics of all circuits under comparison. It can

be observed that the proposed architectures require signif-

icant less area than the GRP unit of [10] (more than 40%

for 14FO4 delay). The area of the proposed architectures

is almost the same. The second approach is slightly more

efficient due to the reduced gate sizes and the more dense

layout of the static CMOS AND-OR gates compared to the

transmission-gate multiplexers of the first implementation.

6 Conclusions

An efficient subword-oriented GRP unit has been pre-

sented in this paper. The design is based on an enhanced

linear sorting network that offers an energy-delay efficient

solution with reduced wiring requirements, and yields effi-

cient implementations in deep-submicron technologies.
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