
Low-Cost Congestion Management in Networks-on-Chip
Using Edge and In-Network Traffic Throttling

Monobrata Debnath
University of Texas at San

Antonio, USA
monobrata.debnath

@utsa.edu

Dimitris Konstantinou
Democritus University of

Thrace, Greece
dimikons5@ee.duth.gr

Chrysostomos
Nicopoulos

University Of Cyprus, Cyprus
nicopoulos@ucy.ac.cy

Giorgos Dimitrakopoulos
Democritus University of

Thrace, Greece
dimitrak@ee.duth.gr

Wei-Ming Lin
University of Texas at San

Antonio, USA
weiming.lin@utsa.edu

Junghee Lee
University of Texas at San

Antonio, USA
junghee.lee@utsa.edu

ABSTRACT
Implementing cost effective congestion control within the
Network-on-Chip (NoC) is a major design challenge. When-
ever congestion awareness and/or mitigation is desired, ar-
chitects typically rely on the use of adaptive routing algo-
rithms, which aim to (intelligently) balance the traffic load
throughout the NoC. Nevertheless, the hardware cost in-
curred by such solutions is quite considerable, since it en-
tails the collection/propagation of traffic-related information
and the provisioning of deadlock freedom guarantees. In
this paper, we explore the potential of simultaneous edge
and in-network traffic throttling, as a low-cost alternative
to adaptive routing techniques. Without any reliance on
adaptivity by the routing algorithm, combined throttling
is demonstrated to yield better (in most cases) throughput
improvements than state-of-the-art adaptive routing algo-
rithms, but at a significantly lower cost.

CCS Concepts
•Computer systems organization → Interconnection
architectures;

Keywords
Multi-Core; Network-On-Chip; Congestion management; Low-
Cost architecture

1. INTRODUCTION
Over the last several years, the Network-on-Chip (NoC)

paradigm has emerged as the de facto communication back-
bone of multi-/many-core microprocessor architectures. The
insatiable desire for increased parallel processing and esca-
lating application demands are expected to elevate the traf-
fic load within the NoC. Poorly managed traffic bursts and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AISTECS ’17 Jan 25, 2017, Stockholm, Sweden
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

uneven load distribution may lead to premature saturation
of the network. This, in turn, degrades both network and
system performance. Hence, protracted packet latencies due
to network congestion could become a major hindrance in
future many-core designs.

Traditionally, designers have relied on adaptive routing
algorithms to address the issue of congestion control within
the NoC [3,7]. Said algorithms improve the overall through-
put of the NoC by balancing the traffic load across the net-
work links. Current solutions essentially aim to re-distribute
traffic congestion more evenly within the NoC, by sending
packets through less congested routes (rather than through
the shortest paths). While such approaches have proven to
be effective, they incur non-negligible hardware cost. The
cost is primarily due to (a) the collection and propagation
of congestion information, and (b) the additional resources
(virtual channel buffers) required to ensure deadlock free-
dom. The key observation and fundamental premise of this
paper is that one can achieve equally effective load balanc-
ing and congestion distribution, through a much cheaper (in
terms of hardware) avenue. It will be shown that a com-
bination of edge and in-network traffic throttling can reap
equally – if not more – impressive throughput improvements.

Throttling within the Network Interface Controller (NIC)
– what we refer to as edge throttling – has already been used
in prior research [2, 5, 8]. However, it does not effectively
balance the load within the network, since edge throttling
only controls the injection rate. Instead, a combination of
simultaneous edge and in-network throttling will be shown
to be much more effective. Toward this end, we explore the
potential of a combination of edge and in-network traffic
throttling as a low-cost alternative to adaptive routing algo-
rithms. The proposed solution requires minimal additional
logic to enable traffic throttling within the NIC and the NoC
routers, and it can be used with simple deterministic routing
algorithms.

Detailed experimental results and hardware synthesis anal-
ysis demonstrate that the proposed technique achieves even
better – in most cases – throughput performance than state-
of-the-art adaptive routing algorithms, at a significantly lower
hardware cost.

2. MOTIVATION
Adaptive routing algorithms balance the traffic load within

the network by utilizing detouring paths. To avoid conges-
tion, a packet may follow a path through low-congestion

 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

(a) No congestion
management

(b) The GCA
adaptive routing
algorithm [7]

(c) Edge and in-
network throttling

Figure 1: The average buffer utilization rate ob-
served in the routers of an 8×8 2D mesh NoC, with
and without congestion management techniques.
Lighter colors indicate higher congestion.

areas, even though the chosen path may not be the shortest
path to the packet’s destination. As a result, the conges-
tion levels of the most congested routers are lowered, over-
all, while the congestion levels of the remaining routers are
slightly increased. Hence, the congestion levels observed in
the NoC are more evenly balanced by re-distributing the
traffic load from highly-congested to less-congested areas.

This section aims to visually demonstrate the impact of
congestion management techniques (e.g., an adaptive rout-
ing algorithm) in the network. Figure 1 shows the average
buffer utilization rate in each router of an 8×8 2D mesh NoC.
The utilization rate is color-coded, as indicated at the bot-
tom of each diagram in the figure. Note that lighter colors
indicate higher congestion. Synthetic one-to-many traffic [4]
is used, and the injection rate is 0.41 flits/cycle/node, which
is right below the onset of saturation (as also indicated in
Figure 5(c)). The details of the simulation framework and
all simulation parameters are described in Section 4.

Without any congestion management technique, the con-
gestion levels in the central area of the network are very high,
as shown in Figure 1(a). Consequently, the central area be-
comes the bottleneck that limits the overall throughput of
the network. When a state-of-the-art adaptive routing algo-
rithm – GCA [7] – is employed, congestion is more evenly
distributed, as shown in Figure 1(b). Since the highest levels
of congestion observed in the NoC are now lower than be-
fore, the network can sustain higher throughput. The same
effect can be achieved by simultaneous edge and in-network
throttling, as shown in Figure 1(c), which highlights the av-
erage buffer utilization rate under combined throttling. In
fact, Figure 1(c) indicates that traffic throttling can balance
congestion even more evenly than the adaptive routing al-
gorithm in Figure 1(b).

The results in Figure 1 motivate us to study the potential
of combined throttling as a low-cost congestion management
technique, since throttling incurs much lower hardware cost
than adaptive routing.

3. PROPOSED ROUTER ARCHITECTURE
Without loss of generality, the proposed traffic throttling

technique employs a 2-stage pipelined speculative NoC router,
in order to allow for a fair comparison with two state-of-the-
art techniques [3, 7] in the experimental evaluations (those
techniques also employ a 2-stage speculative router). Note,
however, that the proposed throttling technique is orthogo-
nal to the router pipeline depth; the mechanism can be ap-
plied to any router micro-architecture. The selected router
architecture is appropriately modified to support both edge
(i.e., in the NIC) and in-network throttling.

M
U
X

Credit Count[2:0]
Throttling Signal

Generation Module

>Th
Throttling

Figure 2: The hardware module that generates the
traffic throttling signal in each NoC router.

3.1 Enabling traffic throttling
Traffic throttling is achieved through the use of a simple

hardware module (one in each router), which generates a
signal to trigger throttling of packets within the NIC and
the router. The employed module – called the Throttling
Signal Generation Module – is shown in Figure 2. The deci-
sion to trigger traffic throttling is made (at any given time)
based on the current buffer utilization, as indicated by the
credit counters within each router. The buffer utilization
is calculated by the left portion of the hardware module,
which sums the credits from all Virtual Channels (VCs) in
all input ports. The buffer utilization is updated once every
40 cycles (this number is dictated by the total number of
VC buffers in each router: 5 input ports × 8 VCs/port),
so one adder is sufficient to accumulate the credits of all
VCs in all ports. The credits of each VC buffer are accu-
mulated cycle-by-cycle, until all 40 credit values are added.
The summation result is then used in the right portion of
the module, which compares the calculated buffer utiliza-
tion to a pre-defined threshold value. This threshold value
is empirically chosen to be 50% in this work. Thus, a buffer
utilization of 50% (or higher) is used as a proxy of elevated
traffic accumulating in the region.

The generated throttling signal (i.e., the output of the
module in Figure 2) is sent to both the NIC and the Virtual-
channel Allocation (VA) logic of the router. The throt-
tling signal is used in conjunction with each packet’s re-
quested output port, in order to decide whether a packet
should be throttled, or not. If a packet (a) is headed to-
ward an output port connected to a zone of higher conges-
tion (henceforth called a throttled port), and (b) the buffer
utilization calculated in the current router is higher than a
pre-defined threshold (determined by the Throttling Signal
Generation Module described above), the packet is throttled.
The methodology used to determine the particular throttled
ports in each router is discussed in the following sub-section.

The actual throttling (delay) of the packets is achieved us-
ing the minimal masking logic depicted in Figure 3, which is
placed in front of the first (local) arbitration stage of a typi-
cal separable VA module [6]. The details of how a separable
VA module operates are described in [6]. The masking logic
masks a request from a VC (denoted by R in Figure 3), if the
throttling signal T is asserted, and if the requesting packet
is headed toward a congested direction (i.e., if the packet’s
requested output port P is a throttled port, O). Moreover,
to prevent starvation, a packet is not throttled more than
once. To ensure this, each VC buffer maintains a single-
bit flag (F), which indicates whether or not the head-of-line
packet in the buffer has already been throttled.

At the NIC, whenever the throttling signal generated by
the Throttling Signal Generation Module shown in Figure 2
is asserted, all packets within the NIC are throttled, irrespec-

Masking Logic

Throttling (T)

=

Flag (F)
Request (R)

Throttled Port (O)
Requested Port (P)

VA1 v:1
Arb.

1

v:1
Arb.

v

v:1
Arb.

1

v:1
Arb.

v

In
. p

o
rt

 1
In

. p
o

rt
 N

O
u

t.
 p

o
rt

 1

VA1 VA2

Nv:1
Arb.

v

In
. p

o
rt

 N

Nv:1
Arb.

v

Nv:1
Arb.

1

Nv:1
Arb.

1

Figure 3: Packet throttling is achieved using min-
imal masking logic, which is placed in front of the
router’s Virtual-channel Allocation (VA) module. A
separable VA is shown here [6].

 0 0

 0 0 1

 1

 1 1
a

 1 1

 1

 1

 1 1 1 1

 2 2 2 2

 2

 2

 2

 2

 2 2 2

 2

 2

 2

 2

 3

 2

 3

3

323 3

 3

 3

 3

 3

 3 3 3 3

 3

 3 3 3 3 3 3

 3

2

 3

 3

 2 2

3

 3

 2 2

 3

 3

 3

 3

 3

Figure 4: The routers in an 8×8 mesh NoC are
grouped into distinct congestion zones. Smaller zone
numbers indicate higher congestion. The zones were
determined under uniform random traffic and XY
routing.

tive of their destination. Similar to in-network throttling,
each packet in the NIC is throttled at most once. Thus, edge
(NIC) throttling is guided entirely by the buffer utilization
rate.

3.2 Determining the Throttled Ports
The specific output ports to be throttled in each router

(the so called throttled ports) are determined based on the
router’s location. Routers are grouped into distinct conges-
tion zones, as shown in the example of Figure 4. These zones
correspond to congestion levels observed using uniform ran-
dom traffic under deterministic XY routing. The number in
each square (router) in Figure 4 indicates the router’s con-
gestion zone. The zones are numbered in decreasing con-
gestion levels, i.e., a smaller zone number indicates higher
congestion. Based on this zone classification, the throttled
ports in each router are the ones connected to a higher con-
gestion zone.

In this preliminary work, the congestion zones – and, con-
sequently, the throttled ports in each router – are determined

Table 1: Simulated system parameters
Network size & Topology 8×8 2D Mesh
Router Architecture 2-stage speculative
Per-Hop Latency 2 (intra-router stages) + 1 (link)
Switching Technique Wormhole
Virtual Channels/Port 8
Flit Buffers/VC 5
Packet Length 1∼6 flits (uniformly distributed)
Warmup Cycles 10,000
Simulation Cycles 100,000

statically, based solely on the router’s location in the 2D
mesh. Specifically, we choose the zone classification depicted
in Figure 4. Naturally, a static zone classification will not
be able to effectively cope with skewed traffic patterns (e.g.,
random hot spots). Ideally, the throttled ports should be
determined dynamically, based on the prevailing traffic con-
ditions. Of course, such dynamicity would require exchange
of congestion information with neighboring nodes.

Nevertheless, in this paper, we use a static setup as a
proof of concept, in order to demonstrate the potential of
combined traffic throttling. In Section 4, it will be demon-
strated that even this static setup can yield very impressive
throughput results, under several different traffic patterns.
We leave the implementation of dynamic selection of throt-
tled ports as the next step in our future work.

4. EVALUATION

4.1 Performance Analysis
To evaluate the effectiveness of the proposed throttling

technique, we employ the cycle-accurate network simulator
GARNET [1], which was appropriately modified to model all
techniques under investigation. The details of the simulation
framework are presented in Table 1.

The proposed Traffic Throttling (TT) technique is com-
pared against baseline XY Dimension-Order Routing (DOR),
Edge-only Throttling (ET) [2], and two state-of-the-art adap-
tive routing algorithms: RCA [3] and GCA [7]. All solutions
are evaluated using six different synthetic traffic patterns.

Figure 5 shows the load-latency graphs for the six differ-
ent traffic patterns. Overall, TT is shown to exhibit excel-
lent throughput behavior, which even outperforms the two
adaptive routing algorithms (RCA and GCA), in most cases.
Moreover, TT is consistently better than edge-only throt-
tling (ET), thereby highlighting the effectiveness of com-
bined throttling. The only traffic pattern that causes TT to
behave worse than RCA and GCA is hot-spot (Figure 5(f)).
This is because of the static selection of the throttled ports,
which cannot identify dynamic hot-spots (as previously ex-
plained). Dynamic selection of throttled ports is expected to
resolve this issue. On average, the proposed TT technique
improves throughput by 26%, 25%, 8.5%, and 5.4%, as com-
pared to DOR, ET [2], RCA [3], and GCA [7], respectively.

Finally, we investigate the observed buffer occupancy within
the NIC, to identify whether traffic throttling necessitates
the use of larger buffers. As an example, Figure 6 shows the
maximum and average observed NIC buffer occupancy when
the NoC operates under one-to-many traffic [4]. Note that
the y-axis scale is different in the two graphs of Figure 6.
The maximum NIC buffer occupancy under the proposed
TT technique increases by a modest 4.7% near the NoC’s
saturation point, as compared to the baseline DOR design.

 0

 20

 40

 60

 0 0.1 0.2 0.3 0.4

La
te

n
cy

 (
cy

cl
e
s)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

 0

 20

 40

 60

 80

 0 0.1 0.2 0.3 0.4 0.5

La
te

n
cy

 (
cy

cl
e
s)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

 0

 20

 40

 60

 0 0.1 0.2 0.3 0.4

La
te

n
cy

 (
cy

cl
e
s)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

(a) Uniform random (b) Perfect-shuffle (c) One-to-many

 0

 20

 40

 60

 0 0.1 0.2 0.3

La
te

n
cy

 (
cy

cl
e
s)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

 0

 20

 40

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

La
te

n
cy

 (
cy

cl
e
s)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

 0

 20

 40

 60

 0 0.1 0.2 0.3 0.4

La
te

n
cy

 (
cy

cl
e
s)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

(d) Tornado (e) Rents-distribution (f) Hot-spot

Figure 5: Latency vs. load curves for the 5 investigated designs, under various synthetic traffic patterns.

 0

 20

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1M
a
x
im

u
m

 o
cc

u
p
a
n
cy

(N
u
m

b
e
r

o
f

p
a
ck

e
ts

)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e
ra

g
e
 o

cc
u
p
a
n
cy

(N
u
m

b
e
r

o
f

p
a
ck

e
ts

)

Injection rate (flit/cycle/router)

DOR
ET

RCA
GCA

TT

(a) Maximum (b) Average

Figure 6: (a) Maximum and (b) average observed
NIC buffer occupancy under one-to-many traffic [4].
Note that the y-axis scale is different in the two
graphs.

However, this small increase is observed near the NoC’s sat-
uration point, where the network is heavily loaded. In terms
of average NIC buffer occupancy, TT is slightly worse than
DOR up until saturation, beyond which TT exhibits much
lower NIC buffer occupancy, due to the achieved increase
in throughput. Similar trends were observed under other
traffic patterns, the results of which are omitted for brevity.

4.2 Hardware Cost Analysis
Compared to the two adaptive routing algorithms (RCA

and GCA), TT incurs significantly lower hardware overhead.
Specifically, RCA [3] requires: (a) a sideband network for in-
formation exchange, (b) aggregation and propagation hard-
ware, and (c) additional escape VCs to prevent deadlocks.
Similarly, GCA [7] relies on additional hardware logic to
extract and embed congestion information, which requires
non-negligible additional storage bits in each router (in ad-
dition to extra escape VCs, which are also needed to prevent
deadlocks).

On the contrary, TT utilizes minimal extra logic, with no
need for a sideband network, no information exchange, and
no extra VCs. The TT-driven 2-stage pipelined routers were
modeled in SystemVerilog and implemented using Cadence
logic synthesis and placement-and-routing tools, driven by
a standard-cell library at 45 nm, and based on the config-
uration shown in Table 1. The obtained results reveal that
the TT logic imposes a negligible 0.5% area overhead, and
just a 3% delay overhead, relative to the area and delay
of a 2-stage pipelined router that does not support traffic

throttling (i.e., the DOR setup).

5. CONCLUSION
This paper demonstrates the potential of combined edge

and in-network traffic throttling as a low-cost congestion
management alternative to adaptive routing algorithms. The
proposed mechanism balances the load more evenly across
the NoC, by throttling (delaying) packets that are headed
toward congested zones. Even when using a simplistic static
selection of ports to be throttled, combined throttling is still
demonstrated to achieve better – in most cases – throughput
improvements than two state-of-the-art adaptive routing al-
gorithms, but at a substantially lower cost.

6. REFERENCES
[1] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha.

Garnet: A detailed on-chip network model inside a
full-system simulator. In ISPASS ’09, 2009.

[2] E. Baydal, P. Lopez, and J. Duato. A family of
mechanisms for congestion control in wormhole
networks. IEEE Transactions on Parallel and
Distributed Systems, 16(9), Sept 2005.

[3] P. Gratz, B. Grot, and S. W. Keckler. Regional
congestion awareness for load balance in
networks-on-chip. In HPCA ’08, 2008.

[4] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K.
Reinhardt. Towards the ideal on-chip fabric for
1-to-many and many-to-1 communication. In MICRO
’11, pages 71–82, 2011.

[5] U. Y. Ogras and R. Marculescu. Prediction-based flow
control for network-on-chip traffic. In DAC ’06, 2006.

[6] L.-S. Peh and W. J. Dally. A delay model and
speculative architecture for pipelined routers. In HPCA
’01, 2001.

[7] M. Ramakrishna, P. V. Gratz, and A. Sprintson. Gca:
Global congestion awareness for load balance in
networks-on-chip. In NoCS ’13, 2013.

[8] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee.
Self-tuned congestion control for multiprocessor
networks. In HPCA ’01, 2001.

